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Abstract: Solar panels are an increasingly popular and sustainable means of generating electricity. However, the 

efficiency and longevity of solar panels may get compromised by various types of faults, including diode hotspots, 

dust/shadow hotspots, multicell hotspots, PID hotspots, and single cell hotspots. Detecting these faults accurately is 

vital for maintaining optimal efficiency. Many existing methods for fault identification fall short due to inadequate 

feature representation and segmentation techniques. To address these limitations, an innovative approach is proposed 

involving entropy-based saliency map segmentation and multidomain feature analysis model for fault detection and 

classification in solar panels. Proposed saliency map segmentation method extracts the most relevant regions in solar 

panel images, improving fault detection. The entropy-driven saliency maps fault detection technique surpasses 

alternative approaches such as color thresholding and channel-based thresholding for fault detection in solar panels. A 

comprehensive set of feature representation models, including Fourier, Wavelet, DCT, Convolutional, and Gabor 

transformations is employed. To further enhance the precision and effectiveness of fault identification, we incorporate 

an Extra Trees feature selection mechanism. Classification is done with an ensemble of classification models, including 

k-Nearest Neighbors (kNN), Deep Forest, Support Vector Machines (SVM), Logical Regression, and Artificial Neural 

Networks (ANN). Empirical evaluation of the proposed model demonstrates exceptional performance, achieving F1 

score of 94% for fault classification compared to existing machine learning models. Proposed multidomain analysis 

model gave an accuracy of 96.9% and recall of 93.5% in fault identification. Additionally, the proposed model exhibits 

computational efficiency, making it suitable for real-time fault detection scenarios. 
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1. Introduction 

With numerous advantages like lessened 

environmental impact and long-term cost savings, 

solar energy has become a well-known and 

sustainable alternative for the generation of 

electricity. The main parts of solar energy systems, 

solar panels, transform sunlight into electrical energy. 

Solar panels are, however, susceptible to several 

flaws that over time, reduce their performance and 

efficiency, just like any other technology. Accurately 

determining and diagnosing these issues is essential 

to ensuring optimal energy output and extending the 

life of solar panel installations. Solar panel fault 

finding has traditionally relied on manual inspection, 

which is labor and time-intensive and subject to 

human error. Researchers are increasingly using 

automated fault detection systems that make use of 

computer vision methods and machine learning 

algorithms to get around these constraints. These 

systems use images of solar panels to identify and 

categorize various fault types, allowing for prompt 

maintenance and repair.  

In this study, we present a novel method for fault 

detection in solar panels that combines saliency map 

segmentation with a multidomain feature analysis 

model. The main goal of the proposed model is to 

improve the precision and effectiveness of fault 

detection in solar panels while addressing the 

drawbacks of current approaches [1-3]. 
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The inadequate representation of fault features in 

current approaches is a major problem. Solar panel 

faults can appear in a variety of ways, including 

single cell hotspots, PID hotspots, dust shadows 

hotspots, multicell hotspots, and diode hotspots. 

Using various feature representation models, these 

faults can be captured because they have distinctive 

visual characteristics. Our suggested method uses a 

variety of feature representation models, including 

Fourier, Wavelet, DCT, Convolutional, and Gabor, to 

address this. These models allow us to accurately 

identify and depict the distinctive fault patterns 

visible in solar panel images [4-6]. Effective 

segmentation of pertinent areas within the solar panel 

images presents another difficulty in fault detection. 

Conventional segmentation methods might be unable 

to precisely isolate the regions where faults are 

present, resulting in false detections or missed faults. 

We introduce saliency map segmentation, which 

identifies the most salient regions within the images, 

to address this issue. We can increase the precision 

and effectiveness of fault detection by concentrating 

the analysis on these regions. 

