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Abstract: To improve the quality of a medical image, it is essential to employ equipment that is equipped with a 

higher-intensity magnetic field. This poses unique challenges for healthcare providers, particularly those who have 

limited resources and an urgent need for efficiency. Interpolation is the most efficient technique for transforming 

low-resolution photos into high-resolution images through a straightforward calculation. The interpolation technique 

yields images with reduced clarity, especially along seamless boundaries, leading to the omission of crucial details. 

This study suggests employing the residual variational autoencoder model for the purpose of reconstructing high-

resolution images. The model comprises three components: an encoder, a decoder, and a latent space. According to 

the test findings, the suggested model performs better than state-of-the-art techniques already in use, including 

interpolation, multi-level densely connected super-resolution networks, and variational autoencoders. The evaluation 

of Structural Similarity and Peak signal-to-noise ratio metrics reveals a significant improvement, with an 

approximate 5–10% rise in Structural Similarity and a 10-15% increase in Peak signal-to-noise ratio compared to the 

state-of-the-art. 
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1. Introduction  

Medical magnetic resonance imaging (MRI) is a 

very accurate method of obtaining detailed and in-

depth images of the body's organs, bones, and 

tissues. This examination is performed as a 

diagnostic tool for doctors. MRI [1, 2] is used in 

neurology to provide a detailed image of the brain, 

spine, and blood vessels which can be visualized in 

three sections: axial, coronal, and sagittal. However, 

the low image resolution has an impact on the 

diagnostic process performed by medical personnel 

[3]. 

In order to achieve superior medical images, it is 

necessary to employ costlier gear, acquire samples 

for a longer period of time, and utilize hardware 

with a more powerful magnetic field. This poses 

novel difficulties for healthcare professionals, 

particularly those with few resources and pressing 

requirements. Interpolation is the most efficient 

technique for reconstructing high-resolution images 

from low-resolution ones using straightforward 

calculations. Interpolation is the ongoing calculation 

of the average value of discrete samples. 

Interpolation [4] is a commonly employed technique 

in digital image processing to increase, decrease, 

and correct spatial distortions in images. Efficient 

interpolation methods are essential because of the 

abundant data included in digital photographs. 

Numerous methodologies for picture 

interpolation have been suggested in recent decades. 

The use of these techniques is essential to the 

advancement of algorithms for analyzing and 

visualizing medical data in both two and three 

dimensions [5]. The work conducted 

by[4]introduced a way for creating 3D image data in 

the medical field. This method involves utilizing 

trilinear interpolation, data scaling techniques, and 
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Figure. 1 Comparison of Interpolation Results and Ground Truth on blurred areas 

 

annotation projections to incorporate a large amount 

of Digital Imaging and Communications in 

Medicine (DICOM) format information into the 

images [6-8]. Given the substantial dimensions of 

3D picture data and the  

constraints of current technology, there is a need 

for a technique to adjust the size of 3D images. The 

study's findings indicate that the proposed method is 

capable of projecting annotations onto scaled images 

while effectively managing a variety of DICOM 

image data. 

Despite this, the interpolation method [7] makes 

images less clear, especially in the smoother areas, 

which means important data is lost, as shown in Fig. 

1. Consequently, there is a need for a technique to 

restore photos from low to high resolution. A study 

undertaken by [9] utilized technological 

advancements, particularly in the field of machine 

learning, to successfully reconstruct high-resolution 

images from low-resolution inputs. This work aims 

to address the persistent challenge of reconstructing 

low-resolution 3D medical images into high-

resolution 3D medical images by drawing upon 

many studies conducted on this subject.  

To enhance the quality of reconstructed 3D 

images from interpolation, researchers propose 

using a model called residual variational 

autoencoder. This model aims to address the issue of 

blurry and less detailed image structures resulting 

from the interpolation process. By utilizing the 

residual variational autoencoder, the researchers aim 

to improve the clarity and detail of the reconstructed 

images. This approach offers a promising solution to 

the challenges associated with 3D image 

reconstruction, ensuring that the resulting images 

accurately represent the underlying structures with 

enhanced resolution and sharpness. 

