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Abstract: In this paper, a new metaheuristic algorithm called Sculptor Optimization Algorithm (SOA) is introduced 

and designed, which imitates the sculpting process. The main idea in SOA design is derived from (i) making extensive 

changes to the sculpture material and (ii) making small and detailed changes to the sculpture. SOA theory is expressed 

and then mathematically modeled in two phases of exploration and exploitation. The performance of SOA in handling 

optimization applications has been evaluated to optimize the CEC 2017 test suite. The optimization results show that 

SOA, with its high power in managing exploration and exploitation during the search process, has been able to achieve 

suitable solutions for optimization problems. In addition, the quality of SOA results has been compared with the 

performance of twelve well-known metaheuristic algorithms. Analysis of the simulation results shows that SOA has 

provided superior performance compared to competing algorithms by achieving better results for most of the 

benchmark functions. Simulation findings show that compared to competing algorithms, SOA has been successful in 

handling 100% of unimodal functions, multimodal functions and hybrid functions, as well as 70% of composite 

functions. 
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1. Introduction 

Optimization is an important process in computer 

science, engineering, mathematics and other 

scientific fields that seeks to find the best solution or 

optimal value for a given problem [1]. This process 

usually involves searching the problem solving space 

and making multiple changes to improve the 

efficiency and performance of the solution [2]. 

Optimization problems exist in daily life and various 

industries, including various system design, financial 

and economic problems, production planning, 

transportation problems, resource optimization, and 

many others. The main goal in these problems is to 

obtain a solution that optimizes the desired criteria 

and provides the best possible result [3]. 

Deterministic and stochastic approaches are two 

categories of methods used to solve optimization 

problems, each of which has its own characteristics 

and applications [4]. 

In the deterministic approach, the optimization 

process is performed accurately and without any 

reliance on chance . This means that the path and 

process of optimization is determined in a clear and 

definitive way [5, 6]. One of the advantages of this 

approach is high predictability and reliability, 

because every time the algorithm is executed, it leads 
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to a specific and repeatable result. However, in 

complex problems with a large search space, 

deterministic methods may encounter problems and 

need more time to solve the problem [7]. 

Disadvantages of deterministic approaches have led 

researchers to be able to deal with complex practical 

problems by introducing stochastic approaches [8]. 

In the stochastic approach, the optimization 

process is performed using random elements and 

random search. This means that at every step of the 

process, decisions are made based on probabilities 

and chance. Metaheuristic algorithms are among the 

most prominent stochastic approaches that have been 

widely used to solve optimization problems. One of 

the main features of metaheuristic algorithms is the 

ability to use creative methods and flexibility in 

facing complex problems and large search space. 

However, due to the randomness of the optimization 

process by metaheuristic algorithms, the obtained 

results may be different in each run and it is difficult 

to predict the results with high accuracy [9]. 

This means that there is no guarantee to achieve 

the global optimum using metaheuristic algorithms. 

This is why the solutions obtained from these 

algorithms are called quasi-optimal. The desire of 

researchers to achieve better solutions for 

optimization problems has led to the design of several 

metaheuristic algorithms [10]. 

The main research question is that according to 

the existing designed metaheuristic algorithms, is 

there still a need to design newer metaheuristic 

algorithms or not? In response to this question, it 

should be said that: Although the designed 

metaheuristic algorithms have had significant success 

in solving optimization problems, the No Free Lunch 

(NFL) theorem [11] shows that there is no algorithm 

that performs best for all optimization problems. . 

Therefore, according to the NFL theorem, there is 

still a need to design newer and innovative 

metaheuristic algorithms. These algorithms may 

provide better performance for new problems and 

challenges that have not been considered so far. Also, 

new algorithms can provide improvements in the 

performance and efficiency of existing algorithms 

and thus contribute to progress in the field of 

optimization. 

The innovation and novelty aspects of this paper 

are in the design of a new metaheuristic algorithm 

called Sculptor Optimization Algorithm (SOA) to 

deal with optimization applications in different 

sciences. The main contributions of this paper are 

listed as follows: 

• SOA is introduced by the inspiration of human 

activities in the process of sculpture. 

• The main idea of SOA is to include: (i) making 

extensive changes to the sculpture material and 

(ii) making small and detailed changes to the 

sculpture. 

• The theory of SOA is described and its 

implementation steps are mathematically 

modeled in two phases of exploration and 

exploitation. 

• The performance of SOA is evaluated to address 

the CEC 2017 test suite. 

• The quality of SOA in handling optimization 

applications is compared with the performance of 

twelve well-known algorithms. 

The rest of the article is structured in such a way 

that first the literature review is presented in section 

2. Then, Sculptor Optimization Algorithm (SOA) is 

introduced and mathematically modeled in section 3. 

Simulation studies and performance evaluation of 

SOA in optimization applications are presented in 

section 4. Finally, conclusions and research proposals 

for future studies are provided in Section 5. 

2. Literature review 

In recent decades, metaheuristic algorithms have 

attracted a lot of attention in computer science, 

engineering, mathematics and other scientific fields. 

Using concepts such as evolution, collective 

motivation, random search and other similar 

principles, these algorithms attempt to provide 

optimization of different problems using different 

methods. Metaheuristic algorithms can be divided 

into four groups based on the main ideas in design: 

swarm-based, evolutionary-based, physics-based, 

and human-based methods. 

Swarm-based metaheuristic algorithms are 

designed to solve optimization problems using ideas 

similar to group behavior in living communities. 

These algorithms are inspired by the group behavior 

of living organisms such as ants, anteaters, bees and 

birds and are used to optimize various problems 

including routing, planning and production problems. 

The Particle Swarm Optimization (PSO) is a popular 

metaheuristic method for solving optimization 

problems, which is inspired by the group behavior of 

birds in search of food sources. In this algorithm, the 

optimization problem is considered as finding the 

best position in a multidimensional space [12]. Ant 

Colony Optimization (ACO) is a metaheuristic 

optimization method inspired by the collective 

behavior of ants in search of food resources. In this 

algorithm, ants improve their search by exchanging 

information on pheromones. This method is known 

as an efficient method in solving complex 

optimization problems [13]. Some other swarm based 
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algorithms are: Walrus Optimization Algorithm 

(WaOA) [14], Adax Optimization Algorithm (AOA) 

[15], Swarm Space Hopping Algorithm (SSHA) [16], 

and Migration-Crossover Algorithm (MCA) [17]. 