Any fault detection system's effectiveness also 

heavily depends on the choice of illuminating 

features. Extra Trees, a potent feature selection 

mechanism, is used in our proposed model to find the 

most distinct features from the multidomain 

representation. This procedure improves fault 

classification accuracy by reducing dimensionality 

and removing pointless or redundant features. We 

train an ensemble of classification models, including 

kNN, Deep Forest, SVM, Logistic Regression, and 

ANN, to categorize the chosen fault features into 

particular fault categories. The fault detection 

system's robustness and generalization abilities are 

improved using multiple models. There are several 

benefits to the suggested multidomain feature 

analysis model with saliency map segmentation. By 

utilizing a variety of feature representation models, 

effective segmentation strategies, and strong feature 

selection mechanisms, it addresses the shortcomings 

of existing approaches. The model is highly 

applicable for monitoring and maintaining solar 

panel installations, ensuring optimum performance 

and longevity, due to its ability to precisely identify 

faults in real-time scenarios. 

In conclusion, this paper presents a thorough and 

original method for locating solar panel faults. Our 

model significantly increases fault detection 

efficiency and accuracy by combining multidomain 

feature analysis with saliency map segmentation. Its 

superior performance and suitability for use in real-

world scenarios are demonstrated by the empirical 

validation. The suggested model represents a 

significant advancement in automating solar panel 

fault detection and has the potential to have a 

significant positive impact on the solar energy sector 

for different use cases. 

The structure of this document is as follows: 

section II gives review of existing models used for 

fault analysis. Section III provides details about the 

proposed design of an efficient multidomain feature 

analysis model with saliency map segmentation for 

identification of solar panel faults. Section IV covers 

statistical analysis of proposed method. Section V 

focuses on conclusion and future scope. 

2. Review of existing models used for fault 

analysis 

Solar panel fault analysis is essential for ensuring 

optimal performance and durability of solar panel 

installations. Researchers have developed numerous 

models and techniques for the detection and 

identification of faults in solar panels over the years. 

In this section, we provide a comprehensive analysis 

of the existing models used for solar panel fault 

analysis, highlighting their strengths, limitations, and 

improvement opportunities [7-9]. 

2.1 Image processing methodologies 

Methods based on image processing are widely 

used for solar panel fault analysis. These methods 

frequently involve image enhancement, noise 

reduction, and segmentation as pre-processing steps 

& flows. By analyzing the characteristics of the 

segmented regions, errors are identified for different 

use cases [10-13]. In the paper [27], authors have 

used combination of different pre-processing 

techniques. Three segmentation techniques using 

color based thresholding, channel based thresholding 

and temperature based thresholding are proposed and 

fault detection accuracy is calculated. IoU values for 

various faults are calculated which are low. So 

efficient segmentation techniques must be developed 

to improve the accuracy of fault detection.  

These methods are efficient for identifying 

obvious flaws such as cracks, discoloration, and 

physical damage. They provide important 

information regarding the spatial distribution and 

severity of faults. Image processing-based 

approaches frequently struggle to detect faults that 

are not visually apparent, such as diode hotspots, 

dust/shadow hotspots, and PID hotspots. They are 

highly dependent on image quality and may produce 

false positives or overlook subtle flaws. Inaccurate 

and dependable fault identification may be hampered 

by insufficient representation of features. Due to their 
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ability to automatically learn and extract fault 

patterns from large datasets, machine learning-based 

techniques have gained popularity in solar panel fault 

analysis. These methods involve training 

classification models on labelled data, where features 

extracted from images or sensor data are used to train 

the models [14-16]. 

Models based on machine learning can identify 

complex fault patterns and generalize well to 

unobserved datasets & samples. By learning from a 

diverse set of features, they can detect both visible 

and non-visible flaws. These methods can manage 

large amounts of data, allowing for efficient fault 

analysis. The performance of machine learning 

models is heavily dependent on the engineering of 

features. Choosing informative and pertinent features 

can be difficult under real-time scenarios. Inability to 

accurately capture various fault characteristics due to 

a lack of comprehensive and diverse feature 

representation models. Particularly when dealing 

with large datasets, training, and optimizing machine 

learning models can be computationally intensive 

process like Adaptive Feature Space Fusion (ASFF) 

process [17-19]. 

