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Abstract: Identifying rumors poses the greatest challenge when dealing with social media platforms. Recently, Deep 

Learning (DL) Models are widely utilized for the rumor identification using social media data. Amongst, Deep 

Feature Fusion for Rumor Detection (DFFRD) was used to capture the linguistic features from short-text source 

tweets for rumor detection. But, this model is not considered complicated Spatio-Temporal (ST) relationships that 

are sparse, incomplete or high-dimensional. To solve this, Bidirectional Encoder Representations from Transformers 

with Attention based Balanced Spatial-Temporal Graph Convolutional Networks (BERT-ABSTGCN) is developed 

in this paper to handle complex ST dependencies in tweet interactions for efficient rumor detection. BERT utilizes 

Transformer-Based Source Tweet Representation (TSTR) to retrieve context-dependent language features from the 

source tweet text data. This process alleviates data sparsity issues and performs well on large corpora. ASTGCN 

constitutes into two modules. A Spatial-Temporal Attention Model (STAM) learns the spatial correlations between 

various locations and detects dynamic temporal relations among different times in first module. In second module, 

the Spatial-Temporal Convolution Module (STCM) uses Graph Convolutions (GCs) to extract spatial information 

among neighbours from Twitter interactions and Temporal Convolutions (TCs) extracts temporal information from 

neighbourhood time slices. The Balanced ASTGCN (ABSTGCN) deals with irregular relationships in graphs. 

ABSTGCN adjusts spatial and temporal adjacency matrices dimensions to overcome difficulties in data adaptation 

and improve performance consistently. The features extracted from transformer representation and ABSTGCN are 

integrated and fed into softmax layer for the rumor detection. The experimental task imply that the proposed model 

obtained an accuracy of 94.48%, 93.28% and 93.49% on PHEME, Twitter15 and Twitter16 respectively which is 

higher than existing models like DFFRD, Convolutional Neural Network Information Gain-Ant Colony 

Optimization (CNN-IG-ACO), Knowledge Attention Graph Networks (KAGN), Topic and Structure Aware Neural 

Network (TSNN), Bi-Directional Multi-Level Graph Contrastive Learning (BiMGCL) and Multilayer Feature 

Fusion-Based GCN (MFF-GCN). 

Keywords: Social media, Rumor identification, Deep learning, Transformer representation, Spatial-temporal 

convolution. 

 

 

1. Introduction  

Online Social Networking (OSN) is a critical 

inform information platform which have become 

integral to people’s daily lives due to the rapid 

growth of mobile internet innovation [1]. Platforms 

like Facebook, Twitter, Weibo, and WeChat have 

revolutionized media interaction, but the prevalence 

of incorrect information has significantly altered 

culture and economy [2]. OSN users face difficulties 

accessing accurate content due to insufficient data 

on web pages [3]. 

Rumors are widely spread, incorrect information 

that can quickly and consistently cause harm to 

numerous individuals [4]. Rumors on media 

platforms can quickly spread, causing significant 

community damage and financial consequences. 

Unreliable falsehoods can lead to concerns and 

violence, as the general audience struggles to 

distinguish between established facts and rumors [5]. 

Rumors on OSN have become a significant societal 



Received:  April 3, 2024.     Revised: May 9, 2024.                                                                                                          400 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.31 

 

issue, making human detection and categorization 

impractical. Reliable and automated rumor detection 

in OSN systems is crucial to overcome these 

challenges. 

Various studies have been conducted to identify 

rumors on social media, focusing on grammatical, 

vocabulary and verbal features [6]. However, 

conventional models overlook global fundamental 

features in tweet data, hindering learning 

experiences. DL models have been introduced to 

solve this issue by extracting local and global 

structural features, textual attributes and social-

temporal contexts of source tweets and related 

replies [7, 8]. DL models retrieves the latent 

contextual semantic relationships, learn hidden 

representations between terms in tweets and 

statistical properties of co-occurrence among them 

[9]. However, some models struggle to identify 

linguistic features, leading to high computational 

complexity. 

To address this issue, DFFRD was developed 

[10] for Twitter rumor identificationl that extracts 

linguistic features from short-text tweets and 

temporal-structural data from dispersion trees. It 

uses a progressive embedding strategy to preserve 

propagation tree ST information and CNN to 

transform encrypted dispersion trees into temporal 

intrinsic parameters. Transformer methods like 

BERT and ROBERT reduces the data sparseness in 

low-lying text categorization. But, this model fails 

to represent the complex ST dependencies which are 

typically sparse, incomplete and high-dimensional.  

In this paper, BERT-ABSTGCN is developed to 

address the complicated ST dependencies in tweet 

interactions for efficient rumor detection. This 

model utilizes BERT based source tweet 

representation to extract the context-dependent 

linguistic features from source tweet text of the 

collected dataset. This process effectively alleviates 

data sparsity issues and performs well on large 

corpora to benefits low-resource tasks. Then, 

ASTGCN is employed which constitutes two 

modules. (i) STAM is developed to understand the 

flexible ST relationships of Twitter exchanges by 

simulating complex geographical associations and 

dynamic temporal connections over specific time 

intervals. (ii) STCM module is developed to 

visualize the ST interactions of origin tweets, using 

GSs to capture geographic properties and temporal 

transformations. The integration of STAM and 

STCM balances the ASTGCN (ABSTGCN) when 

applied to the data with irregular connections in 

graphs. ABSTGCN adjusts spatial and temporal 

adjacency matrices dimensions to overcome 

difficulties in data adaptation and improve 

performance consistently. The features extracted 

from BERT and ABSTGCN are integrated and fed 

into softmax layer for the rumor detection. This 

model assists to handle the complicated ST modules 

for enhancing the performance of rumor detection 

using tweets. 

The rest of the portions of the paper are prepared 

as follows: The recent work linked with the rumor 

detection models is presented in Section II. Section 

III describes the proposed BERT-ABSTGCN model, 

while Section IV demonstrates its efficacy. Section 

V summarizes this paper and suggests its possible 

improvement. 

