
Received: February 22, 2024. Revised: May 1, 2024. 299

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

Imputation of Missing Data Using Masked Denoising Autoencoder with L2-Norm

Regularization in Software Effort Estimation

Robert Marco1* Sharifah Sakinah Syed Ahmad2

1Department of Informatics, Universitas Amikom Yogyakarta, Yogyakarta, Indonesia

2Faculty of Information & Communication Technology, Universiti Teknikal Malaysia Melaka, Malaysia
*Corresponding author’s Email: robertmarco@amikom.ac.id

Abstract: A frequent problem in building initial software effort estimation (SEE) models is the existence of many

missing values in historical software engineering datasets. Due to human intervention, this is caused by frequent

damage to software project data. Loss of information and bias in data analysis due to missing data are serious

problems. This study proposes a method to estimate missing data using a masked-denoising autoencoder (Masked-

DAE) with L2-norm regularization, which can handle various types of data, missing patterns, proportions, and

distributions. In this study, Cocomo81 and ISBSG-IFPUG datasets from open-source repositories were used. This

experiment involved five missing data techniques, eight missing data rates (from 10% to 80%), and two missingness

mechanisms (MCAR: missing completely at random and MNAR: missing not at random). The results show that the

proposed Mask-DAE method has the best imputation performance in terms of imputation errors by outperforming

DAE, k-nearest neighbor imputation (kNNI), random forest (RF) imputation, multiple imputations by chained

equation (MICE), mean imputation and mode imputation. We find that the prediction error rate increases with the

rate of missing data. Furthermore, prediction errors generated by MCAR mechanisms are lower than those generated

by MNAR. Nevertheless, our method can reduce the model variance, which results in lower generalization error.

Keywords: Software effort estimation, Missing data imputation, Denoising autoencoder, Missingness mechanisms.

1. Introduction

The problem in building an initial software

effort estimation (SEE) model is that historical

software engineering data sets often contain large

amounts of missing values. This is because many

collected software projects are typically corrupted

due to human intervention [1]. In software

engineering, the loss of information and bias in data

analysis caused by missing data is a serious issue [2],

which can cause a decrease in the performance of

the algorithm used [3]. It often leads to errors in

training and model analysis and negatively impacts

the quality of the learning process, resulting in

biased inferences if neglected [2, 4].

In the meantime, understanding the mechanism

of missing data and the associated missing rates is

crucial for comprehending the impact of missing

data on a specific analysis or method that involves

handling missing data [5, 6]. On the other hand,

there are three approaches to solving problems with

missing data, including tolerance, deletion, and the

imputation technique [5, 7, 8].

The tolerance method is an embedded strategy

where the analysis is performed directly on a dataset

containing missing data [5, 8]. Despite its apparent

ease of use, the tolerance method is not a

dependable approach and, at times, produces a less

accurate estimate than the deletion procedure [5, 6,

8]. In contrast, practitioners find delete techniques

most enticing due to their simplicity. However, they

have several disadvantages after deleting valuable

data, including a loss of precision and result bias [8].

Meanwhile, Huang et al. (2017) stated that listwise

deletion is becoming less common because it

reduces data completeness, making it less suitable

for applying derived models [9].

Received: February 22, 2024. Revised: May 1, 2024. 300

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

The missing data imputation technique replaces

the missing value with an appropriate estimate by

utilizing the available data and connecting the

missing data, followed by the application of the

standard complete data method for the filled data [5,

6, 8]. This makes the imputation method preferred

and attracts the most research attention from

academia and industry [2, 10]. Nevertheless, it's

crucial to customize the imputation method

according to the specific missingness mechanism

present, as an inappropriate selection can introduce

bias in performance [11].

Several studies on SEE have offered various

approaches to imputing missing data. These

methods range from simply substituting missing

values with column averages to more complicated

imputations based on several different machine

learning models and statistical techniques [2], for

example, mean imputation [12], hot-deck imputation

[13], random forest (RF) imputation [14, 15], k-

nearest neighbor imputation (kNNI)[12],[16-18],

and multiple imputations by chained equation

(MICE) [15, 19]. Implicitly assumes that the

imputation model fails to address errors or

ambiguities in the imputation process [2] and

exhibits an increasingly constrained capacity to

capture highly nonlinear relationships [10]. In

addition, several imputation models cannot handle

mixed data types [20] and random missing data

patterns [2].