2.2 Hybrid methodologies 

Combining image processing and machine 

learning techniques, hybrid approaches improve the 

precision and robustness of fault analysis [20]. These 

methods combine the strengths of both domains to 

overcome the limitations of individual approaches. 

Hybrid approaches can effectively integrate visual 

data from images and numerical data from sensors, 

thereby enhancing fault detection capabilities. They 

can utilize sophisticated machine learning algorithms 

for fault classification and image processing 

techniques for precise segmentation and feature 

extraction process. The development of hybrid 

approaches requires knowledge of both image 

processing and machine learning, which makes their 

implementation more difficult for real-time scenarios. 

The performance of hybrid approaches is highly 

dependent on the selection and incorporation of 

suitable image processing and machine learning 

components [21-23]. 

Existing models for solar panel fault analysis 

have made substantial contributions like You Look 

Only Once (YoLO) & CNN [24-26]  to the field, as a 

conclusion. Image processing-based methods excel at 

detecting visible flaws, whereas machine learning-

based methods can detect both visible and non-visible 

flaws. The objective of hybrid approaches is to 

combine the strengths of both domains in order to 

enhance overall performance. However, there are still 

obstacles to overcome, such as the accurate 

segmentation of non-visible flaws, the 

comprehensive representation of features, and the 

efficient integration of various techniques. Future 

research should concentrate on developing hybrid 

models with improved feature representation and 

optimization techniques for more precise and 

dependable solar panel fault analysis. 

3. Proposed design of an efficient 

multidomain feature analysis model with 

saliency map segmentation for identification 

of solar panel faults 

Various models are proposed for identification of 

solar panel faults, and most of these models are either 

highly complex, or cannot be used for real-time 

scenarios. To overcome these issues, this section 

discusses the design of an efficient multidomain 

feature analysis model with saliency map 

segmentation for identification of Solar Panel faults. 

As per Fig. 1, in the proposed model, the thermal 

images are pre-processed with Bilateral filter and 

enhanced with histogram equalization as mentioned 

in the work [27]. These pre-processed images are 

passed to the Saliency Maps module to extract high-

entropy regions from the Solar Panel images & 

samples. 

3.1 Entropy based saliency map detection 

These regions consist of high variance regions, 

which indicate distortions in smooth pixel transitions. 

Due to which, the Saliency Map Model can locate 

fault regions with higher efficiency levels. The model 

utilizes bit-level slicing, colour space conversion, 

structural & colour feature extraction, feature 

selection & entropy evaluation for estimation of 

saliency maps as shown in Fig. 2. 

Various models are proposed for identification of 

solar panel faults, and most of these models are either 

highly complex, or cannot be used for real-time 

scenarios. To overcome these issues, this section 

discusses design of an efficient multidomain feature 

analysis model with saliency map segmentation for 

identification of solar panel faults. As per figure 1, 

the proposed model initially uses Saliency Maps to 

extract high-entropy regions from the solar panel 

images & samples. These regions consist of high 

variance regions, which indicate distortions in 

smooth pixel transitions. Due to which, the LAB-

based Saliency Map Model (LSMM) is capable of 

locating fault regions with higher efficiency levels. 

The model utilizes bit-level slicing, colour space 

conversion, structural & colour feature extraction,  
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Figure. 1 Design of the proposed model for identification 

of different solar panel faults 

 

feature selection & entropy evaluation for estimation 

of saliency maps. 

 
Figure. 2 Design of the saliency map extraction process 

 

 

To extract bit planes, the input image is processed 

via Eq. (1), 

 

𝐵𝑃(𝑖) = ⋃ (𝑃𝑟,𝑐 ≫ 2𝑖)𝑁,𝑀
𝑟,𝑐        (1) 
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where, 𝐵𝑃(𝑖) represents the output slice for 𝑖𝑡ℎ  bit, 

while 𝑃𝑟,𝑐  is the pixel intensity for the 𝑟, 𝑐  row & 

columns. These slices are extracted for each of the 

Red (R), Green (G), and Blue (B) channels.  