Evolutionary-based algorithms are approaches 

that are influenced by biological sciences, genetics, 

the process of evolution, and evolutionary principles 

such as natural selection, genetic variation, and 

genetic inheritance. Genetic Algorithm (GA) [18] is 

inspired by genetic processes in nature. In this 

algorithm, a population of solutions (chromosomes) 

is generated and mutated, and natural selection is 

used to select parents and evolutionary operators such 

as crossover and genetic mutation are used to 

generate new generations. 

Physics-based algorithms are inspired by physical 

principles and laws such as the laws of flow, gravity, 

diffusion, etc. They optimize the problems with the 

help of these physical principles. Simulated 

Annealing (SA) [19] is an optimization method 

inspired by the principles of metal annealing. This 

algorithm uses random probabilities to accept or 

reject changes in the search space. As the temperature 

decreases over time, the probability of accepting 

changes also decreases, which approaches a more 

optimal point in the search space. Laws, forces, 

processes, transformations, phenomena and other 

physical concepts have been sources of inspiration in 

designing algorithms such as: Electromagnetic Field 

Optimization (EFO) [20], Charged System Search 

(CSS) [21], Prism Refraction Search (PRS) [22], and 

Kepler Optimization Algorithm (KOA) [23]. 

Human-based algorithms include approaches that 

use inspiration from human behavior and 

performance and human cognitive processes. These 

algorithms are usually modeled on human decision-

making, learning, memory and individual 

development. Teaching-Learning Based 

Optimization (TLBO) is an optimization algorithm 

that is inspired by the teaching and learning process 

in an educational environment. This algorithm first 

creates a population of people (solutions), each of 

which is considered as a learner. Then, the 

optimization process is done using the 

communication between the teacher and the students. 

In this algorithm, the teacher acts as a representative 

of the best solutions in the population and tries to 

share her/his knowledge with others [24]. The 

principles of education and care of mother Eshrat in 

raising her children have been the main idea in the 

design of Mother Optimization Algorithm (MOA) [8]. 
Interactions, communications, thoughts, decisions 

and other human activities have been a source of 

inspiration in designing algorithms such as: Ali Baba 

and the Forty Thieves (AFT) [25], Dollmaker 

Optimization Algorithm (DOA) [26], and Human 

Mental Search (HMS) [27].  

Based on the best knowledge obtained from 

literature review, so far, no metaheuristic algorithm 

has been designed inspired by human activities in art 

and sculpting process. Meanwhile, making changes 

on sculpting materials in order to make a sculpture is 

an intelligent process that can be the main idea in 

designing a new optimizer. In order to address this 

research gap, in this paper, a new meta-heuristic 

algorithm based on the mathematical modeling of 

sculpting is introduced and designed, which is 

discussed in the next section. 

3. Sculptor optimization algorithm 

In this section, the proposed Sculptor 

Optimization Algorithm (SOA) approach is 

introduced and mathematically modeled. 

3.1 Inspiration of SOA 

Sculpture, an enduring art form spanning 

millennia, showcases the mastery of three-

dimensional expression through various mediums 

such as stone, metal, and clay. From the iconic works 

of ancient civilizations to the contemporary 

innovations of modern sculptors, this art form 

continues to captivate and inspire audiences 

worldwide. Renowned sculptors like Michelangelo, 

Rodin, and Moore have left indelible marks on the 

artistic landscape, pushing the boundaries of form, 

texture, and symbolism. Sculpture's presence in 

public spaces and galleries serves as a testament to its 

cultural significance and enduring relevance. 

Through the tactile and visual experience, it offers, 

sculpture transcends language barriers and 

communicates profound emotions and ideas. As an 

integral part of human history and expression, 

sculpture continues to shape and enrich our collective 

cultural heritage [28]. 

In the sculpting process, the sculptor tries to 

achieve a work of art by making changes on the 

material through carving. A wide range of materials 

including clay, glue, stone, metal, fabric, glass, wood, 

concrete, rubber and composite materials can be used 

in this art. In general, the two strategies of the 

sculptor in the sculpture process, which are more 

significant, are as follows: (i) making extensive 

changes to the sculpting material and (ii) making 

small precise changes to complete the sculpture. 

What is evident is that sculpting is an intelligent 

human activity in which the sculptor's strategies to 

create a work of art correspond to the search process 

in the problem solving space in order to achieve the 

optimal solution. These intelligent strategies of the 
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sculptor while making changes to the sculpting 

material are the main source of inspiration in the SOA 

design discussed below. 

3.2 Algorithm initialization 

The proposed SOA approach is a population-

based optimizer that can achieve suitable solutions 

for optimization problems by benefiting from the 

search power of its members in the problem solving 

space. The proposed approach of SOA is a crowd-

based optimizer that can achieve suitable solutions 

for optimization problems by benefiting from the 

search power of its members in the problem solving 

space. Each SOA member represents a candidate 

solution to the problem, which contains information 

on the values of the decision variables. Therefore, 

each SOA member is mathematically modeled using 

a vector where each element of this vector represents 

a decision variable. The SOA members  

together form the SOA population, which can be 

mathematically modeled by the community of these 

vectors using a matrix according to Eq. (1). The 

initial position of SOA members in the problem 

solving space is generated completely randomly 

using Eq. (2). 
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𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟 ∙ (𝑢𝑏𝑑 − 𝑙𝑏𝑑) (2) 

 

Here, 𝑋 is the SOA’s population matrix, 𝑋𝑖 is the 

ith member (i.e., candidate solution), 𝑥𝑖,𝑑  is its dth 

dimension in the search space (i.e., decision variable), 

N is the number of population members (i.e., 

population size), m is the number of decision 

variables, r is a random number within the interval 
[0,1] , while 𝑙𝑏𝑑  and 𝑢𝑏𝑑  stand for the lower and 

upper bounds of the dth decision variable, 

respectively. 

Since each SOA member is a candidate solution 

for the given problem, corresponding to each SOA 

member the objective function can be evaluated. The 

set of evaluated values for the objective function can 

be represented using a vector according to Eq. (3). 
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Where, F is the vector of objective function 

values and 𝐹𝑖 is the obtained objective function value 

based on the ith SOA member. 

3.3 Mathematical modelling of SOA 

This section deals with the mathematical 

modeling of the proposed SOA approach. In order to 

update the position of SOA members in the problem 

solving space, it is inspired by the sculptor's strategies 

during the sculpting process. In this process, the 

sculptor uses two main strategies in order to make the 

sculpture: (i) making extensive changes to the 

sculpture material and (ii) making small and precise 

changes in order to finalize the sculpture. In SOA 

design, inspired by these strategies, the position of 

SOA members in the problem solving space has been 

updated in two phases of exploration and exploitation. 

Each of these SOA upgrade phases is described and 

modeled in detail below. 