Several generative methods rooted in deep

learning attempt to address this issue by modeling

the joint distribution of all features of the missing

data simultaneously [21]. Deep learning techniques

are a popular topic, but their application for

imputation purposes has received less attention [11].

Denoising autoencoder (DAE) is an unsupervised

learning method used for unlabeled data to restore

missing data from noisy input [22]. Unfortunately,

the generative approach suffers from the problem of

overfitting when working on small data sets [23].

Meanwhile, this approach can be utilized to reduce

process uncertainty and the influence of corruption

[24] and can deal with more complicated data sets

(higher number of samples and dimensions) [11].

Because of its ability to learn the representation of

noisy data, DAE is of great interest in many fields.

This study aims to devise a DAE-based deep

learning approach capable of autonomously

acquiring latent representations and connections

among intricate variables. The DAE was developed

to generate a clear output from a noisy input.

However, missing data may rely on unobservable

latent representations within the input dataset space.

As a result, the DAE can map our input data into a

higher-dimensional subspace, enabling us to retrieve

the missing information subsequently.

The subsequent sections of this paper are

structured as follows: Section 2 reviews relevant

research. Section 3 presents the methods/approach

adopted in this paper. Section 4 presents our model

and elucidates the experimental configuration.

Section 5 presents the empirical assessment and

presents the findings. Finally, Section 6 concludes

with conclusions and offers recommendations for

future work.

2. Related work

The issue in building an initial estimation model

is that historical software engineering data sets often

contain large amounts of missing values. The loss of

information and bias in data analysis caused by

missing data is a severe issue in software

engineering [2, 3], which can cause a decrease in the

performance of the algorithm used [3, 25]. If

neglected, it often leads to errors in training and

model analysis and negatively impacts the quality of

the learning process, leading to biased inferences [2,

4, 25]. Thus, many approaches have been proposed

to handle this problem.

For instance, they proposed a new technique,

imputing missing data, based on the multi-spike

neural network (IMD-SNN) learning method. This

study uses the MonitorAr dataset with three

attributes: humidity, temperature, and atmospheric

pressure. The results show that IMD-SNN provides

high prediction accuracy compared to I-MLP

(Imputation-based multilayer perceptron) and I-kNN

for three attributes with missing percentages (5%,

10%, 25%, and 50%). However, SNN requires less

time for the training and testing process.

Unfortunately, neural networks may struggle to

capture underlying patterns in data effectively [26].

Ou et al. (2023) proposed a missing time series

data interpolation method based on random forest

and generative adversarial interpolation network

(RF-GAIN). Use of public datasets from Western

Reserve University in the United States. The results

show that the RMSE of interpolation results based

on RF-GAIN in cases of single-segment and multi-

segment missing data is only 0.0157 (3%), 0.0386

(10%), and 0.0527 (20%) better than the random

forest algorithm, generative adversarial interpolation

network, and k-nearest neighbor. The advantages of

the RF-GAIN algorithm are combined so that the

interpolation results are close to the actual value.

Unfortunately, this method has its computational

complexity and is expensive [27].

Received: February 22, 2024. Revised: May 1, 2024. 301

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

Meanwhile, the study of Li et al. (2024)

comprehensively compared the performance of 8

imputation methods (Simple imputation, regression

imputation, expectation-maximization (EM), MICE,

kNN, clustering imputation, random forest (RF), and

decision tree (CART)) in each scenario in the study

real-world cohort in Xinjiang, China. The results of

the study, using a missing rate of 20%, showed that

the most effective imputation methods were

achieved by kNN (MAE: 0.2032, RMSE: 0.7438,

AUC: 0.730, CI: 0.719-0.741) and RF (MAE:

0.3944, RMSE: 1.4866, AUC: 0.777, CI: 0.769-

0.785). EM, CART, and MICE achieved the next

best performance, while simple, regression and

cluster imputation obtained the worst. kNN and RF

showed superior performance and were more adept

at imputing missing data in the predictive modeling

of Cohort study datasets [28].