Based on these slices, the LAB levels are estimated 

via Eqs. (2)-(4) as follows, 

 

𝐿 ∗ =  116  (0.2126  ×  𝑅 +  0.7152 ×  𝐺  
+ 0.0722 ×  𝐵)  −  16  (2) 

 

𝑎 = 500 ×  (0.4124 ×  𝑅 +  0.3576 ×  𝐺  
+ 0.1805 ×  𝐵 −  0.2126 ×  𝑅 

+ 0.7152 ×  𝐺 +  0.0722 ×  𝐵)          (3) 

 

𝑏 = 200 × (0.2126 ×  𝑅 +  0.7152 ×  𝐺 
+  0.0722 ×  𝐵 − 0.0193 ×  𝑅 
+  0.1192 ×  𝐺  
+ 0.9505 ×  𝐵 −  𝑓(𝑍))          (4) 

 

The LAB Map is selected due to its capability of 

representing the solar panel part of the images with 

higher entropy levels. Each of these LAB images are 

averaged via Eq. (5), 

 

𝐼𝑎𝑣𝑔𝑖
=

1

𝑁×𝑀
× ∑ 𝐿𝐴𝐵(𝑖)𝑁,𝑀

𝑟,𝑐   (5) 

 

Using this averaged image, the distance between 

different slices is estimated via Eq. (6), 

 

𝑑(𝑠𝑖, 𝑠𝑗) =
1

𝑁 × 𝑀

× ∑ 𝐼𝑎𝑣𝑔𝑖

𝑁𝑠

𝑖=1

× √∑
(𝑃𝑖𝑟

− 𝑃𝑗𝑟
)2 + (𝑃𝑖𝑐

− 𝑃𝑗𝑐
)2

𝑉𝑎𝑟(𝑠𝑖 , 𝑠𝑗)

𝑁,𝑀

𝑟,𝑐

 

(6) 

 

where, 𝑑(𝑠𝑖 , 𝑠𝑗) represents the level of dissimilarity 

between 𝑖, 𝑗 pixels; 𝑉𝑎𝑟(𝑠𝑖 , 𝑠𝑗)  is the variance levels 

between given images, and is estimated via Eq. (7), 

𝑁𝑠 are total number of extracted slices and 𝑃𝑥𝑦
 are the 

intensity levels for pixel 𝑥, in the 𝑦𝑡ℎ dimension sets. 

 

𝑣𝑎𝑟(𝑥, 𝑦) =
1

𝑁−1
× ∑

(𝑥𝑖−∑
𝑥𝑗

𝑁
𝑁
𝑗=1 )

2

(𝑦𝑖−∑
𝑦𝑗

𝑁
𝑁
𝑗=1 )

2
𝑁
𝑖=1  (7) 

 

Before further using the distance metric, pixel levels 

are quantized via Eq. (8), 

 

𝐿𝐴𝐵𝑞𝑢𝑎𝑛𝑡 =
𝐿𝐴𝐵𝑖𝑛 × 128

𝐿𝐴𝐵𝑚𝑎𝑥
⁄  (8) 

 

where, 𝐿𝐴𝐵𝑖𝑛, 𝐿𝐴𝐵𝑞𝑢𝑎𝑛𝑡, 𝑎𝑛𝑑 𝐿𝐴𝐵𝑚𝑎𝑥  are the input 

LAB pixels, their output quantization pixels, and 

maximum intensity level of the pixels. These pixels 

are counted via Eq. (9) to form a colour map 

(𝐶𝐹(𝑜𝑢𝑡)) as follows, 

 

𝐶𝐹(𝑜𝑢𝑡) = ⋃ ∑ |𝐿𝐴𝐵𝑟,𝑐 == 𝐿𝐴𝐵𝑞𝑢𝑎𝑛𝑡𝑟,𝑐
|𝑁,𝑀

𝑟,𝑐
𝑁𝑠
𝑖=1  (9) 

 

Similarly, the shape map is estimated via Eq. (10), 

where Canny edge features are used to identify 

probability of edges for different image pixels. 