3.3.1 Phase 1: Making extensive and large changes 

to the sculpting materials (exploration phase)  

A sculptor uses an existing model or mental 

image to create a sculpture. Then, based on this 

model, he tries to make changes on the raw materials 

of sculpture. Making these changes can be done 

through carving. In SOA design, modeling these 

extensive changes on sculptural materials according 

to the considered pattern, leads to extensive changes 

in the position of SOA members and as a result, 

increases the exploration power of the algorithm in 

order to manage the global search. 

In SOA design, the position of the best population 

member is assumed as the sculpting pattern. Then 

corresponding to the sculpting process in which the 

sculptor tries to bring the shape of the raw materials 

closer to the intended pattern, in SOA, the position of 

the population members changes based on the change 

of movement towards the position of the best member 

of the population. Based on the simulation of making 

changes on the raw materials of sculpture, a new 

position in the problem solving space is calculated for 

each SOA member using Eq. (4). Then, if this new 

position improves the value of the objective function, 

it replaces the previous position of the corresponding 

member using Eq. (5). 
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𝑥𝑖,𝑗
𝑃1 = 𝑥𝑖,𝑗 + 𝑟 ∙ (𝑏𝑒𝑠𝑡𝑗 − 𝐼 ∙ 𝑥𝑖,𝑗),   (4) 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 ≤ 𝐹𝑖 ,

𝑋𝑖, 𝑒𝑙𝑠𝑒 ,
 (5) 

 

Where, 𝑏𝑒𝑠𝑡  is the best member of population, 

𝑏𝑒𝑠𝑡𝑗 is its jth dimension, 𝑋𝑖
𝑃1 is the new position for 

the ith member based on first phase of SOA, 𝑥𝑖,𝑗
𝑃1 is 

its jth dimension, 𝐹𝑖
𝑃1 is its objective function value, 

𝑟 is a random number drawn from the interval [0, 1], 
and 𝐼 is randomly selected number, taking values of 

1 or 2. 

3.3.2 Phase 2: Making small and precise changes 

on the statue (exploitation phase)  

Based on the considered pattern, the sculptor 

makes major and extensive changes on the sculpture 

materials. After that, the sculptor tries to make small 

changes on the sculpture with high precision in order 

to take care of the exact details of the model and 

complete the sculpture. In SOA design, the modeling 

of these small precise changes leads to the creation of 

small changes in the position of the SOA members 

and, as a result, increasing the exploitation power of 

the algorithm in order to manage the local search.  

In the SOA design, corresponding to the 

sculptor's strategy that tries to achieve a better shape 

of the sculpture by making precise small changes and 

make it completely similar to the model, the position 

of SOA members is also improved with small 

changes to converge to better solutions for the given 

problem. Based on the simulation of this sculpting 

strategy, a new position has been calculated for each 

SOA member using equation (6). Then, if this new 

position improves the value of the objective function, 

it replaces the previous position of the corresponding 

member using equation (7). 

 

𝑥𝑖,𝑗
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𝑇 − 𝑡

𝑇
∙  𝑥𝑖,𝑗 +

𝑡

𝑇
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𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 ≤ 𝐹𝑖

𝑋𝑖, 𝑒𝑙𝑠𝑒 
 (7) 

 

Where, 𝑋𝑖
𝑃2 is the new calculated position for the 

ith SOA member based on second phase of SOA, 𝑥𝑖,𝑗
𝑃2 

is the its 𝑗th dimension, 𝐹𝑖
𝑃2 is its objective function 

value, 𝑇 is the maximum number of iterations, and 𝑡 

is the iteration counter. 

3.4 Repetition process, pseudocode, and flowchart 

of SOA 

After updating all SOA members based on the 

first and second phases, the first iteration of the 

algorithm is completed. Considering that SOA is an 

iteration-based algorithm, the algorithm enters the 

next iteration with the updated values. The process of 

updating the position of SOA members in the 

problem solving space continues until the last 

iteration of the algorithm based on Eqs. (4) to (7). At 

the end of each SOA iteration, the best solution 

obtained is stored and updated. After the full 

implementation of SOA, the best solution recorded 

during the iterations of the algorithm is output as a 

solution for the given problem. The steps of SOA 

implementation are shown as a flowchart in Figure 1. 

4. Simulation studies and results 

This section is dedicated to the performance 

analysis of SOA to deal with optimization issues. 

With this view, CEC 2017 tests suite has been 

selected, which consists of thirty standard benchmark 

functions C17-F1 to C17-F30. These benchmark 

functions are classified into four types: unimodal 

functions of C17-F1 to C17-F3, multimodal functions 

of C17-F4 to C17-F10, hybrid functions of C17-F11 

to C17-F20, and composite functions of C17-F21 to 

C17-F30. Similar to other papers, the C17-F2 

functional is excluded from the simulation studies 

due to its unstable behavior. Comprehensive and 

detailed information on the CEC 2017 test suite is 

available at source [29]. Twelve well-known 

metaheuristic algorithms have been selected to 

compare with the performance of SOA in handling 

optimization problems. These competing algorithms 

are: GA [18], PSO [12], GSA [30], TLBO [24], MVO 

[31], GWO [32], WO [33], MPA [34], TSA [35], 

RSA [36], AVOA [37], and WSO [38]. In order to 

report the simulation results, six statistical indicators 

have been used: mean, best, worst, standard deviation 

(std), median, and rank.  

4.1 Evaluation of unimodal functions 

C17-F1 and C17-F3 functions are of unimodal 

type. These types of problems are able to challenge 

the exploitation ability of metaheuristic algorithms 

because they lack local optima. The outputs of SOA 

and competing algorithms on these functions are 

reported in Table 1. Based on the reported results, 

SOA is ranked as the first best optimizer for both 

unimodal functions C17-F1 and C17-F3.  
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Figure. 1 flowchart of SOA 

 

Analysis of the simulation results shows that 

SOA, with the benefit of high power in exploitation 

and management of local search, has provided 

superior performance compared to competing 

algorithms for handling unimodal functions. 

4.2 Evaluation of multimodal functions 

Functions C17-F4 to C17-F10 are of multimodal 

type. These types of problems, because they have a 

large number of local optima, are able to challenge 

the exploration ability of metaheuristic algorithms. 

The results of the implementation of SOA and 

competing algorithms on multimodal functions are 

reported in Table 2. Based on the results, SOA has 

obtained the rank of the first best optimizer for all 

seven multimodal functions C17-F4 to C17-F10. 

What is evident from the analysis of the simulation 

results, SOA with its capability in exploration and 

global search management has provided superior 

performance to handle multimodal functions 

compared to competing algorithms.  