2. Literature survey  

An automatic rumor detection was constructed 

[11] using CNN, Term Frequency–Inverse 

Document Frequency (TF-IDF) IG-ACO and NB for 

rumor classification. But, the accuracy was low as 

the model utilized only the textual attributes.  

User-aspect Multi-View Learning with Attention 

Rumor Detection (UMLARD) was developed [12] 

which integrates Twitter content in a low-

dimensional layer and uses stacked integration layer 

for user-level depiction. But, lower accuracy and 

F1-Score was obtained as the parameters were not 

adjusted properly. 

A globally Distinct Attention Representative 

from Transformers (gDART) model was presented 

[13] using Branch-CoRR Attention Network 

(BCRR) and Feature Fusion Network Component 

(FFNC) to extract deep hidden features for rumor 

detection However, this model results in slower 

convergence rate which lead to lack accuracy. 

A cost-sensitive cross-entropy (CSCE) was 

devised [14] using Deep Neural Networks (DNN) 

and AdCost function to solve data inconsistencies 

and change the cost array constants based on 

outcome percentages for rumor categorization. But, 

the precision and recall of this model was restricted 

due to the usage of unbalanced data. 

A KAGN model was created [15] using 

knowledge-aware attention and GCN to link entity 

references in entity posts and ideas in knowledge 

graphs for enabling rumor detection task. However, 

this strategy was restricted for obtaining higher 

accuracy due to veracity issue.  

An Attention Mechanism (AM) method [16] was 

introduced using Gated Recurrent Unit (GRU) to 

extract long-distance features and CNN for rumor 

prediction and classification.  However, the method 

was less precision as it does not consider other 

properties beyond text. 
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Diversified Contrary Evidence for Rumor 

Detection (DCE-RD) was presented [17] which 

utilizes GCN and subgraph formation techniques to 

increase diversity and interpretability in rumor 

detection. However, this model necessitated 

substantial number of training data to obtain high 

accuracy. 

A TSNN model [18] was developed using 

granular concept signals and fine-grained topic 

signals to learn the subject and user credibility 

prediction to categorize rumors. But, the model was 

influenced by excessive noise which restricts to 

obtain higher accuracy.  

A BiMGCL model [19] was developed by 

employing bidirectional network to describe rumor 

spread, creating optimistic occurrence pairs through 

three modifications and assessing their compatibility 

for rumor detection. But, poor accuracy was 

determined as the reported dataset was not balanced 

appropriately. 

A MFF-GCN model [20] was designed using 

Heterogeneous Twitter Graph (HTG) to derive every 

sole-stage attributes to encode topic associations 

between tweets based on text content. But, the node 

label data was inadequate to obtain higher accuracy 

results. 

3. Proposed methodology  

In this part, the complete framework of 

suggested ABSTGCN is illustrated for the efficient 

rumor detection using tweet data. Fig. 1 portrays the 

pipeline of proposed model. Table 1 represents the 

notations used in this paper.  

 

 
Figure. 1 Pipeline of the proposed model 

Table 1. List of Notations 

Notations Description 

𝑗𝑎̂ Detected label probabilities with 𝑎𝑡ℎ class 

ℐ𝑛 Unit matrix 

ℚ𝐾  Vertices feature with respect to 𝐾 

ℛ𝑎 Set of retweets and comments 

𝐵𝑓 Bias of the FC layer 

𝐹̂ Feature vector 

𝐺𝜃 Signal graph filtered by kernel 

𝑇𝐷 Daily period 

𝑇𝑀 Monthly period 

𝑇𝑊 Weekly period 

𝑇𝑝 Present element 

𝑐𝑙𝑢−1 Channels numbers in 𝑢𝑡ℎ layer 

𝑑𝑒𝑔𝑥𝑥  Node degree 

𝑗̂ Vector predicted probability 

𝑗𝑇
𝑥 Data flow of node 𝑥 at future time 𝑇 

𝑗𝑎  Actual label probabilities with 𝑎𝑡ℎ class 

𝑡𝑢−1 Temporal size in the 𝑢𝑡ℎlayer 

𝑤𝐹  Weight of the FC layer 

𝑧̂ ABSTGCN based spatial-temporal relation 

𝒜(𝑢−1) Initial source of the 𝑢𝑡ℎ layer 

𝒜𝐷 Every day attribute 

𝒜𝑀 Monthly attribute 

𝒜𝑃 Present attribute 

𝒜𝑇 Attribute values of every node at time 𝑇 

𝒜𝑊 Weekly attribute 

𝒥𝑎 Integrated Label  

𝒮𝑎 Source Tweet 

𝒵𝑎 Spatiotemporal correlations 

𝓈̂ Transformer based source tweet  

𝜃𝑔 Parameter for the transformer model 𝑔 

ℰ Temporal relation matrix 

ℒ(𝑗̂) Loss function with respect to 𝑗̂ 

ʘ Hadamard product 

𝐶 Spatial attention matrix  

𝐺 Number of embedding tokens  

𝐻 Hidden layer 

𝐾 Tweet series distribution 

𝐿𝑎𝑝𝑀 Laplacian matrix 

𝑎𝑑𝑗 Adjacent matrix  

𝑑 Rumour prediction dataset 

𝑑𝑒𝑔 Diagonal degree  

𝑔 Graph convolution operation 

𝑛 Number of classes ( rumor\non-rumor)  

𝑞 Embedding Vector 

𝒢 Sampling task 

𝓜 Twitter Relation Network 

𝛬 Diagonal matrix 

𝛿 Adjacency matrix  

𝜓  Fourier bias 

𝜙 Parameters of temporal convolution kernel 

𝝳 Dropout layer 
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3.1 Problem description 

The collected rumor prediction dataset is 

described as the affirmation set 𝑑 =
{𝑥1, 𝑥2, … . . , 𝑥|𝑑| ]  in which each affirmative 𝑥𝑎 =

{𝒮𝑎, 𝒵𝑎 , 𝒥𝑎 }, 𝒮𝑎  represent the source tweet, 𝒵𝑎 

constitutes a ST correlations and integrated label  𝒥𝑎.  