The paper is divided into key sections: 

Introduction (Section 1) provides background, 

problem statement, and objectives. Methodology 

(Section 2) outlines the approach, including the use 

of Residual Variational Autoencoder. Section 3 

covers Data Explanation, detailing datasets and 

preprocessing. Implementation and Results (Section 

4) discusses practical application, results, and 

analysis, demonstrating the efficacy of the proposed 

method in enhancing 3D brain MRI reconstruction 

accuracy via super resolution. 

The contributions made include: 

1. The proposed method aims to enhance the 

accuracy of reconstructing three-dimensional 

brain MRI images. 

2. This research utilizes super resolution 

techniques to enhance the resolution of MRI 

images. Increasing image resolution allows for 

clearer visualization of small details in brain 

structures 

3. The proposed method was outperformed by 

previous research methods in reconstructing 

low-resolution 3D medical images into high-

resolution 3D medical images. 

2. Methodology  

2.1 Related work 

Advancements in neuroimaging research, 

particularly focused on brain magnetic resonance 

imaging (MRI) scans, have introduced innovative 

techniques to enhance image processing. For 

instance, [17] proposed a multi-level densely 

connected super-resolution network (mDCSRN), 

trained using GAN methodology, for processing 3D 

data. This model, utilized in the study, offers rapid 

and realistic image reconstruction from the nifti 

dataset, demonstrating promising results with a 

patch dimension of (64,64,64) [18]. Additionally, 

researchers [19] presented an algorithm for 

automatic detection of the anterior and posterior 

commissure in MRI data, requiring no extensive 

training and compatible with T1-W and T2-W MRIs.  

However, despite these advancements, 

challenges persist in resizing 3D images due to 

technology constraints. In response, [5] developed a 

method utilizing trilinear interpolation, 3D image 



Received:  February 28, 2024.     Revised: May 2, 2024.                                                                                                  342 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.26 

 

scaling, and annotation projection to create 3D 

image data from DICOM format medical images. 

While this approach effectively applies annotations 

and handles diverse DICOM image data, it suffers 

from reduced image clarity, especially along 

seamless boundaries, leading to significant detail 

loss. To address this, [13] introduced a super-

resolution technique using an autoencoder model to 

generate high-resolution images from low-resolution 

inputs. Additionally, [20] devised a Super 

Resolution Generative Adversarial Network model 

(SRGAN) that effectively reconstructed images, 

outperforming standard super-resolution models in 

human visual perception despite lower PSNR values. 

These studies collectively highlight ongoing efforts 

to improve image reconstruction and address the 

challenges in neuroimaging research. 

2.2 Variational autoencoder 

The method proposed in this study is a 

development of the variational autoencoder method 

in this study [10, 11]. The proposed Residual 

Variational Super Resolution Autoencoder (ResVae) 

method also consists of encoder, decoder, and latent 

space layers. Similar to previous research, the 

encoder layer is tasked with extracting features from 

LR and GT images, resulting in a latent space that is 

randomly sampled to obtain the mean and variance. 

Reparameterization is performed for 

backpropagation, allowing feature estimation when 

reconstructed to original image dimensions in the 

decoder layer. The encoder layer represents the 

posterior approximation qφ(z|x), the decoder layer 

represents the generative pθ(x,z).  

The posterior approximation is represented as a 

multivariate gaussian with a diagonal covariance 

matrix. Multi-Layer Perceptron (MLP) is used to 

calculate the parameters of the gaussian distribution 

using x as input, characterized by nonlinear and 

linear functions. The MLP is described by two 

nonlinear functions, μφ and σφ, which correspond to 

the mean and standard deviation vectors, 

respectively, and two linear functions, μφ and σφ, 

which map the mean and standard deviation vectors 

from x. 