Psychogyios et al. (2023) propose a new missing

value imputation method based on denoising

autoencoders (DAE) with kNN for pre-imputation

tasks. We used four Electronic Health Records

(EHR) data sets, and the missing proportions were

10%, 20%, 30%, 40%, and 50% for the three

missingness mechanisms. Our proposed deep

learning approach performs better than baseline

standards (such as Simple, kNN, RF, MICE, and

GAIN), resulting in better imputation and predictive

results. Unfortunately, this method is complex in

managing missing data. This approach requires

complex preprocessing steps and is computationally

intensive to produce a correct data representation

[29].

A denoising autoencoder (DAE) based on time

series data representation was proposed by Huamin

et al. (2020). This DAE was created by

reconstructing the data with the help of a recurrence

plot (RP) and a gramian angular field (GAF). Based

on the experimental results using MSE values,

assign values to the dataset of ECG200 (GAF:

0.0048; RP: 0.0037), Face all (GAF: 0.0134; RP:

0.0221), Swedish leaf (GAF: 0.0098; RP: 0.0092),

OSU leaf (GAF: 0.0077; RP:0.0121), Wafer

(GAF:0.0240; RP:0.0069), 50 words (GAF:0.0101;

RP:0.0108), and Coffee were given values by the

experimental results utilizing (GAF:0.0336;

RP:0.0234). On the other hand, this approach is only

helpful for univariate time series. It only applies to

more complex multivariate time series [30].

Abnane et al. (2023) proposed and built 11

heterogeneous ensemble imputation techniques,

whose members are from the following single

imputation techniques: kNN, expectation

maximization, support vector regression (SVR), and

decision trees (DTs). Evaluated over six SDEE

datasets from the PROMISE repository. Overall,

SVR and DT imputations are the best techniques for

constructing ensemble imputations. The results

show that ensemble imputation significantly

improves the performance of SEE techniques.

However, no particular ensemble imputer provides

the best results in all contexts [31].

Kim and Chung (2020) proposed a multi-modal

stacked denoising autoencoder (MMSDAE) that

aims to estimate missing data during the data

collection and processing stages of the Korean

National Health Nutrition Examination Survey

(KNHNES). Our method yields higher accuracy at a

missing rate of 5%-30% than other conventional

methods (such as kNNI, singular value

decomposition, and Mean). Unfortunately, at a

missing rate of 25%, our method yielded a value of

0.9217. At the same time, the single modal

denoising autoencoder (DAE) had an accuracy of

0.932, with a slight difference of around 0.01, which

is within the limits allowed in data analysis. On the

other hand, our MMSDAE model saves additional

time when processing large amounts of data [32].

In the meantime, Tihon et al. (2021) proposed

the DAE with mask attention (DAEMA) and

released it in the UCI repository. This method

outperforms other methods (such as DAE, MIDA,

MissForest, Mean, and AimNet) currently used on

multiple missing data samples under MCAR and

MNAR. Unfortunately, when working with small

datasets, the performance of these methods is

Table 1. List of notations

Notations Description

𝑥̂ Input that has been corrupted

𝑐(𝑥̂) Hidden representation

𝑊′ The weight matrix that links the input and

hidden layers

𝑏′ The bias vector of nodes that are part of

the hidden layer

𝑠𝑖𝑔. Logistics activate function

𝑧 Reconstructed vectors

𝑐′ The bias vector of nodes belonging to the

output layer

𝑥 Original data

𝜃 Model parameter

∅ Unidentified parameters

𝑋𝑛 Missing values

𝑋𝑜 Observed values

𝑥𝑖
𝑜 ; 𝑥𝑖

𝑛 The observed and missing features

𝑓(∙) User-specified activation function

𝑔(∙) User-defined activation function

𝐿(∙) Loss function

𝐷 Dataset

𝑀 Missing indicator matrix

𝑋𝑛 Input variable dataset

𝑦𝑛 Target variable dataset

Received: February 22, 2024. Revised: May 1, 2024. 302

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

relatively poor. Thus, DAEMA requires adequate

data to predict the data distribution [21].

According to the author, this study differs from

other research. Most previous research addresses

missing data in the classification field using

machine learning or deep learning approaches.

Meanwhile, our study addresses missing data in the

field of regression with a rate of missing data from

10% to 80%; two missingness mechanisms and a

small data set are applied. An improved deep

learning approach using masked-denoising

autoencoder (Masked-DAE) with L2-norm

regularization.