4.3 Evaluation of hybrid functions 

Functions C17-F11 to C17-F20 are of hybrid type. 

These types of functions are complex optimization 

problems that challenge the ability of metaheuristic 

algorithms to balance exploration and exploitation. 

The outputs of SOA and competing algorithms for 

optimizing these functions are reported in Table 3. 

Based on the results, SOA has been ranked the first 

best optimizer for all ten benchmark functions C17-

F11 to C17-F20. Analysis of the simulation results 

shows that SOA, with the ability to balance 

exploration and exploitation, has provided superior 

performance for handling hybrid functions compared 

to competing algorithms. 

4.4 Evaluation of composite functions 

Functions C17-F21 to C17-F30 are of composite 

type. These types of functions are complex and very 

challenging optimization problems. Achieving the 

optimal solution of these problems requires a high 

capability in exploration and exploitation. The results 

of the implementation of SOA and competing 

algorithms on composite functions are reported in 

Table 4. Based on the obtained results, SOA has 

obtained the rank of the first best optimizer for 

handling functions C17-F21, C17-F23, C17-F24, and 

C17-F27 to C17-F30. What is concluded from the 

analysis of the simulation results is that SOA has a 

high ability in exploration and exploitation, which 

has led to its superiority compared to competing 

algorithms for dealing with composite functions. 

The performance of SOA and competing 

algorithms to handle the CEC 2017 test suite is 

plotted using boxplot diagrams in Figure 2. 

Input information of the optimization problem. 
Variables interval, constraints, objective function. 

Set the population size (N) and maximum 
number of iterations (T). 

Create and evaluate the initial population. 

Phase1: Determine the sculpture pattern 
based on best population member. 

Phase 1: Calculate the new position of the 

𝑖th SOA member (𝑋𝑖
𝑃1) using Equation (4). 

 

Phase1: Evaluate 𝐹𝑖
𝑃1 based on 𝑋𝑖

𝑃1.  

Start SOA 

No 

Yes 

𝑖 = 𝑖 + 1 

Print the best candidate solution. 

i==N? 

𝑖 = 1 
𝑡 = 𝑡 + 1 

Phase 2: Update 𝑋𝑖 using Equation (8). 

 

t==T? 
No 

Yes 

End SOA 

Phase 2: Calculate the new position of the 𝑖th 

SOA member (𝑋𝑖
𝑃2) using Equation (7). 

 

Phase 2: Evaluate 𝐹𝑖
𝑃2 based on 𝑋𝑖

𝑃2. 

 

Phase 1: Update 𝑋𝑖 using Equation (5). 
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Table 1. Optimization results of unimodal functions (C17-F1 and C17-F3) 
 SOA WSO AVOA RSA MPA TSA WOA GWO MVO TLBO GSA PSO GA 

C17-F1 

mean 100 3.75E+09 29922059 6.68E+09 52883767 1.16E+09 34117332 29924452 87329488 1.26E+08 29920043 29921604 37633141 
best 100 3.17E+09 11269.62 5.85E+09 16720.51 2.43E+08 3803052 15145.17 27519.96 43087919 9494.238 9654.111 7479419 
worst 100 4.83E+09 1.09E+08 7.93E+09 1.92E+08 2.48E+09 1.12E+08 1.09E+08 3.17E+08 2.31E+08 1.09E+08 1.09E+08 1.17E+08 
std 0 7.99E+08 57014628 1.03E+09 1.01E+08 1.05E+09 56192559 57017477 1.66E+08 90300260 57015766 57014846 57510733 
median 100 3.5E+09 5487530 6.46E+09 9692814 9.64E+08 10454058 5486941 16005629 1.14E+08 5484408 5487217 12861838 
rank 1 12 4 13 8 11 6 5 9 10 2 3 7 

C17-F3 

mean 300 6902.565 1240.146 7321.369 1959.553 8332.828 2169.272 1238.949 3040.511 1516.273 7718.261 1238.914 10656.29 
best 300 4876.621 716.5073 5384.348 1036.187 4775.201 990.1539 716.5156 1515.706 827.924 4787.324 716.5073 4829.611 
worst 300 8355.404 2197.303 8986.303 3648.869 10826.74 3420.841 2194.748 5830.173 2535.783 10138.86 2194.667 16260.72 
std 0 1615.175 737.8683 1772.477 1302.823 2778.987 1180.036 737.1237 2151.424 824.2112 2407.768 737.0895 6641.81 
median 300 7189.118 1023.387 7457.413 1576.577 8864.688 2133.045 1022.267 2408.083 1350.693 7973.429 1022.241 10767.41 
rank 1 9 4 10 6 12 7 3 8 5 11 2 13 

Sum rank 2 21 8 23 14 23 13 8 17 15 13 5 20 
Mean rank 1 10.5 4 11.5 7 11.5 6.5 4 8.5 7.5 6.5 2.5 10 
Total rank 1 9 3 10 5 10 4 3 7 6 4 2 8 

 

Table 2. Optimization results of multimodal functions (C17-F4 to C17-F10) 
 SOA WSO AVOA RSA MPA TSA WOA GWO MVO TLBO GSA PSO GA 

C17-F4 

mean 400 756.2803 407.0778 1023.244 408.364 518.8691 420.3609 406.1551 411.6275 409.9557 406.9487 417.2115 413.5689 
best 400 609.4061 402.9129 699.3513 403.6598 452.796 407.4143 403.1427 406.0323 408.1579 404.424 402.1355 410.6779 
worst 400 891.6641 412.6971 1344.147 417.0357 591.9035 449.9685 411.0114 428.0941 415.0862 412.7573 447.9672 417.2304 
std 0 141.1031 4.411591 297.7355 6.634736 75.38316 21.5205 3.658529 11.86509 3.697816 4.266461 22.4691 3.051428 
median 400 762.0256 406.3506 1024.739 406.3802 515.3884 412.0305 405.2332 406.1918 408.2894 405.3067 409.3717 413.1836 
rank 1 12 4 13 5 11 10 2 7 6 3 9 8 

C17-F5 

mean 501.2464 547.2709 533.4406 552.357 512.9521 546.7992 531.418 520.0626 513.0451 526.8712 539.893 522.8261 522.8996 
best 500.9951 536.3623 522.7623 541.7054 508.654 532.5737 518.8646 510.8694 508.5295 521.7144 536.1189 510.2547 519.4749 
worst 501.9917 554.6879 545.4724 563.7161 518.8112 567.246 554.3878 528.8351 520.3343 531.6904 546.0748 538.187 529.1864 
std 0.537048 8.998921 12.35993 13.06621 5.220377 17.10149 17.95214 7.931909 5.501677 4.477696 4.663814 14.2132 4.740026 
median 500.9993 549.0167 532.7639 552.0032 512.1717 543.6885 526.2097 520.2729 511.6583 527.0401 538.6891 521.4313 521.4685 
rank 1 12 9 13 2 11 8 4 3 7 10 5 6 