The lightest text file is the origin tweet 𝒮𝑎. The 

total response tweets is represented by 𝑡 with each 

𝒮𝑎 constitutes a set of retweets and comments 

denoted as ℛ𝑎 =  {𝓇1
𝑎, 𝓇2

𝑎 , … , 𝓇𝑡
𝑎}. A tree layout for 

𝒮𝑎 is formed by the files in the collection ℛ𝑎. The 

time and space relationships of an initial tweet 𝒮𝑎 

are shown as 𝒵𝑎 = (𝑉, 𝐸) with 𝒮𝑎 representing the 

base of the tree point 𝑣0. In these relations, 𝑉 and 𝐸 

are the array of nodes and edges accordingly. With 

respect to the primary tweet 𝒮𝑎, the lapsed time of 

𝓇𝑏
𝑎  is defined by node 𝑣𝑏 ∈ 𝑉 and 𝒮𝑎 will be set to 

0. The presence of the unique connection is shown 

by edge 𝑒𝑦  ∈ 𝐸 . There is a class 𝒥𝑎 indicating the 

beneficial phrases for each 𝒮𝑎 which categorizes 𝒥𝑎 

as rumor and non-rumor. Classifiers may use the 

rumor detection issue to sort source tweets 𝒮𝑎  and 

the related ST relations 𝒵𝑎  into appropriate 

categories.  This model aims to enhance the 

reliability of rumor identification by utilizing social 

media sentiment analysis and linguistic elements 

from Twitter content to differentiate between rumors 

and non-rumors. 

3.2 Transformer for tweet sources 

The Transformer is a sequence transduction 

model that improves prediction quality by replacing 

recurrent layers with multi-headed self-attention. In 

this method, BERT is utilized which is a multi-

staged language description model constitutes 12 

transformer blocks and self-attention heads to 

acquire deep bidirectional representations from 

unclassed content. It converts phrases into word 

embeddings using WordPiece embeddings, with a 

30K word vocabulary, and uses an autonomous 

learning strategy on large datasets like English 

Wikipedia and BooksCorpus. 

An embedding vector 𝑞 = {𝑞1, 𝑞2, … , 𝑞𝑛}  is 

generated from a given source tweet 𝒮𝑎  where 𝑛 is 

embedded numerical characters derived by matching 

word integration algorithm employed by BERT. The 

transformer model takes the encoding vector 𝑞 as an 

input variables. A matrix with dimensions 𝐺 ∗ 𝐻 is 

produced by the transformer's final hidden layer 𝜕. 

Here, 𝐺 is the number of embedding tokens and 𝐻 is 

the size of the last hidden layer (768 for BERT base 

models). The forwarding task is illustrated as 

follows in Eq. (1) and Eq. (2) : 

 

𝜕 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑔(𝜃𝑔, 𝒒)                              (1) 

 

𝓈̂ =  𝜕(1)                                                          (2) 

 

Where,  𝜕(1)  is the initial rank of 𝜕  and 𝓈̂ =
{𝓈̂1, 𝓈̂2, … , 𝓈̂𝐻} and 𝜃𝑔  represents the parameter for 

the transformer model 𝑔. 

3.3 Attention based spatial-Temporal graph 

convolutional network 

ASTGCN model is commonly used to predict 

data transmission from Twitter at every node in the 

relationship matrix by explicitly interpreting tweet 

content on its initial graph-based network.  Assume 

𝑡 − time series captured every nodes in the twitter 

relation network 𝓜 which will be the tweet series 

distribution, 𝑘 ∈ (1, … 𝐾), 𝑎𝑇
𝑐𝑙,𝑥 ∈ ℚ is employed to 

represent the 𝑐𝑡ℎ node attribute 𝑥 with time 𝑇, 𝑎𝑇
𝑥 ∈

ℚ𝐾 determines the vertices feature 𝑥 at time 𝑇.  The 

set 𝒜𝑇 = (𝑎𝑇
1 , 𝑎𝑇

2 , … , 𝑎𝑇
𝑛) ∈ ℚ𝑛×𝒻  denotes the 

attribute values of every node at time 𝑇. Values of 

all characteristics of all nodes throughout τ  time 

slices are described by  𝒜 =  (𝐴1, 𝐴2, , . . , 𝐴𝜏)𝑡 ∈

 ℚ𝑛∗𝒻∗𝜏. Furthermore, the input 𝑗𝑇
𝑥 =  𝑖𝑇

𝐹,𝑥 ∈ ℚ  is 

modified to symbolize the data flow of node 𝑥 at 

future time 𝑇. 

An ASTGCN consists of four independent 

elements designed to model the ST correlation, 

including present, everyday-periodic, weekly, and 

monthly time dependencies of past information. The 

sampling task 𝒢  is accessed with every day time 

instances samples as the current time being with 𝓉0  

and the forecasting window size is devised to  𝑇𝑐 . 

The input for the every minute (present), day, 

week and month elements originates from the time 

node  and four time sequence divisions with lengths 

𝑇𝑃 , 𝑇𝐷 , 𝑇𝑊  and 𝑇𝑀  are observed.  𝑇𝑃 , 𝑇𝐷 , 𝑇𝑊  and 

𝑇𝑀 are all integer multiples of 𝑇𝑐. The description of 

four-time series sections are as follows, 

(i)  Present Segment: The division of past time 

sequences are immediately preceding the forecasting 

time which constitutes to  𝓐𝑯 =

(𝐴𝓉0−𝑇𝑃+1, 𝐴𝓉0−𝑇𝑃+2, … . , 𝐴𝓉0
) ∈ ℚ𝑛×𝒻×𝑇𝑃  . The 

creation and dispersal of tweet delays appear to be 

gradual. As a result, present tweet data flows will 

undoubtedly have an impact on future tweet 

interactions. 