3. Background knowledge

In this section, we have discussed the

introduction and studies related to the formulation of

the problem and explained the list of notations used

in this work. A list of notations is presented in Table

1.

3.1 Denoising autoencoder

The denoising autoencoder (DAE) follows a

process similar to the autoencoder, with the

distinction of introducing noise to the input data [33].

Vincent et al. (2010) designed the DAE to eliminate

noise from data. This noise is characterized by high

dimensions in hidden layers and stochastic input

corruption [34]. The DAE reconstruction capability

estimates the data distribution implicitly as an

asymptotic distribution of a Markov chain that

alternates between corruption and denoising [35], as

shown in Figure 1.

Encoding is performed on the corrupted inputs,

introducing noise to the original input data via

random mapping [33].

𝑐(𝑥) = 𝑠𝑖𝑔(𝑊′𝑥̂ + 𝑏′) (1)

Where 𝑥 represents the input that has been

corrupted through stochastic mapping, 𝑐(𝑥) denotes

the hidden representation, 𝑠𝑖𝑔. signifies the logistics

activate function, 𝑊′ represents the weight matrix

that links the input and hidden layers, and

𝑏′ indicates the bias vector of nodes that are part of

the hidden layer.

The decoding process involves reverse mapping

the 𝑐(𝑥) back into the original feature space.

𝑧 = 𝑠𝑖𝑔(𝑊′𝑐(𝑥) + 𝑐′) (2)

The reconstructed vectors are denoted as 𝑧, the

weight matrix between the hidden layer and output

Figure. 1 Denoising Autoencoder Architecture

layer is denoted as 𝑊′, and the bias vector of nodes

belonging to the output layer is denoted as 𝑐′.

In order to acquire the optimal DAE model, the

reconstruction error can be minimized as follows:

𝜃 = ‖𝑥 − 𝑧 ‖2
 (3)

Where 𝑥 represents the original data, 𝑧

represents the reconstructed vectors, and 𝜃 refers to

the encoder and decoder parameters, encompassing

weight matrices and bias vectors.

3.2 Missingness mechanisms

Many methods for estimating missing values

have been proposed in recent decades [11]. Missing

data are indicated by null, NaN, n/a, or a blank

space, which means free space for non-zero data

[32]. Most missing data occur irregularly and

differently, and deleting observations can lead to

loss of information [6]. Comprehending the impact

of missing data on a specific analysis or method

entails understanding the mechanism behind the

missing data [5, 6]. Missing data can be categorized

into three groups: missing completely at random

(MCAR) denotes a scenario where the absence of

data is uncorrelated with all features and happens

randomly. Missing at random (MAR) characterizes

a scenario where the absence of data is not linked to

the missing features but rather to other features.

Missing not at random (MNAR) transpires when the

lack of data is associated with the missing features

and is not random [6]. Unfortunately, MNAR is the

most difficult because it requires modeling the

missing data mechanism [36].

This mechanism can be generated in various

methods, and the literature provides numerous

examples [37]. Huang et al. (2015) examined the

mechanisms of missingness, making assumptions

regarding the rates of missing data (10%, 20%, and

30%) across three mechanisms: MCAR, MAR, and

non-ignorable (NI) [12]. Abnane et al. (2018)

conducted 1134 experiments using seven datasets,

employing kNN imputation methods with Euclidean

Received: February 22, 2024. Revised: May 1, 2024. 303

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

and Manhattan distances. They investigated three

types of missingness mechanisms (MCAR, MAR,

and NI) across missing data rates ranging from 10%

to 90% [3, 5, 38]. Abnane et al. (2021) investigated

how the ensemble imputation technique affects the

accuracy of the SEE method as measured by the

standard accuracy criteria. They did this by

comparing it to the single imputation technique. The

findings indicate that the accuracy of the SEE

method significantly improves when employing

heterogeneous ensemble-based imputation as

opposed to single imputation [39]. In the meantime,

Jing et al. (2016) used a semi-supervised regression

technique to impute the missing effort labels (10%,

20%, and 40%) without investigating the effect of

the missingness mechanism [13].