 

𝑞∅(𝑧|𝑌)  = 𝒩 (𝑧; 𝜇∅(𝑌), 𝜎∅(𝑌), 𝐼)                  (1) 

 

The generative model pθ(x,z) assumes that p(z) is 

determined by Gaussian multivariate units, 

specifically p(z) = N(0,I). If we assume that the 

functions σθ and μθ are nonlinear, mapping the 

standard deviation vector and mean to 𝑧 , 

respectively, we can conclude that  

 

𝑝𝜃(�̂�|𝑧)  = 𝒩 (�̂�; 𝜇𝜃(𝑧), 𝜎𝜃(𝑧), 𝐼)                 (2) 

 

We can identify why this model is named an 

autoencoder based on its network architecture. 

 

𝑌 
𝑞∅(𝑧|𝑌)
→     𝑧 

𝑝𝜃(𝑌|𝑧)
→      �̂�                                       (3) 

 

The encoder 𝑞∅ probabilistically translates the 

input 𝑌 to the code 𝑧, which is then probabilistically 

translated back into the input space by the decoder 

𝑝∅ . We extract samples  𝑧𝑖, 𝑙 = 1… . 𝑙 from the 

conditional distribution 𝑞∅(𝑧|𝑌). In order to reduce 

the variability of our gradient estimation, we employ 

the noise distribution of a randomly picked epsilon 

from the Gaussian multivariate unit, denoted as , i.e., 

𝑝(𝜖) ~ 𝑁(0,1) ,to carry out a reparameterization 

operation on the multivariate Gaussian distribution 

𝑞𝜃(𝑧|𝑌) . The reparameterization of qφ can be 

expressed in the following manner: 

 

𝑧(𝑙) = 𝜇∅(𝑌) +  𝜀 ⨀ 𝜎∅(𝑌)                             (4) 

 

Where 

 

𝜖(𝑙)~ 𝑁(0,1)                                                    (5) 

 

Backpropagation is done by calculating the 

gradient by adding up the mean and variance values 

and then multiplying it by the random epsilon value, 

which epsilon in this study is stochastic. 

2.3 Stacking DICOM 

The acquired MRI medical picture is a per-slice 

image in the DICOM file format. To generate a 

three-dimensional image, it is necessary to arrange 

the data in a stacked manner.   The DICOM stacking 

performed in this study is based on a prior study [8] 

that requires the stacking to be done according to the 

slice order specified in the DICOM metadata. 

In Fig. 2 above, the value 𝑧  is the number of 

pixels per row 𝑥 and the number of pixels per  

 

 
Figure. 2 DICOM Metadata 
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column 𝑦 were represented by the number of slices. 

the DICOM tag (0028, 0010) and the DICOM 

tag(0028, 0011). Once the values of 𝑥, 𝑦, and 𝑧 are 

known, a 3D representation is created by stacking 

the medical images. The spacing between slices 

refers to the DICOM tag (0028, 0030) which is the 

spacing between slices, while the order of the slice 

positions refers to the DICOM tag (0020, 1041) 

slice location. 

2.4 Patching data 

Patching is employed to mitigate the issue of 

constrained memory.   The researchers utilize only 

16 GB of RAM to perform the patching process on 

each 3D dataset, using the methodology employed 

in a prior study [12]. To calculate the number of 

batches and the total path formed, it can be seen 

using the following equation (6). 

 

𝑏𝑎𝑡𝑐ℎ𝑥,𝑦,𝑧 = 
𝑥𝑑𝑖𝑚,𝑦𝑑𝑖𝑚,𝑧𝑑𝑖𝑚

𝑆𝑝𝑙𝑖𝑡
                             (6) 

 

Where the dimension value is the initial 

dimension value of the image to be patched and the 

split is the desired dimension per patch value. If the 

batch value is float, it must be padded on 𝑧𝑑𝑖𝑚  as 

much as the value of 𝑥𝑑𝑖𝑚 or 𝑦𝑑𝑖𝑚. After finding the 

next batch value, the calculation of the number of 

patches in each dataset is carried out using the 

following equation (7): 

 
∑𝑝𝑎𝑡𝑐ℎ = 𝑥𝑏𝑎𝑡𝑐ℎ × 𝑦𝑏𝑎𝑡𝑐ℎ × 𝑧𝑏𝑎𝑡𝑐ℎ            (7) 

 

Where the batch value on each dimension 

(𝑥, 𝑦, 𝑧) is obtained from the previous equation. 