(ii)   Everyday-Period Segment: The segments 

represent the preceding days within the same time 

interval as the prediction period, indicating that the 

segments consist of the same days within the same 

time interval which is shown in Eq. (3):  
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Figure. 2 Complete Framework of proposed BERT-ABSTGCN model 

 

 

𝓐𝑫 = (𝐴𝓉0−(𝑇𝐷\𝑇𝑃)×𝒢+1, … . , 𝐴𝓉0−(𝑇𝐷\𝑇𝑃)×𝒢+𝑇𝑐 , 

     𝐴𝓉0−(𝑇𝐷\𝑇𝑃−1)×𝒢+1, , . . , 𝐴𝓉0−𝒢+1, … , 𝐴𝓉0−𝒢+𝑇𝑐
) 

∈    ℚ𝑛×𝒻×𝑇𝐷                                            (3) 

 

The section is made up of current days that fall 

within the particular time range as the forecast 

period. Because of regular tweets posted by people, 

the twitter data might exhibit the recurring patterns 

i.e., number of people shared the posts. The main 

purpose of daily-period element to simulate the 

daily periodicity of tweet data.  

(iii) Weekly Period Segment: This category 

comprises specific features where the prediction 

interval period is determined by comparing similar 

qualities in a week periods, it is shown in Eq. (4): 

 

𝓐𝑾

= (𝐴𝓉0−7×(𝑇𝐷\𝑇𝑃)×𝒢+1, … . , 𝐴𝓉0−7×(𝑇𝐷\𝑇𝑃)×𝒢+𝑇𝑐 ,  

𝐴𝓉0−7×(𝑇𝐷\𝑇𝑃−1)×𝒢+1, . . , 𝐴𝓉0−7×(𝑇𝐷\𝑇𝑃−1)×𝒢+𝑇𝑐
, . .,  

𝐴𝓉0−7×𝒢+1, … , 𝐴𝓉0−7×𝒢+𝑇𝑐
) ∈ ℚ𝑛×𝒻×𝑇𝑊     (4) 

 

In basis of weekly divisions, current Monday 

tweet posting patterns are usually comparable to 

past Monday patterns, however they might differ 

substantially from those on weekends. As a result, 

the weekly-recurring element intends to identify 

weekly interval features in the tweet post data. 

(iv) Monthly Period Segment: This part 

constitutes to a month wise computation by 

considering the tweet post of total days and weeks 

accumulated in complete month and it is compared 

with preceding month as the detection period is 

shown in Eq. (5): 

 

𝓐𝑴

= (𝐴𝓉0−𝓃×(𝑇𝐷\𝑇𝑃)×𝒢+1, … . , 𝐴𝓉0−𝑛×(𝑇𝐷\𝑇𝑃)×𝒢+𝑇𝑐
,  

𝐴𝓉0−𝑛×(𝑇𝐷\𝑇𝑃−1)×𝒢+1, . ., 

 𝐴𝓉0−𝑛×(𝑇𝐷\𝑇𝑃−1)×𝒢+𝑇𝑐
, . .,  

 𝐴𝓉0−𝑛×𝒢+1, … , 𝐴𝓉0−7×𝒢+𝑇𝑐
) ∈ ℚ𝑛×𝒻×𝑇𝑀                (5) 

 

The current monthly tweet patterns, including all 

days and weekly posts, are compared to past month 
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patterns, but may differ significantly on a daily and 

weekly basis. The monthly period component of a 

Twitter data model identifies patterns over 𝑛  days 

and weeks using a recurrent learning architecture. 

The model incorporates convolution units and 

STAM, and the final forecast uses a parameter 

vector to describe variable ST interactions in the 

tweet data relation. Fig. 2 provides the complete 

framework of proposed model for rumor detection. 

3.3.1. Spatial-Temporal Attention Module 

(STAM) 

In order to capture the dynamic geographical 

and temporal correlations on the twitter interactions 

network, this model incorporates a unique STAM.  

It incorporates Spatial Attention (SA) and Temporal 

Attention (TA) which is briefly illustrated below. 

Spatial Attention: This SA assist to identify the 

tweet shared locations which have directed among 

each other and reciprocal influence is greatly 

effective.  The current SA element is considered as 

an example in which the attention mechanism adapts 

to record the constant interactions among elements 

in spatial variables are represented Eq. (6) and Eq. 

(7): 

𝒞 =  𝑣𝑝. 𝜎(
(𝒜𝑝

(𝑢−1)
𝑤1) ×

𝑤2× (𝑤3𝒜𝑝
(𝑢−1)

)

𝑡

+ 𝑗𝑝                    (6) 

𝒞𝑥,𝑦
′ =  

exp(𝒞𝑥,𝑦)

∑ exp (𝒞𝑥,𝑦)𝑛
𝑦=1

                        (7) 

Where, 𝒜𝑝
(𝑢−1)

= (𝒜1, 𝒜2, … , 𝒜𝑡𝑢−1
) ∈

ℚ𝑛×𝑐𝑙𝑢−1×𝑡𝑢−1  defines the initial source of the 𝑢𝑡ℎ 

ST block. 𝑐𝑙𝑢−1 denotes the channels numbers of the 

initial source in the 𝑢𝑡ℎ ramge. When 𝑢 = 1, 𝑐𝑙0 =
𝐾. 𝑡𝑢−1  is the length of the temporal size in the 

𝑢𝑡ℎlayer. Whe       n 𝑢 = 1, 𝑡0 =  𝑇𝑝 for the present 

element, 𝑡0 =  𝑇𝐷  (daily period),  𝑡0 =  𝑇𝑊  (weekly 

period) and 𝑡0 =  𝑇𝑀  (monthly period). 𝑣𝑝, 𝑗𝑝  ∈

 ℚ𝑛×𝑛, 𝑤1  ∈  ℚ𝑡𝑢−1 , 𝑤2 ∈ ℚ 𝑐𝑙𝑢−1𝑡𝑢−1 , 𝑤3 ∈
 ℚ 𝑐𝑙𝑢−1   are trainable variables and sigmoid 𝜎  is 

employed for the activation function.  The weights 

that are affected by a graph may be dynamically 

adjusted using the adjacency matrix 𝛿  and the SA 

matrix 𝒞 ′ =   ℚ𝑛∗𝑛.  