C17-F6 

mean 600 621.8597 611.8238 627.2659 601.1761 616.783 615.685 601.8073 601.132 604.9192 611.7485 605.2937 607.1626 
best 600 619.421 611.179 624.9619 600.7619 610.3021 605.318 600.5168 600.5987 603.4907 602.5172 601.486 604.9079 
worst 600 624.8138 613.3259 630.0351 601.9896 627.2811 630.0504 603.2542 601.7266 607.1037 624.07 613.123 609.9837 
std 0 2.508793 1.08938 2.402352 0.612459 7.92843 11.23482 1.344121 0.504635 1.719831 10.83326 5.771931 2.370398 
median 600 621.6021 611.3952 627.0333 600.9764 614.7744 613.6858 601.7292 601.1013 604.5412 610.2034 603.2829 606.8794 
rank 1 12 9 13 3 11 10 4 2 5 8 6 7 

C17-F7 

mean 711.1267 779.206 752.1955 777.8195 725.1737 793.7458 749.9011 729.2947 726.0821 743.2779 720.2082 730.5259 733.2535 
best 710.6726 770.8391 739.8917 770.848 719.4516 773.3004 739.7043 717.9447 717.4924 738.9536 716.384 723.4819 724.105 
worst 711.7995 791.1335 767.5882 785.4081 734.1237 820.3607 767.0287 748.051 743.6843 747.8681 725.9581 737.387 741.9442 
std 0.553542 9.737206 13.72203 6.774961 6.905284 22.70952 13.38803 14.06779 13.00362 4.831107 4.977967 6.433275 8.076162 
median 711.0174 777.4256 750.651 777.5109 723.5598 790.6611 746.4357 725.5916 721.5759 743.145 719.2454 730.6173 733.4825 
rank 1 12 10 11 3 13 9 5 4 8 2 6 7 

C17-F8 

mean 801.4928 837.962 826.0171 840.9305 813.8239 837.3567 829.4792 813.2707 815.9257 830.3692 818.5799 820.4988 816.5487 
best 800.995 831.3862 817.0271 833.1841 809.4682 826.323 819.4513 812.0803 810.5759 825.9966 815.1144 815.8128 815.15 
worst 801.9912 842.3144 838.1851 845.2605 816.7777 848.2774 837.2072 814.6034 820.9421 834.1363 821.884 825.2081 819.8687 
std 0.621323 5.293889 9.550151 5.739528 3.495746 10.38283 8.40996 1.11946 4.687493 4.555997 3.430197 4.892419 2.402956 
median 801.4926 839.0736 824.4281 842.6387 814.5249 837.4131 830.6291 813.1995 816.0924 830.6719 818.6605 820.487 815.588 
rank 1 12 8 13 3 11 9 2 4 10 6 7 5 

C17-F9 

mean 900 1249.748 1094.449 1278.886 907.5434 1221.684 1218.105 904.6387 911.994 911.9231 904.1092 906.912 907.4863 
best 900 1158.27 935.6922 1211.821 900.4138 1081.567 1019.533 900.2541 900.5761 906.6673 900.1974 900.8462 903.782 
worst 900 1339.42 1414.273 1377.013 920.2232 1408.205 1399.893 911.4106 933.2975 916.1862 911.4079 912.0021 913.6208 
std 0 92.66405 239.7117 75.91288 9.859639 153.9281 172.1806 5.829994 16.59145 4.361221 5.684322 5.049406 4.598963 
median 900 1250.652 1013.916 1263.355 904.7684 1198.482 1226.498 903.445 907.0513 912.4194 902.4158 907.3998 906.2712 
rank 1 12 9 13 6 11 10 3 8 7 2 4 5 

C17-F10 

mean 1006.179 2100.705 1756.048 2280.04 1585.158 1922.863 1917.888 1757.991 1721.75 2014.101 2083.535 1866.061 1715.376 
best 1000.284 1939.136 1499.997 2165.739 1439.603 1787.018 1538.736 1484.314 1536.19 1694.81 1898.082 1550.309 1516.019 
worst 1012.668 2213.922 2169.893 2490.567 1725.234 2046.405 2352.013 2061.386 1987.267 2293.663 2225.296 2222.758 2065.043 
std 7.194373 125.0343 331.5048 159.2575 127.1298 142.257 404.4252 272.1116 207.2191 266.9464 148.2689 298.1319 262.0966 
median 1005.882 2124.881 1677.151 2231.926 1587.897 1929.013 1890.402 1743.131 1681.772 2033.965 2105.381 1845.588 1640.22 
rank 1 12 5 13 2 9 8 6 4 10 11 7 3 

Sum rank 7 84 54 89 24 77 64 26 32 53 42 44 41 
Mean rank 1 12 7.714286 12.71429 3.428571 11 9.142857 3.714286 4.571429 7.571429 6 6.285714 5.857143 
Total rank 1 12 9 13 2 11 10 3 4 8 6 7 5 

 

5. Conclusions and future works 

In this paper, a new metaheuristic algorithm 

called Sculptor Optimization Algorithm (SOA) was 

proposed to deal with optimization tasks in various 

sciences. The main idea in SOA design includes two 

main steps in the sculpting process: (i) making 

extensive changes to the sculpting material and (ii) 

making small and detailed changes to the sculpture. 

SOA theory was stated and then mathematically 

modeled in two phases of exploration and 

exploitation in order to use it to solve optimization 

problems. The performance of SOA was challenged 

to handle the CEC 2017 tests suite. The optimization 

results showed that SOA with high capability in 

exploration and exploitation and balancing them can 
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scan the problem solving space well at both global 

and local levels. The performance of SOA in 

handling the CEC 2017 test suite was compared with 

the performance of twelve competing algorithms. 

Analysis of the simulation results showed that SOA 

has provided superior performance for handling the 

CEC 2017 test suite by achieving better results for 

most of the benchmark functions compared to 

competing algorithms. Simulation findings showed 

that in competition with compared algorithms, the 

implementation of SOA has been successful in 100% 

of unimodal, multimodal, and hybrid functions, as 

well as in 70% of composite functions. 