2.5 Loss 

In the research that will be carried out, loss 

calculation is denoted as 𝑙𝑆𝑅  which consists of the 

sum of MSE loss and reconstruction loss.  

 

𝑙𝑆𝑅 = 𝑙𝑚𝑠𝑒 + (𝑙𝑏𝑐𝑒  +  𝑙𝐾𝐿)                           (8) 

 

The MSE loss value is obtained using the 

equation for 3D reconstruction according to a study 

[13] : 

 

𝑀𝑆𝐸 =
1

𝑛
(𝑌�̂� − 𝑌𝑖)

2
                                         (9) 

 

Where 𝑌�̂�  is the reconstructed image with 

dimensions (𝑥, 𝑦, 𝑧)  while 𝑌𝑖  is the ground truth 

image. Meanwhile, the reconstruction loss obtained 

in equation (11, 12) which is referenced from a 

study [14] using cross entropy is as follows: 

 

𝑙𝑜𝑠𝑠(�̂�, 𝑌𝑖) = {𝑙1…… . 𝑙𝑛}                              (10) 

 

𝑙𝑛 = 

−𝑤𝑛(𝑌𝑖  ∙  log �̂� + (1 − 𝑌𝑖) ∙  log(1 − �̂�))         (11) 

 

Where 𝑌�̂�  is a reconstructed image with 

dimensions (𝑥, 𝑦, 𝑧), while 𝑌𝑖  is the ground truth 

image that the target 𝑌𝑖 must be a number between 0 

and 1. Kullback-Leibler divergence loss is a 

statistical method used to calculate the distance 

between data distributions so that it can be written in 

the following notation: 

 

𝐾𝐿(�̂�, 𝑌) = 

𝑌 × log
𝑌

�̂�
 = 𝑌 × (log𝑌 − log �̂�)                (12) 

 

Where 𝑌and �̂� are the same dimensions and 𝑌 is 

a ground truth and  �̂� is output. 

2.6 Evaluation metric 

The testing protocol involves taking photos from 

both ADNI and local datasets to compare the results 

of implementing a model on 3D data to generate 

high-resolution medical images. Assessment metrics 

like structural similarity and PSNR are used to 

evaluate image quality [13]. Better quality is 

indicated by a higher PSNR number. The SSIM 

metric, proposed by [15], evaluates the decline in 

reconstructed image quality, with values closer to 1 

indicating a strong resemblance between the high-

resolution MRI image and the reconstructed super-

resolution MRI image. 

3. Data  

3.1 ADNI dataset 

The study utilized brain MRI data from ADNI 

[16], a biomedical research organization, to study 

brain-related regions. The data was formatted in 

DICOM, with each point assigned unique 𝑥, 𝑦, and 𝑧 
coordinates, allowing for detailed analysis. The 

dataset consists of 92 data points and is classified 

into multiple groups depending on diagnosis of 

Alzheimer's disease. These groups consist of 

specific numbers of individuals within certain age 

ranges and gender distributions. The first group 

includes six males aged 55 to 57 years. The second 

group consists of 43 cognitively normal individuals 

aged 55 to 88 years, with 13 males and 30 females.  
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Figure. 3 Visualization of ADNI dataset from left coronal, 

sagittal and axial 

 

 
Figure. 4 Visualization of ADNI dataset from left axial, 

coronal and sagittal 

 

The third group is composed of five individuals 

aged 73 to 89 years with early mild cognitive 

impairment, including four males and one female. 