Temporal Attention: An AM is employed to 

automatically apply different standards to 

information, and the temporal factor exposes 

relationships among traffic instances over several 

time sections, which change in Eq. (8) and Eq. (9):       

by event. 

 

ℰ =  𝑣𝐷 . 𝜎 ((𝒜𝑝
(𝑢−1)

)
𝑡

𝑅1) × 

𝑅2 (𝑅3𝒜𝑝
(𝑢−1)

) + 𝑗𝐷                           (8) 

 

ℰ𝑥,𝑦
′ =  

exp(ℰ𝑥,𝑦)

∑ exp (ℰ𝑥,𝑦)
𝑡𝑢−1
𝑦=1

                                       (9) 

 

Where, 𝑣𝐷 , 𝑗𝐷 ∈ ℚ𝑡𝑢−1×𝑡𝑢−1 , 𝑅1 ∈  ℚ𝑛, 𝑅2 ∈
 ℚ𝑐𝑙𝑢−1×𝑛  and 𝑅3 ∈  ℚ𝑐𝑙𝑢−1  represents the learnable 

variables. The temporal relation matrix 𝐸 is obtained 

by distinctive inputs. The component integer ℰ𝑥,𝑦 in 

ℰ  semantically indicates the correlation among 

𝑥 and 𝑦 . Finally, 𝐸   is the output of the softmax 

operation with the TA matrix, which quickly 

processes the input and finds to merge relevant data 

and make flexible modifications to the input.  

3.3.2. Spatial-Temporal convolution module 

(STCM) 

By modifying data and sending it to the STCM, 

the STAM ranks network information in priority. 

Included in this package is spatial graph convolution, 

which captures local relationships and temporal 

graph convolution which exploits adjacent times. 

Graph convolution in spatial dimension: 

Spectral graph theory is used to analyze Twitter 

interaction networks by translating node attributes 

into graph indications, while direct signal analysis 

using spatial dimension signal correlations enhances 

traffic network design by converting the graph into 

algebraic form. The Laplacian matrix (𝐿𝑎𝑝𝑀) and 

its eigenvalues are the objects evaluation. 𝐿𝑎𝑝𝑀 of 

the graph is determined as 𝑙𝑎𝑝 = 𝑑𝑒𝑔 − 𝑎𝑑𝑗  and its 

normalized terms in Eq. (10) 

 

𝑙𝑎𝑝 =  ℐ𝑛 − 𝑑𝑒𝑔−1
2 ×⁄  

𝑎𝑑𝑗 × 𝑑𝑒𝑔−1
2⁄  ∈  ℚ𝑛×𝑛             (10)  

 

Where 𝑎𝑑𝑗,  ℐ𝑛,  𝑑𝑒𝑔 ∈ ℚ𝑛×𝑛 and 𝑑𝑒𝑔𝑥𝑥 ∈
ℚ𝑛∗𝑛 represents the matrix modules of adjoining 

unit, degree  and diagonal with node degrees 

accordingly. Eigen value decomposition in 𝐿𝑎𝑝𝑀 is 

𝑙𝑎𝑝 =  𝜓 ⋀ 𝜓𝑡
 where ⋀ = 𝑑𝑙([𝜇0, … , 𝜇𝑛−1]) ∈

ℚ𝑛×𝑛  represents the crosswise matrix and 𝜓 is the 

fourier bias. Bu using tweet data at time 𝑇, the input 

for the complete graph will be 𝑎 =  𝑎𝑇
𝑘  ∈ ℚ𝑛 and 

the Graph Fourier Transform (GFT) of the signal is 

illustrated as 𝑎̂ =  𝜓𝑡𝑎. In respective to the criteria 

of 𝐿𝑎𝑝𝑀, Inverse Fourier Transform (IFT) will be 

𝑎 = 𝜓 𝑎̂  with respect to orthogonal matrix 𝜓. The 

graph convolution involves applying a diagonalized 

linear function to the Fourier domain. Considering 

this, the input 𝑎  with graph 𝑔  is excluded by a 

kernel 𝐺𝜃  in Eq. (11) as: 
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𝐺𝜃 × 𝑔𝑎 = 𝑔(𝑙𝑎𝑝) × 𝑎 = 

𝐺𝜃(𝜓 ⋀ 𝜓𝑡) × 𝑎 = 𝜓𝐺𝜃
(⋀) 𝜓𝑡            (11) 

 

In Eq. (8), 𝑔 defines the graph convolution fun 

ction. GFT is the multiplication of 𝐺𝜃 and 𝑎 and IFT 

are all part of the process of convolution for a graph 

signal. However, Chebyshev Polynomials (CSP) are 

being utilized to effectively address the costly issue 

of eigenvalue reduction in large graph sizes in Eq. 