 

Table 3. Optimization results of fixed-dimensional multimodal functions (C17-F11 to C17-F20) 
 SOA WSO AVOA RSA MPA TSA WOA GWO MVO TLBO GSA PSO GA 

C17-F11 

mean 1100 3063.69 1150.529 3003.955 1136.505 3968.264 1152.133 1136.806 1154.953 1152.103 1144.444 1147.277 1957.253 
best 1100 2247.869 1135.091 1349.683 1115.993 3861.475 1140.04 1118.92 1121.497 1139.939 1131.482 1130.001 1153.561 
worst 1100 3834.766 1173.893 4624.487 1182.147 4009.959 1163.076 1151.891 1227.634 1173.827 1156.568 1186.227 4304.387 
std 0 779.0951 19.26855 1598.144 33.52295 77.20759 10.19939 14.68646 53.47542 17.34002 13.58487 28.33268 1691.322 
median 1100 3086.062 1146.567 3020.824 1123.939 4000.811 1152.709 1138.206 1135.341 1147.324 1144.863 1136.441 1185.531 
rank 1 12 6 11 2 13 8 3 9 7 4 5 10 

C17-F12 

mean 1352.959 2.32E+08 1204662 4.63E+08 855345 1164745 2026108 1157820 1410927 3794627 1152100 488695.7 879888.1 
best 1318.646 51838247 875666.2 1.03E+08 28538.66 368850.8 631599.3 524832.5 45298.15 1405172 953339.3 22586.61 373601.3 
worst 1438.176 4.05E+08 1720755 8.09E+08 1338743 1477682 3315961 2133979 2208512 6618533 1457785 765772.2 1218963 
std 61.92816 1.93E+08 433371.3 3.86E+08 624011.5 576360.4 1212636 743081 1030488 2779662 236157.3 352829.1 427970.8 
median 1327.506 2.36E+08 1111114 4.7E+08 1027049 1406223 2078435 986233 1694949 3577402 1098639 583211.9 963494.2 
rank 1 12 8 13 3 7 10 6 9 11 5 2 4 

C17-F13 

mean 1305.324 11271468 15534.32 22532083 7082.466 11868.18 8487.731 7930.465 10270.21 14481.78 10120.98 7860.149 39202.8 
best 1303.114 942808.2 6702.009 1872606 4664.683 8536.728 5714.575 3725.338 6490.676 12576.06 6684.297 5163.974 9163.152 
worst 1308.508 37403222 23614.33 74794117 9272.744 15450.7 13306.72 11676.69 14345.6 16017.11 14213.15 14517.59 122902.8 
std 2.456412 18869592 9642.617 37738263 2111.285 3058.152 3587.353 4078.397 3479.193 1634.369 3347.104 4839.5 60334.55 
median 1304.837 3369922 15910.48 6730804 7196.219 11742.65 7464.815 8159.916 10122.28 14666.98 9793.239 5879.518 12372.61 
rank 1 12 10 13 2 8 5 4 7 9 6 3 11 

C17-F14 

mean 1400.746 3486.045 2131.524 4312.816 2077.917 3026.818 1801.676 1836.361 2344.455 1848.783 4456.204 2770.391 9308.219 
best 1400 2580.615 1648.716 3573.385 1447.777 1487.574 1475.002 1443.103 1462.201 1506.081 3521.854 1446.131 2951.204 
worst 1400.995 4204.181 2801.392 5031.203 3604.628 4169.238 2714.541 3007.735 4956.032 2763.393 6655.262 4992.667 17455.83 
std 0.537676 761.9486 597.0581 861.8674 1113.631 1291.514 658.2185 844.019 1881.761 659.6514 1609.647 1806.869 6511.315 
median 1400.995 3579.693 2037.993 4323.337 1629.631 3225.229 1508.58 1447.303 1479.793 1562.829 3823.85 2321.383 8412.923 
rank 1 10 6 11 5 9 2 3 7 4 12 8 13 

C17-F15 

mean 1500.331 8761.324 5466.445 11092.38 4599.096 6584.602 6070.15 3002.404 5805.102 3112.191 17656.39 7893.021 4975.745 
best 1500.001 3992.192 2583.287 3893.175 3338.2 3621.253 3683.59 2224.742 3565.752 2312.567 9726.436 4245.847 3518.584 
worst 1500.5 14386.76 10645.26 22277.42 5487.521 9453.661 11099.6 3381.437 6888.372 3542.15 25610.91 11983.31 7356.81 
std 0.254447 4754.049 3843.67 8864.015 978.2623 2741.765 3684.723 572.8593 1650.07 589.8147 7999.176 3443.864 1915.577 
median 1500.413 8333.171 4318.617 9099.464 4785.332 6631.747 4748.704 3201.719 6383.143 3297.024 17644.1 7671.464 4513.793 
rank 1 11 6 12 4 9 8 2 7 3 13 10 5 

C17-F16 

mean 1600.76 1917.642 1781.375 1917.041 1699.167 1937.293 1873.795 1785.751 1728.2 1694.359 1954.261 1856.19 1776.64 
best 1600.356 1846.802 1704.781 1820.922 1632.794 1777.516 1758.519 1688.397 1615.792 1652.71 1833.067 1796.135 1754.912 
worst 1601.12 2037.88 1819.379 2102.949 1752.381 2064.649 1980.977 1859.349 1824.939 1763.102 2115.193 1960.028 1800.647 
std 0.341437 92.42254 56.0077 136.4773 53.43385 144.6887 104.899 76.87336 93.26789 51.70705 131.0494 77.31046 27.18145 
median 1600.781 1892.944 1800.671 1872.146 1705.747 1953.504 1877.841 1797.63 1736.035 1680.812 1934.391 1834.299 1775.501 
rank 1 11 6 10 3 12 9 7 4 2 13 8 5 

C17-F17 

mean 1700.099 1799.701 1756.886 1801.102 1746.884 1790.485 1816.535 1817.113 1768.4 1761.744 1819.732 1757.794 1760.169 
best 1700.02 1785.393 1730.94 1789.525 1723.993 1765.451 1762.108 1759.876 1724.415 1742.217 1741.846 1738.363 1744.522 
worst 1700.332 1833.87 1781.801 1825.248 1807.833 1825.17 1882.911 1923.016 1871.267 1801.569 1937.864 1794.39 1796.445 
std 0.1677 24.87536 27.41091 17.67651 43.9624 27.10862 54.23719 81.38981 74.4984 29.74854 102.4209 27.02606 26.30613 
median 1700.022 1789.77 1757.4 1794.817 1727.856 1785.66 1810.561 1792.78 1738.958 1751.595 1799.61 1749.212 1749.855 
rank 1 9 3 10 2 8 11 12 7 6 13 4 5 