The fourth group is made up of six individuals aged 

72 to 83 years with late mild cognitive impairment, 

evenly split between males and females. The fifth 

group consists of 27 individuals aged 55 to 88 years 

with mild cognitive impairment, including six males 

and 21 females. The final group includes five 

individuals aged 73 to 80 years with significant 

memory concerns, with three males and two females.  

Fig. 3 is a 3D visualization of the ADNI dataset, 

whose structural and functional parts were scanned 

using the 3T siemens machine performed by ADNI 

on all datasets used. The protocol configuration used 

is for structural using T1-MPRAGE, voxel size of 

1. 2 𝑥 1.1, 1.1 mm3, image matrix of (256,256) and 

number of slices of 170 and flip angle of 9°. 

3.2 Local dataset 

In addition to using the ADNI dataset, the 

researchers added local datasets like in Fig. 4. A 

total of 90 pieces were obtained from several 

hospitals in Surabaya, East Java Province, Indonesia. 

This dataset is in the form of DICOM and was 

obtained using a 1.5 Tesla device. In this study, two 

categories of brain MRI data were used with 

different configurations including 92 ADNI datasets 

obtained using 3 Tesla devices and the other 90 

local datasets obtained using 1.5 Tesla devices. The 

total number of datasets used in the study can be 

calculated using the following equation: 

 

∑𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = (∑𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐴𝑑𝑛𝑖 + 

∑𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑙𝑜𝑘𝑎𝑙) × 𝑝𝑎𝑡𝑐ℎ                     (13) 

 

Where ∑𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝐴𝑑𝑛𝑖  is the number of ADNI 

datasets used and ∑𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑙𝑜𝑘𝑎𝑙  is the number of 

local datasets used. The patch is the number of 

patches in each dataset that have been patched 

according to equation (7). 

4. Implementation and result  

4.1 Training and parameter  

The experiment started with low-resolution data 

from the patching dataset approach and was carried 

out on Google Colab with a Tesla K80 GPU and 16 

GB RAM. The data was in the format of 

(256,256,256) dimensions. Afterwards, the dataset 

was partitioned into segments of (32,32,32) , 

resulting in eight batches for each dimension 

(𝑥, 𝑦, 𝑧). The process of dividing resulted in a grand 

total of 512 patches. Based on the calculation using 

the equation provided above, the batch and number 

of patches are as follows: 

 

𝑏𝑎𝑡𝑐ℎ =  
256 ,256 ,256

32 
 = 8, 8, 8                      (14) 

 
∑𝑝𝑎𝑡𝑐ℎ = 8 × 8 × 8 = 512                      (15) 

 

The total number of datasets used in the study 

can be calculated by the following equation (16) : 

 

∑𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = 

(92 + 90) × 512 = 93.184           (16) 

 

As a result, a total of 93,184  datasets were 

acquired, each having dimensions of (32,32,32) . 

The dataset was divided into two segments for this 

research 70% for training and 30% for testing. 

Consequently, the training dataset comprised 

65,229  instances (70% 𝑜𝑓 93,184) , while the 

testing dataset consisted of 27,955  instances 

(30% 𝑜𝑓 93,184). For the down-sampling and up-

sampling procedures in this study, the trilinear 

interpolation technique was utilized. The initial 

scaling factor for down-sampling was 2, and the 

latent dimensions employed in this study were set at 

a constant value of 128. For the training phase, an 

Adam optimizer was utilized, with an initial learning 

rate of 1𝑒 − 3. The training procedure lasted for 100 

epochs.  
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Figure. 5 Visualization of the proposed neural network architecture residual variational autoencoder 

 

 

 
Figure 6. Comparison of the reconstruction results of the residual variational autoencoder model with other models with a 

blur value of sigma 1 (top) local dataset, (bottom) ADNI dataset 
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Figure. 7 Comparison of the reconstruction results of the residual variational autoencoder model with other models with a 

blur value of sigma 1.5 (top) local dataset, (bottom) ADNI dataset 

 
4.2 Architecture residual variational autoencoder  

Fig. 5 shows the design of the neural network 

architecture of the super-resolution residual 

variational autoencoder for the case of 3D magnetic 

resonance imaging of the brain. This architecture 

consists of an encoder layer, a z layer, and a decoder. 