(12)   

 

𝐺𝜃 × 𝑔𝑎 = 𝑔(𝑙𝑎𝑝) × 𝑎 = 

∑ 𝜃𝑚
𝑚−1
𝑚=0 𝑡𝜃(𝑙𝑎𝑝̂) × 𝑎               (12) 

 

Where, the variable 𝜃 ∈  ℚ𝑚  is a binomial co-

integer matrix.  𝑙𝑎𝑝̂ =  
2

𝜇𝑚𝑎𝑥
 𝑙𝑎𝑝 − ℐ𝑛, 𝜇𝑚𝑎𝑥 defines 

the greatest eigen integer of the 𝐿𝑎𝑝𝑀. The iterative 

illustration of the 𝐶𝑆𝑃  is 𝑡𝑚 (𝑎) = 2𝑎𝑡𝑚−1(𝑎) −
𝑡𝑚−2(𝑎)  in which 𝑡0(𝑎) = 1; 𝑡1(𝑎) = 𝑎 . By 

applying the approximation to 𝐶𝑆𝑃, data from the 

adjacent formulation is 0 to (𝑚 − 1)𝑡ℎ  arranged 

with adjoining positions on every node in the graph 

using the convolution kernel 𝐺𝜃 . The graph 

convolution method operates the Rectified Linear 

Unit (ReLU) as the last activation function i.e., 

ReLU (𝐺𝜃 × 𝑔𝑎).  To modify the connection among 

the nodes for each label of 𝐶𝑆𝑃, 𝑡𝑚(𝑙𝑎𝑝̂) with the 

SA vector 𝒞′ ∈  ℚ𝑛×𝑛  is determines as 

𝑡𝑚(𝑙𝑎𝑝̂) ʘ 𝒞′  where ʘ is the Hadamard operation. 

Moreover, the graph convolution significantly 

changes to 𝐺𝜃 × 𝑔𝑎 = 𝑔(𝑙𝑎𝑝)𝑎 =
∑ 𝜃𝑚

𝑚−1
𝑚=0 (𝑡𝑚(𝑙𝑎𝑝̂)ʘ 𝒞′) × 𝑎.  

Normalized Convolution in Temporal 

Dimension: Graph convolution operations record 

adjacent data with each node in the spatial 

dimension, with a typical temporal convolution 

layer upgrading node input by integrating data with 

the adjoining time slice. Assume the 𝑢𝑡ℎ  layer 

operations of the as the current element instances as 

in Eq. (13), 

 

𝓐𝑝
(𝑢)

= 𝑅𝑒𝐿𝑈 (𝜙 × 𝑅𝑒𝐿𝑈 (𝐺𝜃 × 𝑔𝐴̂𝑃
(𝑢−1)

)) 

∈ ℚ𝑛×𝑐𝑙𝑢×𝑡𝑢                           (13)  

 

In above Eq. (10), 𝜙  represents the temporal 

convolution kernel variables. The STCM effectively 

collects temporal and geographical information from 

Twitter data using a block layout, STAM and 

convolution module. Multiple blocks are layered for 

dynamic correlations, and a FC layer ensures 

outputs fit forecasting objectives for rumor 

prediction. The impacting weights for all nodes are 

calculated based on the earlier post data when 

merged. Therefore, final prediction of ASTGCN 

after the integration is provided in Eq. (14) 

 

𝑧̂ =  𝒲𝑃 ʘ 𝑍̂𝑃 + 𝒲𝐷 ʘ 𝑍̂𝐷 + 

𝒲𝑊 ʘ 𝑍̂𝑊 + 𝒲𝑀 ʘ 𝑍̂𝑀                  (14) 

 

Where, 𝒲𝑃 , 𝒲𝐷 , 𝒲𝑊 𝑎𝑛𝑑 𝒲𝑀  are the learning 

variables indicating the influences degrees of the 

four ST elements. An extracted features from the 

STAM and STCM, 𝑍̂𝑃 , 𝑍̂𝐷 , 𝑍̂𝑊  and 𝑍̂𝑀  is applied 

for rumor detection.  The model balances STAM 

features with STCM, utilizing ABSTGCN for 

training, optimizing spatial and temporal adjacency 

matrices to eliminate irregular connections and 

enhance rumor detection. 

3.4 Feature integration and classification 

n order to eradicate overfitting problems in the 

training dataset, the features retrieved from the 

transformer-based initial tweets 𝓈̂ Eq. (15) and the 

ABSTGCN-based spatial temporal relation 𝑧̂ are 

combined into a feature vector 𝐹̂  in Eq. (16). The 

FC layer uses the soft max operation to determine 

the label of the tweet data for rumor detection after 

receiving the result of the dropout layer 𝝳 in Eq. 

(17): 

 

𝐹̂ = [𝓈̂̂ , 𝑧̂̂]                                                       (15) 

 

𝛿 =   𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐹̂)                                         (16) 

 

𝑗̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝛿 ×  𝑤𝐹 + 𝐵𝑓)                        (17) 

 

Where, 𝑤𝐹  and 𝐵𝑓  are the weight and bias 

related with the FC layer, 𝑗̂  defines the vector 

predicted probabilities of the class labels. 

3.5 Training model generation 

During training, the three trainable modules 

constitutes to develop the suggested BERT-

ABSTGCN collectively. In model training, the loss 

function is characterized as the Cross-Entropy (CE) 

of the prediction outcomes (𝑗̂). 
 

ℒ(𝑗̂) =  − ∑
𝑗𝑎 log(𝑗𝑎̂) +

(1 − 𝑗𝑎)log (1 − 𝑗𝑎̂)
𝑛
𝑎=1              (18) 

 

In Eq. (18), 𝑛 represents the number of classes 

(rumor\non-rumor), 𝑗𝑎 and 𝑗𝑎̂   represents the real and 

predicted class probability in the 𝑎𝑡ℎ label  
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Table 2. Parameter values for proposed and existing model 

Models Parameters Range Models Parameters Range 

DFFRD [10] 

BERT – Transformer Blocks 12 

 

BiMGCL 

[19] 

Learning rate 0.001 

Hidden Size  768 Weight decay 0.05 

Self-Attention Heads  12 Epochs 150 

Learning rate 0.001 Batch size 64 

Epochs 200 Activation 

Function 

ReLU 

Batch size 32 Optimizer Adam 

Dropout rate 0.5 Loss Function CE 

Activation Function ReLU 

MFF-GCN 

[20] 

Learning rate 0.02 

Optimizer AdamW  Window Size 20 

IG-ACO [11] 