 

𝑆𝐹𝑜𝑢𝑡 = ⋃ ∑ |𝐶𝑎𝑛𝑛𝑦(𝑃𝑟,𝑐 , 𝑃𝑟,𝑐+1) == 1|𝑁,𝑀
𝑟,𝑐

𝑁𝑆
𝑖=1  (10) 

 

where, 𝑆𝐹𝑜𝑢𝑡  is the output shape map, and 

𝐶𝑎𝑛𝑛𝑦(𝑃𝑟,𝑐) is the output of Canny Edge detection 

process. Both these features are combined into an 

augmented vector ( 𝐹 ), and entropy levels are 

estimated via Eq. (11), 

 

𝐸 = − ∑ ∑ 𝑝 (𝐹𝑟,𝑐𝑖
) × log (𝑝 (𝐹𝑟,𝑐𝑖

))𝑀
𝑐=1

𝑁
𝑟=1   (11) 

 

where, 𝑝 (𝐹𝑟,𝑐𝑖
) represents feature probability levels 

for different bit planes. Based on this entropy, and 

distance between image pixel levels, an Iterative 

threshold is estimated via Eq. (12), 

 

𝑝𝑡ℎ = √𝐸 ×
∑ 𝑑

𝑅 ×𝐶
     (12) 

 

Image pixels with values more than 𝑝𝑡ℎ are marked 

as foreground pixels and are used for the 

segmentation process. Results of this process on 

different images can be observed from Fig. 4. 

3.2 Feature extraction 

All these images are passed through an 

augmented process of multidomain feature extraction, 

which assists in identification of Frequency, Entropy, 

and other patterns. The Frequency Patterns are 

estimated via Eq. (13), where Fourier Transforms are 

used for the evaluation process. 

 

𝐹𝑖 = ∑ 𝑥𝑗 × [𝑐𝑜𝑠 (2 × 𝑝𝑖 × 𝑖 ×
𝑗

𝑁
) − √−1 ×𝑁−1

𝑗=0

𝑠𝑖𝑛 (2 × 𝑝𝑖 × 𝑖 ×
𝑗

𝑁
)]               (13) 

 

where, N represents total number pixels, while x 

represents their pixel intensity levels. Then, the 
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Entropy components are estimated using Discrete 

Cosine Transform via Eq. (14), 

 

𝐹(𝐷𝐶𝑇𝑖) =
1

√2 × 𝑁𝑓

× 𝑥𝑖 ∑ 𝑥𝑗

𝑁𝑓

𝑗=1

× 𝑐𝑜𝑠 [
√−1 × (2 × 𝑖 + 1) × 𝜋

2 × 𝑁𝑓
] 

(14) 

 

In contrast, the Convolutional features are 

extracted by adding Leaky Rectilinear Unit (LReLU) 

based non-linearities to the segmented images via Eq. 

(15), 

 

𝐶𝑜𝑛𝑣(𝑜𝑢𝑡) = ∑ 𝑥(𝑖 − 𝑎) × 𝐿𝑅𝑒𝐿𝑈 (
𝑚 + 2𝑎

2
)

𝑚

2

𝑎=−
𝑚

2

 

(15) 

 

where, m, a are sizes for different window 

dimensions & stride dimensions, which are varied 

between 1x4 to 1x128 for extraction of high-density 

features. The LReLU is represented via Eq. (16) and 

is used to activate different feature sets. 