The input of this neural network is a 3D low-

resolution image that has been patched. The 

difference between a residual variational 

autoencoder and an existing variational autoencoder 

is the use of a residual model for feature extraction 

and the upsample process. 

The encoder layer depicted in Fig. 8 is designed 

to decrease the dimensions of the input by utilizing 

convolution. This layer is composed of Residual 

Network blocks [17], with each block including four 

convolutions using normalized and leaky ReLU 

(rectified linear unit) activation, followed by a skip 

connection.   The convolutions employ a (3,3,3) 
kernel and a stride of 2, with the initial number of 

filters set at [16, 32, 64]. The employed 

normalization technique was Group Normalization 

(GN) [18], which demonstrates superior 

performance compared to batch normalization when 

the batch size is limited.   

In this scenario, the value 1 is employed because 

to the significant impact on memory usage caused 

by a high batch norm value. The spatial dimensions 

of the final encoder layer are (64,3,3,3), which is 8 

times smaller than the input image.  

 

 

 
Figure. 8 Residual Neural Network Blocks in Layer 

Encoder 
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Figure. 9 Mean and Variance in Latent Vector Layers 

 

 
Figure. 10 Residual Neural Network Blocks in Layer 

Decoder 

 

The 𝑧 layer, seen in Fig. 9, is a latent variable 

that arises from the process of feature extraction 

performed by the decoder layer 𝑞∅(𝑧|𝑌) .   

Subsequently, this layer is partitioned into z, which 

comprises a dataset composed of a stochastic 

sampling of the average and variability, utilizing a 

latent space value of 128. The latent variable 

contains the attributes of the feature extraction 

process.   The aim of this study is to determine the 

mean and variance values that align with the ground 

truth image. Nevertheless, the decoder layer is 

unable to carry out backpropagation due to its 

reliance on integral computations for the purpose of 

maximizing distribution. The reparameterization 

approach outlined in equation (4) to compute the 

𝑧 values that were sampled from the mean and 

variance.   

The layer decoder seen in Fig. 10 is designed to 

carry out the process of increasing the resolution of 

the latent space. The decoder's structure closely 

resembles that of the encoder, with progressively 

larger block dimensions at each spatial level. The 

decoder level commences with a skip connection, 

followed by a 3D convolution transposition that 

decreases the number of features using a kernel size 

of (3,3,3) and a stride of 2. The researchers opted 

using convolution transpose instead of trilinear 

upsampling due to the inclusion of skip connections 

and adds, which necessitated an adjustment to the 

weight of the leaky ReLU (rectified linear unit) 

activation function. The ultimate decoder layer 

possesses identical dimensions to the input image. 

4.3 Reconstruction using residual variational 

autoencoder  

To evaluate the suggested residual variational 

autoencoder model. The researchers conducted a 

comparison of the image reconstruction outcomes, 

which are illustrated in Fig. 7 and 8. The study 

produced super-resolution images using several 

comparison methods, and the results are shown here. 

The data utilized in this investigation consists of 

photos with low resolution. The study consists of 

two distinct stages: sigma 1 and sigma 1.5. An 

increase in the sigma value in this example results in 

a reduction in the image intensity, causing the image 

to appear blurred.  

Fig. 7 demonstrates that the autoencoder residual 

variational model outperforms other approaches, 

such as interpolation, the multi-level densely 

connected super-resolution network (mDCSRN) 

model, and the variational autoencoder, in 

generating higher-quality images on both the ADNI 

and local datasets when using Sigma 1. The residual 

variational autoencoder and mDCSRN models 

enhance image sharpness by reducing the blur effect, 

resulting in clear visibility of intricate areas of the 

brain. This is evidenced by the elevated PSNR 

values between the two models. However, the 

mDCSRN model demonstrated a considerable 

decline in reconstruction outcomes on the ADNI 

datasets, as seen by a substantial decrease in SSIM 

values compared to the reconstructions of local data 

images. This decrease causes the image 

reconstruction result to be darker.  
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Table 1. The comparison of SSIM and PSNR metrics 

evaluation results is conducted on ADNI datasets. 