Learning rate 0.1 Embedding 

Size 

200 

Epochs 100 Batch size 24 

Batch size 32 Activation 

Function 

ReLU   

Dropout rate 0.9 Optimizer Adam 

Activation Function RMSprop Loss Function CE0 

Optimizer Sigmoid 

Proposed 

BERT-

ABSTGCN 

GC layer 64 

Loss Function Binary CE Word 

Embedding  

300 

KAGN [15] 

Filters  4 Temporal 

Convolutional 

layer 

64 

Word Embedding  300 Stride; 

Padding 

2; 3 

Learning rate 0.003 Learning rate 0.0001 

Epochs 50 Weight decay 1e-3 

Batch size 16 Epochs 250 

Dropout rate 0.5 Batch size 64 

Activation Function ReLU Dropout rate 0.7 

Optimizer AdamW  Activation 

Function 

ReLU 

Loss Function CE Optimizer Adam 

TSNN [18] 

Learning rate 0.001 Loss 

Operation  

CE 

Weight decay 0.004 

Epochs 80 

Batch size 64 

Dropout rate 0.7 

Activation Function Tanh  

Optimizer AdaGrad 

Loss Function MSE  

 

correspondingly. The three parts of a model's 

trainable parameters 𝜃 are varied in the direction of 

gradient descent and back-propagation technique. 

 

Algorithm: BERT-ABSTGCN  

Input: Twitter Dataset – Tweets 

Output:  Target label of test data (Rumor or not) 

1. Start 

2. Split the gathered twitter data into training and 

testing set. 

3. Employ the BERT model to retrieve the 

context-dependent attributes from the source 

tweet data; 

4. Construct the ASTGCN model to find complex 

ST dependencies in tweet interactions; 

5. Split the ASTGCN into STAM and STCM; 
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6. Utilize the STAM to learn the complex spatial 

and temporal interactions; 

7. Identify adjacent time dependences form tweets 

using TCs; 

8. Devise the STCM for ST dependencies of 

source tweets representations; 

9. Arrange the GCs to analyze the closest time 

portions of tweets for spatial and temporal 

features estimations; 

10. Adjust the spatial and temporal adjacency 

matrices dimensions for ABSTGCN; 

11. Concatenate the features extracted from BERT 

and ABSTGCN and fed into the softmax 

classifier; 

12. Train the LSTM by the ReLU activation to get 

the trained model; 

13. Test the data target is predicted based on 

trained LSTM model Evaluate the efficiency of 

prediction; 

14. End 

 

4. Result and discussion  

4.1 Dataset description 

PHEME dataset [21]: The dataset presents a 

variety of Twitter rumors for and non-rumors, 

disrupting current or interesting events. It contains 

rumors about nine incidents and each rumor is 

marked with its credibility level: true, false or 

unverified. This dataset is focused on two events the 

german wing crash and charlie hebdo. The dataset 

contains over 60,000+ rows in which 62446 tweets 

have been considered. 

Twitter15 and Twitter 16 [22]:  This dataset 

has been widely adopted as standard data in the field 

of rumor detection.  Twitter15 and Twitter16 

contains 1490 and 818 tweets propagations 

respectively. Each tweet propagation is labeled with 

one of four types, including non-rumor, false rumor, 

true rumor and unverified rumor.  

4.2 Performance analysis 

This section compares the efficiency of the 

BERT-ABSTGCN model to existing rumor 

detection techniques like DFFRD [10], CNN-

IGACO [11] KAGN [15], TSNN [18] BiMGCL [19] 

and MFF-GCN [20] on the considered dataset 

(described in Section 4.1). Both the proposed and 

existing models are implemented in Python 3.11 and 

executed on a system with an Intel® CoreTM i5-

4210 CPU @ 3GHz, 4GB RAM, and a 1TB HDD 

running on Windows 10 64-bit with the stimulation 

parameter listed in Table 2.  

For the experimental purposes, the collected 

datasets are individually divided into 70% for 

training and remaining 30% for testing. The 

performance metrics used to evaluate the proposed 

and existing algorithms are described below: 

Accuracy: It indicates the proportion of correct 

predictions among the entire number of tweets 

studied. Eq. (19), 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
   (19) 

 

Here, TP and FN represent the amount of tweets 

correctly detected. Also, FP and TN represent the 

amount of tweets that are incorrectly recognized. 

Precision: It is the proportion of correctly 

recognized rumor posts to overall detected tweets in 

a rumor category. It is shown in Eq. (20), 

 

      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
              (20) 

 

Recall: Eq. (21) calculates the proportion of 

rumor tweets that are correctly recognized. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           (21) 

 

F1-score: It represents the partial mean of 

precision and recall. It is represented in Eq. (22)  

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (22) 

Fig. 3 displays the efficacy of different various 

models on PHEME dataset for rumour recognition. 

Accordingly, it realizes that the accuracy of the 

BERT-ABSTGCN is 20.34%, 15.61%, 12.22% 

7.92%, 5.61% and 2.48%; precision of BERT-

ABSTGCN is 20.65%, 13.72%, 11.3%, 7.85%, 

6.31% and 2.87%; recall of the BERT-ABSTGCN 

model is 17.05%, 12.86%, 9.56%,6.42%, 4.85% and 

2.13;   F-measure of BERT-ABSTGCN model is 

20.59%, 15.48%, 13.27%,9.04%, 6.92% and 2.82% 

higher than the other existing models like DFFRD, 

IG-ACO, KAGN, TSNN, BiMGCL and MFF-GCN 

models respectively.  

Fig. 4 displays the efficacy of various models on 

Twitter15 dataset for rumour recognition. 