 

𝐿𝑅𝑒𝐿𝑈(𝑥) = 𝑙𝑎 × 𝑥, 𝑤ℎ𝑒𝑛 𝑥 < 0 , 𝑒𝑙𝑠𝑒 𝐿𝑅𝑒𝐿𝑈(𝑥)
= 𝑥 

(16) 

 

where, 𝑙𝑎  represents an Iterative leaky activation 

constant, which is used to retain only positive feature 

sets. Then the Gabor Features are extracted via Eq. 

(17), 

 

𝐺(𝑥, 𝑦)𝑠 = 𝑒
−𝑥`2+𝜕2∗𝑦′2

2∗∅2 × cos (2 ×
𝑝𝑖

𝜆
× 𝑥′)          (17) 

 

where, x, y is the pixel Index & Intensity level, while 

𝜕, ∅ & 𝜆  represents Angles & Wavelengths, which 

are used to extract multi angular features. These 

features are extended using Wavelet components, 

which assist in identification of Approximate & 

Detail coefficients via Eqs. (18) and (19), 

 

𝑤𝑖𝑎𝑝𝑝𝑟𝑜𝑥
=

𝑥𝑖+𝑥𝑖+1

2
               (18) 

 

𝑤𝑖𝑑𝑒𝑡𝑎𝑖𝑙
=

𝑥𝑖−𝑥𝑖+1

2
               (19) 

 

3.3 Feature selection using extra tree classifier 

Extra Trees Classifier, also known as Extremely 

Randomized Trees, is an ensemble learning method 

used for classification tasks. It is closely related to the 

Random Forest algorithm and belongs to the family 

of decision tree-based ensemble techniques. Extra 

Trees Classifier has some unique characteristics that 

distinguish it from traditional decision trees and even 

Random Forests. Extra Trees selects splits randomly. 

This high level of randomization helps to reduce 

overfitting and can sometimes lead to simpler, more 

interpretable trees. Extra Trees Classifier can provide 

feature importance scores, which indicate the 

contribution of each feature to the model's predictions. 

Training individual trees in an Extra Trees ensemble 

can be parallelized, making it a suitable choice for 

large datasets and multi-core processors. Overall, 

Extra Trees Classifier is a powerful ensemble 

learning method that can be effective in various 

classification tasks, particularly when you want to 

reduce overfitting and obtain reliable predictions. 

All these components are cascaded to form an 

Iterative Solar Panel Fault Feature Vector (ISPFFV), 

which are classified into different faults using a 

combination of k-Nearest Neighbors (kNN), Deep 

Forest (DF), Support Vector Machines (SVM), 

Logical Regression (LR), and Artificial Neural 

Networks (ANN) methods.  

Using these parameter values, the proposed 

model is used to classify the ISPFFV features 

individually, and their responses are fused via Eq. 

(25) as follows, 

 

𝑐(𝑜𝑢𝑡) = 𝐴(𝐷𝐹) × 𝑐(𝐷𝐹) + 𝐴(𝐴𝑁𝑁) × 𝑐(𝐴𝑁𝑁) +
𝐴(𝐿𝑅) × 𝑐(𝐿𝑅) + 𝐴(𝑆𝑉𝑀) × 𝑐(𝑆𝑉𝑀) +
𝐴(𝑘𝑁𝑁) × 𝑐(𝑘𝑁𝑁)               (24) 

 

where A & c are the testing accuracy & output class 

levels for different classifiers. The final output class 

(c(out)), is used to identify diode faults, dust shadows, 

multicell hotspots, PID effects, and single cell 

hotspots. Results of this classification were evaluated 

in terms of different efficiency metrics and compared 

with existing methods in the next section. 