C17-F18 

mean 1805.36 1875796 14553.73 3734699 14025.85 14686.23 22045.18 20500.7 19819.6 26099.67 13151 21108.7 15180.32 
best 1800.003 107012.2 10485.35 196008.3 4886.176 11897.84 7573.227 9046.944 6302.817 17861.54 7536.731 6935.599 11015.06 
worst 1820.451 5427122 20408.05 10832095 21029.91 17678.34 32579.46 32259.77 33438.36 30902.42 19219.23 34144.34 22296.33 
std 10.87647 2665637 4598.356 5328624 8932.401 2990.043 11455.21 10244.15 14872.45 6146.922 6278.492 14095.42 5307.324 
median 1800.492 984525.7 13660.77 1955346 15093.66 14584.36 24014.01 20348.04 19768.61 27817.36 12924.02 21677.43 13704.95 
rank 1 12 4 13 3 5 10 8 7 11 2 9 6 

C17-F19 

mean 1900.445 264272.7 6234.047 462383.2 5507.774 83967.43 24617.07 3097.611 5367.414 4917.811 28292.72 18166.37 5890.063 
best 1900.039 17477.11 2133.648 31255.23 2225.938 2587.747 6291.868 1925.566 1944.465 2008.976 11982.19 2997.515 4498.093 
worst 1901.559 555619.3 13382.69 990034.4 9922.604 164709.7 46406.16 5966.808 13752.24 8880.879 39641.77 50974.43 7138.072 
std 0.804778 249887.4 5740.249 468112 3849.614 99452.88 17900.13 2089.672 6105.018 3447.41 13270.89 24274.41 1182.04 
median 1900.09 241997.3 4709.923 414121.5 4941.277 84286.12 22885.12 2249.034 2886.474 4390.695 30773.45 9346.766 5962.044 
rank 1 12 7 13 5 11 9 2 4 3 10 8 6 

C17-F20 

mean 2000.312 2198.654 2169.524 2203.849 2118.339 2193.613 2193.1 2149.241 2169.102 2105.043 2223.918 2168.489 2090.788 
best 2000.312 2151.123 2104.379 2161.363 2092.235 2119.312 2148.212 2084.434 2130.289 2084.531 2170.441 2148.493 2077.153 
worst 2000.312 2232.356 2237.314 2266.054 2164.243 2254.59 2233.363 2206.523 2244.828 2132.802 2310.774 2179.706 2116.654 
std 0 40.35506 67.19923 51.80206 34.22326 60.34035 50.19287 56.12904 55.80565 22.45678 70.70774 15.07987 19.18246 
median 2000.312 2205.569 2168.201 2193.99 2108.439 2200.276 2195.413 2153.005 2150.645 2101.419 2207.229 2172.879 2084.672 
rank 1 11 8 12 4 10 9 5 7 3 13 6 2 

Sum rank 10 112 64 118 33 92 81 52 68 59 91 63 67 
Mean rank 1 11.2 6.4 11.8 3.3 9.2 8.1 5.2 6.8 5.9 9.1 6.3 6.7 
Total rank 1 11 4 12 2 10 9 3 6 7 9 5 8 
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Table 4. Optimization results of fixed-dimensional multimodal functions (C17-F21 to C17-F30) 
 SOA WSO AVOA RSA MPA TSA WOA GWO MVO TLBO GSA PSO GA 

C17-F21 

mean 2200 2300.103 2247.697 2282.604 2276.106 2320.609 2310.583 2273.452 2312.833 2303.926 2348.855 2316.437 2302.93 
best 2200 2268.515 2241.656 2254.262 2273.04 2252.377 2250.52 2237.227 2308.642 2241.012 2335.977 2309.724 2257.741 
worst 2200 2318.128 2264.12 2297.238 2279.462 2351.274 2338.081 2308.933 2317.783 2327.82 2360.02 2321.726 2324.178 
std 0 24.50981 11.85089 21.13804 2.873362 50.19924 43.67406 43.28334 4.062778 45.51693 10.75618 6.500953 32.90509 
median 2200 2306.884 2242.506 2289.459 2275.96 2339.392 2326.866 2273.824 2312.454 2323.435 2349.713 2317.149 2314.901 
rank 1 6 2 5 4 12 9 3 10 8 13 11 7 

C17-F22 

mean 2300.073 2601.921 2308.822 2706.422 2306.216 2574.088 2318.53 2293.618 2308.572 2315.761 2302.94 2311.631 2314.683 
best 2300 2517.529 2307.673 2569.484 2301.051 2398.146 2313.336 2254.203 2301.262 2309.889 2300.433 2300.851 2310.279 
worst 2300.29 2704.55 2310.511 2811.582 2313.785 2714.991 2323.412 2309.771 2322.334 2328.166 2307.652 2330.589 2319.052 
std 0.156805 95.07119 1.483627 109.5114 5.823536 151.7362 4.909165 28.50917 10.475 9.071844 3.58869 14.28141 4.609822 
median 2300 2592.804 2308.553 2722.312 2305.013 2591.608 2318.686 2305.249 2305.345 2312.494 2301.838 2307.542 2314.701 
rank 2 12 6 13 4 11 10 1 5 9 3 7 8 

C17-F23 

mean 2600.919 2670.881 2632.344 2670.742 2614.104 2685.727 2636.706 2618.002 2613.721 2632.656 2730.608 2633.8 2641.583 
best 2600.003 2642.534 2622.744 2649.694 2610.479 2628.799 2626.728 2610.936 2607.797 2627.811 2687.469 2627.05 2630.781 
worst 2602.87 2690.437 2646.295 2699.677 2618.169 2713.095 2647.931 2627.89 2620.421 2637.415 2819.652 2639.835 2645.289 
std 1.427016 23.35791 11.0774 24.23006 4.127968 41.65202 12.19392 8.139761 7.035086 5.537488 66.93686 5.847385 7.78478 
median 2600.403 2675.278 2630.169 2666.799 2613.885 2700.506 2636.083 2616.59 2613.334 2632.7 2707.655 2634.157 2645.131 
rank 1 11 5 10 3 12 8 4 2 6 13 7 9 

C17-F24 

mean 2630.488 2764.442 2760.943 2814.948 2671.057 2695.758 2756.352 2705.621 2748.586 2753.216 2747.725 2759.602 2731.744 
best 2516.677 2718.766 2744.698 2793.26 2653.37 2606.178 2730.601 2577.696 2724.159 2736.761 2592.422 2749.135 2614.231 
worst 2732.32 2820.165 2772.087 2854.87 2679.713 2789.462 2776.12 2755.024 2763.782 2761.838 2850.265 2772.633 2788.86 
std 125.9143 53.2863 12.93159 29.61994 13.05055 111.1898 20.43821 92.38059 19.35181 12.30563 118.6428 10.54539 86.00429 
median 2636.477 2759.418 2763.494 2805.83 2675.573 2693.697 2759.343 2744.883 2753.202 2757.133 2774.107 2758.319 2761.943 
rank 1 12 11 13 2 3 9 4 7 8 6 10 5 