Accordingly, it is understood that the accuracy of 

BERT-ABSTGCN is 20.19%, 15.83%, 12.68%, 

9.39%,  6.94% and 1.95%, precision of BERT-

ABSTGCN is 20.63%, 16.52%, 12.16%, 10.42%, 

6.14% and 2.41%; recall of the BERT-ABSTGCN  
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Figure. 3 Performance analysis of proposed and existing models using PHEME dataset 

 

 

 
Figure. 4 Performance Evaluation of Existing and Proposed Models on Twitter15 dataset 

 

 

 
Figure. 5 Performance Evaluation of Existing and Proposed Models on Twitter16 dataset 

 

model is 19.38%, 17.36%, 12.92%, 9.55%, 5.11% 

and 2.09%; F-measure of BERT-ABSTGCN is 

17.74%, 15.46%, 11.23%, 7.65%, 5.83% and 1.68% 

higher than the other prediction models like DFFRD, 

IG-ACO, KAGN, TSNN, BiMGCL and MFF-GCN 

models respectively. 

Fig. 5 displays the efficacy of various models on 

Twitter16 dataset for rumour recognition. 

Accordingly, it is devised that the accuracy of 

BERT-ABSTGCN is 21.09%, 16.22%, 13.28%, 

11.26%, 7.90% and 2.18%; precision of BERT-

ABSTGCN is 18.63%, 16.92%, 12.61%, 9.59%, 

4.29% and 2.57%; recall of the BERT-ABSTGCN 

model is 20.33%, 15.97%, 13.03%, 9.63%, 5.08% 

and 1.71%; F-measure of BERT-ABSTGCN is 

19.14%, 13.38%, 11.60%, 10.20%, 7.30% and 

7
8

.5
1

7
5

.2
4

8
0

.6
9

7
6

.5
8

8
1

.7
2

7
9

.8
3

8
3

.6
9

7
9

.9
7

8
4

.1
9

8
1

.5
6

8
6

.2
1

8
1

.5
3

8
7

.5
5

8
4

.1
7

8
8

.7
5

8
4

.6
9

8
9

.4
6

8
5

.3
9

9
0

.0
8

8
6

.3
7

9
2

.1
9

8
8

.2
4

9
2

.4
8

8
9

.8
2

9
4

.4
8

9
0

.7
8

9
4

.4
5

9
2

.3
5

0

20

40

60

80

100

Accuracy Precision Recall F1-Score

R
a

n
g

e 
(%

)
Performance Evaluation on PHEME Dataset

DFFRD IG-ACO KAGN TSNN BiMGCL MFF-GCN BERT-ABSTGCN

7
6

.1
7

7
5

.0
9

7
7

.4
4

7
8

.2
7

7
9

.5
9

7
8

.2
7

7
9

.0
3

8
0

.0
9

8
2

.1
5

8
1

.7
8

8
2

.6
4

8
3

.5
6

8
4

.9
1

8
3

.2
2

8
5

.4
8

8
6

.6
2

8
7

.0
2

8
6

.8
6

8
9

.3
7

8
8

.2
1

9
1

.4
7

9
0

.1
7

9
2

.1
1

9
1

.9
5

9
3

.2
8

9
2

.3
7

9
4

.0
6

9
3

.5
1

0

20

40

60

80

100

Accuracy Precision Recall F1-Score

R
a

n
g

e 
(%

)

Performance Evaluation on Twitter15 Dataset

DFFRD IG-ACO KAGN TSNN BiMGCL MFF-GCN BERT-ABSTGCN

7
5

.6
5

7
6

.8
2

7
6

.7
4

7
7

.3
5

7
9

.4
6

7
8

.1
6

8
0

.1
9

8
1

.9
7

8
1

.8
4

8
1

.6
2

8
2

.5
9

8
3

.4
5

8
3

.5
2

8
4

.1
3

8
5

.4
6

8
4

.6
3

8
6

.3
8

8
8

.7
2

8
9

.4
4

8
7

.1
2

9
1

.4
7

9
0

.2
6

9
2

.5
1

9
1

.7
5

9
3

.4
9

9
2

.6
1

9
4

.1
1

9
3

.7
3

0

20

40

60

80

100

Accuracy Precision Recall F1-Score

R
a

n
g

e 
(%

)

Performance Evaluation on Twitter16 Dataset

DFFRD IG-ACO KAGN TSNN BiMGCL MFF-GCN BERT-ABSTGCN



Received:  April 3, 2024.     Revised: May 9, 2024.                                                                                                          409 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.31 

 

2.13% higher than the other models like DFFRD, 

IG-ACO, KAGN, TSNN, BiMGCL and MFF-GCN 

models respectively.  

In the literature, IG-ACO [11], KAGN [15] and 

MFF-GCN [20] dataset have utilized PHEME 

dataset for the evaluation. Similarly, in this model, 

DFFRD [10], KAGN [15], TSNN [18] and 

BiMGCL [19] models have considered Twitter15 

and Twitter16 for the performance task. Hence, this 

work evaluates proposed and existing models on 

PHEME, Twitter15 and Twitter16 datasets using the 

parameters in Table 2. From the above comparison, 

it is proved that the proposed BERT-ABSTGCN 

model determines efficient results on collected 

datasets than other existing models for the rumour 

detection and classification. This is because the 

suggested model effectively handles irregular 

connections in graphs by modifying spatial and 

temporal adjacency matrix dimensions and 

eliminating intricate ST dependencies in tweet 

interactions using feature representations derived 

from graphs for effective rumour prediction. 

5. Conclusion  

In this paper, BERT-ABSTGCN is proposed for 

rumor prediction using twitter dataset.  This method 

employs TSTR to retrieve the context-dependent 

vocabular features from tweet text, reducing data 

sparsity and excelling on large corpora. The 

ASTGCN learns complicated spatial and dynamic 

temporal relationships by combining GCs for spatial 

features and TCs for local time sections. The 

ABSTGCN is employed to data with irregular graph 

relationships, adjusting spatial and temporal 

adjacency matrices dimensions to improve 

performance. The extracted features are integrated 

into a softmax layer for rumor detection and 

categorization.  Finally, the suggested method 

obtains 94.48%, 93.28% and 93.49% accuracy on 

PHEME, Twitter 15 and Twitter 16 respectively 

which is greater than other models like DFFRD, IG-

ACO, KAGN, TSNN, BiMGCL and MFF-GCN. 
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