4. Statistical analysis and comparison 

The proposed model uses a combination of novel 

methods for saliency maps, multidomain features, 

and ensemble classification operations to identify 

different solar panel faults. To identify performance 

of proposed model, it was evaluated on a manually 

collected dataset of visual & thermal solar panel 

images, which represented diode faults, dust shadows  
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Type of fault Thermal Image Visual Image 

Diode Fault 

  

Dust/Shadow 

Hotspot 

  

Single cell 

Hotspot 

  
Figure. 3 Sample thermal and visual images 

 

 
Table 1. Comparison of mean IoU values per fault with 

proposed saliency map segmentation 

 

hotspots, multicell hotspots, PID hotspots, and single 

cell hotspots. The dataset consists of nearly 3000 

samples, out of which 70% are used for training, 20% 

are used for validation, and 10% for testing 

operations. Some of the sample images are shown in 

Fig. 3. 

Quantitative analysis of segmentation using 

entropy driven saliency maps is done using 

Intersection over Union (IoU) as a parameter. 

 

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛 (𝐼𝑜𝑈) 

=
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
=

|𝐴∩𝐵|

|𝐴|∪|𝐵|
               (25) 

 

For fault detection, bounding boxes of all the 

ground truth and predicted images are compared and 

mean IoU values per fault for all images in the dataset 

are calculated. The resulted mean IoU values are 

compared with the work mentioned in [27] where 

authors have applied segmentation using channel 

thresholding and color thresholding on the same 

dataset of solar panel thermal images. Segmentation 

accuracy is calculated using IoU as a parameter. 

Comparison of these segmentation results with 

saliency map based segmentation are as shown in 

Table 1. The proposed saliency-based segmentation 

approach outperformed the color and channel-based 

segmentation. 

The comparison between Ground Truth and 

predicted images with bounding boxes is shown in 

Fig. 4. The pre-processed images are passed through 

segmentation process using saliency maps and binary 

image is obtained as show in (c). Using blob analysis, 

bounding box is plotted on segmented image (d). 

Column (e) shows ground truth bounding boxes. 

Combination of thermal and visual image has 

increased the accuracy of classification results. The 

performance of the multidomain analysis model is 

compared with existing machine learning models. 

Table 2 shows F1 score for different classifiers with 

thermal images, visual images, and combination of  

Fault 

types 
Mean IoU 

 

Channel based 

thresholding 

[27] 

Histogram 

based color 

thresholding 

[27] 

Proposed 

saliency 

approach 

Diode 0.31 0.34 0.8 

Dust 0.16 0.14 0.75 

Multi 0.3 0.31 0.85 

Single 0.43 0.53 0.87 

PID 0.26 0.31 0.8 
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Figure. 4 Fault detection using saliency maps 

Type  

of fault 

(a) 

Original Image (b) Segmented binary 

image (c) 

Predicted fault 

detection with saliency 

maps (d) 

Ground Truth (e) 

Diode 

Fault 

    

Dust/Sha

dow 

Hotspot 

    

Single cell 

Hotspot 

    

Multicell 

Hotspot 

    

PID 

hotspot 

    

 

 
Table 2. Classification results using machine learning 

with thermal and visual images 

Classifiers F1 Score 

 
Thermal 

image 

Visual 

Image 

Thermal 

+Visual 

image 

Random 

Forest 
0.59 0.21 0.61 

kNN 0.48 0.36 0.71 

SVM 0.73 0.32 0.79 

Proposed 

multimodal 

analysis 

model 

0.8 0.54 0.94 

 

 

thermal and visual images. Combination of thermal 

and visual images gave better F1 score of 94 % using 

multidomain analysis model compared to existing 

machine learning models. 

The dataset used in this research is not available 

as a public dataset. So, for comparison, we have taken 

the model concepts from the papers ASFF-CNN [18], 

YoLO [25], and CNN [26]. Using these model 

concepts, we have developed our own models as 

combination of ASFF and CNN, YoLov3 model and 

normal deep CNN model.  The features extracted 

from thermal and visual images are applied as input 

to these models. Then performance of proposed 

multidomain analysis model was compared with 

ASFF-CNN [18], YoLO [25], and CNN [26], which 

are recently proposed classification models, and 

showcase high performance levels. 