C17-F25 

mean 2932.639 3091.214 2922.151 3160.397 2925.042 3066.509 2918.25 2927.799 2938.682 2935.293 2927.911 2928.608 2947.566 
best 2898.047 3023.747 2909.466 3117.872 2916.384 2919.626 2818.682 2908.163 2921.353 2917.995 2909.224 2914.043 2939.97 
worst 2945.793 3243.112 2947.951 3211.861 2931.109 3411.791 2953.696 2944.46 2945.886 2949.426 2943.58 2945.608 2956.956 
std 24.95556 110.3379 18.8832 42.91059 6.731305 250.96 71.8001 20.06702 12.53453 17.24481 18.54097 16.81046 9.100078 
median 2943.359 3048.999 2915.594 3155.927 2926.337 2967.31 2950.31 2929.286 2943.744 2936.876 2929.42 2927.391 2946.668 
rank 7 12 2 13 3 11 1 4 9 8 5 6 10 

C17-F26 

mean 2900 3499.239 3077.316 3586.787 3098.186 3497.864 3210.621 3025.019 3264.622 3226.114 3655.909 3027.585 3023.095 
best 2900 3290.128 2903.087 3407.781 2918.499 3083.912 3059.341 2923.799 2969.095 2972.016 2903.086 2964.107 2797.308 
worst 2900 3611.292 3412.915 3747.131 3502.65 3866.17 3379.118 3244.484 3905.265 3884.648 4195.208 3183.389 3138.854 
std 4.01E-13 163.1586 258.985 150.1993 293.4519 355.2769 151.1654 159.5869 465.8576 475.4231 586.8473 113.2766 167.3004 
median 2900 3547.768 2996.631 3596.119 2985.797 3520.687 3202.013 2965.896 3092.064 3023.897 3762.671 2981.422 3078.11 
rank 1 11 5 12 6 10 7 3 9 8 13 4 2 

C17-F27 

mean 3089.518 3176.115 3118.615 3191.527 3108.568 3157.673 3167.774 3099.996 3116.061 3115.392 3188.183 3129.16 3144.862 
best 3089.518 3136.384 3096.366 3115.935 3092.989 3101.039 3161.634 3091.385 3094.428 3096.39 3172.912 3096.172 3110.771 
worst 3089.518 3215.615 3179.335 3311.515 3148.421 3199.53 3178.092 3119.485 3176.616 3144.959 3203.84 3180.956 3177.487 
std 2.84E-13 36.71208 43.77795 91.65186 28.80773 45.89268 8.00007 14.13792 43.67616 25.46987 14.95387 39.61884 31.19824 
median 3089.518 3176.231 3099.379 3169.329 3096.431 3165.06 3165.686 3094.558 3096.599 3110.11 3187.991 3119.756 3145.596 
rank 1 11 6 13 3 9 10 2 5 4 12 7 8 

C17-F28 

mean 3100 3536.129 3272.859 3628.791 3261.347 3502.346 3306.083 3274.576 3344.184 3331.172 3413.525 3318.443 3279.572 
best 3100 3472.133 3199.401 3590.591 3176.206 3342.466 3230.851 3132.423 3194.399 3281.266 3365.55 3249.938 3161.754 
worst 3100 3583.114 3322.616 3680.388 3300.575 3655.191 3390.01 3389.676 3411.068 3389.833 3441.345 3372.465 3470.321 
std 0 56.43295 63.68835 42.42686 61.98403 166.1419 72.81263 140.3759 108.7724 48.34495 36.13458 54.87407 144.199 
median 3100 3544.634 3284.71 3622.092 3284.304 3505.863 3301.736 3288.102 3385.634 3326.794 3423.603 3325.685 3243.106 
rank 1 12 3 13 2 11 6 4 9 8 10 7 5 

C17-F29 

mean 3132.241 3302.666 3277.673 3337.173 3224.236 3245.982 3319.907 3223.962 3264.978 3230.496 3317.931 3265.55 3246.637 
best 3130.076 3258.467 3205.419 3266.735 3176.255 3174.204 3255.906 3160.855 3189.818 3208.521 3223.27 3177.522 3188.879 
worst 3134.841 3355.244 3353.532 3412.602 3290.52 3281.839 3390.594 3289.231 3379.008 3284.469 3517.91 3308.876 3293.624 
std 2.682921 48.97186 70.24474 81.67165 57.37855 52.66018 61.83371 60.92928 97.26732 39.21587 146.5461 64.55893 46.79051 
median 3132.023 3298.477 3275.871 3334.678 3215.085 3263.943 3316.563 3222.881 3245.543 3214.496 3265.272 3287.902 3252.022 
rank 1 10 9 13 3 5 12 2 7 4 11 8 6 

C17-F30 

mean 3418.734 1757198 511217.3 2720237 589631.2 720143.8 966863 516542.4 930061.9 358271.9 830025.2 571668.8 1316497 
best 3394.682 1243980 115045.6 1001872 21866.23 527744.3 144694.8 16318.64 33403.47 30595.59 664488.9 16668.65 797896.3 
worst 3442.907 2225191 849270.2 3804713 854300 876607.3 2908208 1215635 1346024 512460.2 972325.8 955365.3 2284690 
std 30.01454 443117.9 326126.2 1312600 418466.3 189309.3 1406078 546372.8 666565.6 240141.9 137056.9 460082.5 756714.6 
median 3418.673 1779811 540276.8 3037181 741179.3 738111.9 407274.4 417108 1170410 445015.9 841643 657320.5 1091700 
rank 1 12 3 13 6 7 10 4 9 2 8 5 11 

Sum rank 17 109 52 118 36 91 82 31 72 65 94 72 71 
Mean rank 1.7 10.9 5.2 11.8 3.6 9.1 8.2 3.1 7.2 6.5 9.4 7.2 7.1 
Total rank 1 11 4 12 2 10 9 3 6 7 9 5 8 
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Figure. 2 boxplot diagrams of CEC 2017 test suite (C17-F1 to C17-F30) 
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By introducing SOA, several research proposals 

can be proposed for further studies in the future. 

Among the most prominent of these proposals is the 

design of binary and multi-objective versions of SOA. 

The implementation of SOA to address various 

optimization applications in science and the real-

world tasks is one of the other research proposals of 

this study. 
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