Methods Sigma 

Dataset ADNI 

SSIM PSNR 

Interpolation [4] 

1 0.87 22.89 

1.5 0.83 21.83 

mDCSRN [19] 

1 0.75 19.20 

1.5 0.80 22.31 

Variational Autoencoder 

[10] 

1 0.88 23.19 

1.5 0.84 22.17 

Residual Variational 

Autoencoder (Ours) 

1 0.93 26.03 

1.5 0.89 24.22 

 

The outcome of the experiments depicted in Fig. 

8 demonstrates that, despite increasing the sigma 

value, the residual variational model autoencoder 

remains proficient in reconstructing accurately. 

Upon thorough examination of the reconstructed 

residual variational model of the autoencoder, 

distinct characteristics of the brain organ are still 

discernible in comparison to alternative approaches. 

This is the point where the most significant 

degradation in image quality takes place within the 

variational autoencoder model. If there is a strong 

resemblance between two images that are 

conceptually distinct in the autoencoding variational 

model, a bias will arise, resulting in significant 

blurring of the image. 

The evaluation results of the research conducted 

as shown in Table 1 compare four different super-

resolution methods: interpolation, mDCSRN, 

variational autoencoder, and the proposed residual 

variational autoencoder method using two datasets, 

namely ADNI and local datasets. The proposed 

technique on the ADNI dataset gets a structural 

similarity evaluation metric value of (0.93) for 

sigma 1. The value is 6.1% greater than the ssim 

value generated by the variational autoencoder 

method (0.88) and 19.3% greater than the mDCSRN 

method, which only attained a value of (0.75). 

Compared to the interpolation method, the proposed 

method shows a 2.6% increase in SSIM value with 

respect to the (0.87) interpolation strategy. In 

addition, the proposed strategy demonstrates a 

PSNR value of (26.03 dB), which exceeds the 

performance of the variational autoencoder method 

by 11.1% (23.19 dB) and the mDCSRN method by 

27.5% (19.20 dB). Concerning the interpolation 

technique, the proposed method achieves a PSNR 

value of (22.89 dB), exhibiting an improvement of 

11.3% compared to the PSNR value of the 

interpolation method.  

Moreover, the ADNI dataset has a sigma value 

of 1.5. The proposed approach gets an evaluation 

score of (0.89) for the SSIM metric, outperforming 

the variational autoencoder method by 5.6% (0.84) 

and the mDCSRN method by 10.7% (0.80). The 

interpolation strategy has a value of (0.83), which is 

3.8% higher than the ssim value of the proposed 

method. The proposed strategy obtains a PSNR 

value of (24.22dB), beating the PSNR values of the 

variational autoencoder method (22.17dB) by 8.5% 

and the mDCSRN method (22.31dB) by 4.5%. 

Concerning the interpolation approach, the proposed 

method exhibits a PSNR value that surpasses the 

interpolation method by 8.5%, reaching (21.83dB).  

After that, when used on separate datasets, as 

seen in Table 2, especially the local dataset with a 

sigma value of 1, the proposed approach obtains an 

SSIM evaluation metric value of (0.90). The value 

beats the variational autoencoder method by 7.1%, 

with a value of (0.83), and exceeds the mDCSRN 

method by 11.3%, with a value of (0.79). Regarding 

the interpolation approach, the value is (0.81), 

showing an 8.7% rise in comparison to the SSIM 

value of the proposed method. The proposed  

 

 
Tabel 2. The comparison of SSIM and PSNR metrics 

evaluation results is conducted on local datasets. 