The performance of the model was evaluated in 

terms of Accuracy (A) and delay (d) via Eqs. (26)-

(29) as follows, 
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Figure. 5 Accuracy of classification for different samples 

 

 

 
Figure. 6 Delay needed for classification under different samples 

 

 

𝐴 =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
  (26) 

 

𝑑 =
1

𝑁
∑ 𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑𝑖

− 𝑡𝑠𝑡𝑎𝑟𝑡𝑖

𝑁
𝑖=1   (28) 

 

where, tp, fp, tn & fn are standard values for true & 

false rates, while t_completed & t_start are the 

timestamps for completing & starting the 

classification process for N samples. 

Accuracy of classification can be observed from 

Fig. 5 as follows. From the graph, it was observed 

that the proposed model showcased 4.5% better 

accuracy than ASFF-CNN [18], 8.5% better accuracy 

than YoLO [25], and 9.4% better accuracy than CNN 

[26], which makes it highly useful for a wide variety 

of real-time classification scenarios. This is due to the 

use of high-density features with highly efficient 

segmentation process, and augmented fusion of 

ensemble classification techniques. 
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The performance of the system was evaluated 

with delay as parameter for classification as shown 

in Fig. 6. 

Based on this evaluation and Fig. 6, it was 

observed that the proposed model showcased 4.9% 

faster performance than ASFF-CNN [18], 8.3% 

faster performance than YoLO [25], and 8.5% faster 

performance than CNN [26], which makes it highly 

useful for a wide variety of real-time high-speed 

classification scenarios. This is due to the use of 

simplistic variant feature extraction processes, that 

reduce feature redundancies during classification 

operations. Due to these enhancements, the proposed 

model was observed to be useful for a wide variety of 

solar panel fault classification applications. 

5. Conclusion and future scope 

In this paper, a design for a multidomain feature 

analysis model with novel saliency map 

segmentation for identifying solar panel faults is 

presented. The proposed model is compared by 

taking concepts from three models, namely ASFF-

CNN, YoLO, and CNN, in terms of accuracy, and 

delay, using exhaustive evaluations. Across all these 

evaluation metrics, the results unequivocally 

demonstrated that our proposed model exhibited 

superior performance. In terms of accuracy, proposed 

model was 4.5% more accurate than ASFF-CNN, 

8.5% more accurate than YoLO, and 9.4% more 

accurate than CNN. This enhancement is attributable 

to the use of high-density features in conjunction with 

a highly efficient segmentation procedure and 

enhanced fusion of ensemble classification 

techniques. 

Moreover, our model outperformed ASFF-CNN, 

YoLO, and CNN in terms of delay, achieving a 4.9% 

faster performance than ASFF-CNN, an 8.3% faster 

performance than YoLO, and an 8.5% faster 

performance than CNN. This enhanced speed is 

advantageous for real-time, high-speed classification 

scenarios and is accomplished with simple variant 

feature extraction processes that reduce redundant 

features during classification operations. Overall, the 

proposed model offers substantial advancements in 

the classification of solar panel faults. Its superior 

precision, accuracy, recall, and speed make it 

exceptionally useful for a variety of high-consistency 

and real-time classification scenarios. By utilizing 

efficient segmentation, high-density features, 

ensemble classification techniques, and variant 

feature sets, our model overcomes the limitations of 

existing models and provides a useful tool for solar 

panel fault identification. 

While our proposed model has demonstrated 

impressive performance in classifying solar panel 

faults, there are several avenues for future research 

and development. Obtaining a larger and more 

diverse dataset can aid in enhancing the model's 

generalizability and robustness. By incorporating 

data from diverse geographic locations, weather 

conditions, and solar panel types, the model can be 

trained to handle a wider variety of scenarios. A 

thorough investigation into the optimal 

hyperparameters of the model can result in additional 

performance enhancements. Integrating the proposed 

model with existing solar panel monitoring systems 

enables real-time fault detection and preventative 

maintenance. 
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