Methods Sigma 

Local Datasets 

SSIM PSNR 

Interpolation [4] 

1 0.81 20.37 

1.5 0.75 18.45 

mDCSRN [19] 

1 0.79 22.52 

1.5 0.66 15.73 

Variational Autoencoder 

[10] 

1 0.83 20.35 

1.5 0.77 18.09 

Residual Variational 

Autoencoder (Ours) 

1 0.90 24.01 

1.5 0.85 21.67 
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approach attains a PSNR of (24.01dB), 

outperforming the variational autoencoder technique 

by 14.9% (20.35 dB) and the mDCSRN technique 

by 7.8% (22.52 dB). Concerning the interpolation 

technique, the proposed method achieves a PSNR 

value of 20.37 dB, surpassing the PSNR value of the 

interpolation method by 14.5%. Moreover, the 

dataset that is accessible locally is similarly relevant 

to Sigma 1.5. The proposed strategy produces an 

SSIM value of (0.85), surpassing the SSIM value of 

(0.77) obtained by the variational autoencoder 

method by 9.3% and surpassing the SSIM value of 

(0.66) produced by the mDCSRN method by 22.3%. 

In relation to the interpolation approach, the 

proposed method exhibits an SSIM value that is 

11.7% higher than the interpolation method when 

the value is set to (0.75). Furthermore, the proposed 

strategy exhibits a PSNR value of (21.67dB), 

surpassing the variational autoencoder method by 

16.4% with a PSNR value of (18.09dB) and the 

mDCSRN method by 36.9% with a PSNR value of 

(15.73dB). Concerning the interpolation approach, 

the proposed method demonstrates a PSNR value 

that is 18.2% higher than that of the interpolation 

method.  

In summary, our study showcases the superior 

performance of the proposed residual variational 

autoencoder method compared to other advanced 

techniques, including variational autoencoder, 

mDCSRN, and interpolation. Notably, when sigma 

was set to 1 and 1.5, both the ADNI and local 

datasets exhibited significantly higher SSIM and 

PSNR values. On average, our method demonstrates 

a remarkable 5–10% enhancement in SSIM and a 

notable 10–15% improvement in PSNR compared to 

the current state-of-the-art approach. These findings 

underscore the potential of our proposed method as 

a highly effective solution for achieving superior 

super-resolution results. Our research suggests that 

this approach holds considerable promise in 

advancing the field of image processing and could 

lead to substantial improvements in various practical 

applications.  

5. Conclusion  

In summary, the research introduces the residual 

variational autoencoder model, comprising an 

encoder, decoder, and latent space, for 

reconstructing high-resolution images. The encoder 

identifies low-resolution image features, while 

reparameterization facilitates backpropagation and 

feature estimation.  

The results of this research, indicate that the 

proposed residual variational autoencoder method 

outperforms existing state-of-the-art techniques, 

including variational autoencoder, mDCSRN, and 

interpolation, in terms of both structural similarity 

(SSIM) and peak signal-to-noise ratio (PSNR) 

metrics. When evaluated on the ADNI dataset with a 

sigma value of 1, the proposed method achieves a 

significantly higher SSIM value of 0.93, 

representing a 6.1% improvement over variational 

autoencoder and a 19.3% improvement over 

mDCSRN. Similarly, the PSNR value of 26.03 dB 

for the proposed method outperforms both 

variational autoencoder and mDCSRN by 11.1% 

and 27.5%, respectively. Furthermore, on the local 

dataset with a sigma value of 1, the proposed 

method demonstrates SSIM and PSNR values of 

0.90 and 24.01 dB, respectively, surpassing 

variational autoencoder and mDCSRN by 

significant margins. The evaluation of Structural 

Similarity and Peak signal-to-noise ratio metrics 

reveals a significant improvement, with an 

approximate 5–10% rise in Structural Similarity and 

a 10-15% increase in Peak signal-to-noise ratio 

compared to the state-of-the-art. These findings 

underscore the scientific contribution of the 

proposed method, highlighting its effectiveness in 

achieving superior super-resolution results 

compared to existing approaches. 

Future studies are poised to leverage artificial 

intelligence generative models for super-resolution 

image reconstruction, particularly in the realm of 3D 

MRI medical images. 
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