3.3 Mask based missingness

Collier et al. (2020) introduces a latent variable

model that perceives the observed data as a result of

a corruption process affected by a binary

missingness mask. This methodology can be applied

to data sets with both ignorable and non-ignorable

missingness. However, the choice of model

architecture should be customized to suit the

specific underlying missingness mechanism [36].

Let the data be decomposed into components

such that 𝑋 = {𝑋𝑜, 𝑋𝑛} , with 𝑋𝑜 represents the

observed values and 𝑋𝑛 is the missing values. For

each observation vector 𝑥𝑖
𝑜, 𝑥𝑖

𝑛 denote the observed

and missing features of 𝑥𝑖 , respectively.

Additionally, consider 𝑅 as a matrix of the same

dimensions as 𝑋 , where the entries 𝑟𝑖𝑗 = 𝐼 (𝑥𝑖𝑗 is

observed) for the ith observation and jth feature,

with 𝐼(.) representing the indicator function. Thus,

𝑅 serves as the "mask" matrix corresponding to 𝑋,

such that 𝑥𝑖
𝑜 = {𝑥𝑖𝑗: 𝑟𝑖𝑗 = 1} and 𝑥𝑖

𝑛 = {𝑥𝑖𝑗: 𝑟𝑖𝑗 = 1}

for all 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑝 [40].

Missingness was classified into three major

categories, or mechanisms, in the research by Little

and Rubin (2002). These MCAR, MAR, and MNAR

satisfy the following relations: (1) MCAR:

𝑝(𝑥𝑖 , 𝑧𝑖, ∅) = 𝑝(𝑟𝑖|∅) , (2) MAR: 𝑝(𝑥𝑖 , 𝑧𝑖, ∅) =
𝑝(𝑥𝑖

𝑜|∅) , and (3) MNAR: 𝑝(𝑥𝑖, 𝑧𝑖 , ∅) =
𝑝(𝑟𝑖|𝑥𝑖

𝑜, 𝑥𝑖
𝑛, 𝑧𝑖, ∅). In this context , ∅ represents the

unidentified parameters associated with the

missingness model 𝑝(𝑥𝑖, 𝑧𝑖 , ∅) , where 𝑟1 =
{𝑟𝑖1, … , 𝑟𝑖𝑝} . When considering the missingness

mask 𝑅 , the marginal log-likelihood can be

expressed as:

𝑙𝑜𝑔𝑝𝜓,𝜙(𝑋𝑜, 𝑅) =

𝑙𝑜𝑔 ∬ 𝑝𝜓,𝜙(𝑋𝑜, 𝑋𝑛, 𝑍, 𝑅)𝑑𝑋𝑛𝑑𝑍 (4)

4. Experiment design

4.1 Problem formulation

Our method is an easy way to generate data

imputation based on a project 𝐷 in the context of

SEE. Consider a training set of N software projects.

Then, we can denote Equation (5).

𝐷 = {(𝑋𝑛, 𝑦𝑛)}𝑛=1
𝑁 (5)

Consider a typical unsupervised learning setting

with the training set according to Equation (5). 𝑋 ∈
𝑅𝑛×𝑑 is a data matrix arranged with 𝑛 (input, target)

pairs 𝐷𝑛 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)} and 𝑑

includes device features software development such

as the type of software development, team expertise

and functional measures consisting of numerical and

categorical data types, then 𝑥𝑖 =
(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑗, … , 𝑥𝑖𝑑) ∈ 𝑅𝑑. Meanwhile, 𝑦 ∈ 𝑅1 is

the actual effort to develop this software. In this

work, categorical data is converted to numerical data

using ordinal encoding to keep losses and metrics

simple so that a data set contains only numeric

features.

Consider an i.i.d (independent and identically

distributed) sample of the unknown distribution

𝑞(𝑋, 𝑦) with corresponding marginals 𝑞(𝑋) and

𝑞(𝑦) . Express the 𝑞0(𝑋, 𝑦) and 𝑞0(𝑋) empirical

distributions determined by the sample in 𝐷𝑛. 𝑋 is a

random vector with d-dimensions, and its 𝑅𝑑 ordinal

features typically have discrete ordinal values such

as low, normal, high, very high, and extra high for

programmers capability. On the other hand, its

numerical features typically have continuous values

such as lines of code. 𝑋 can also be represented as

[0,1]𝑑 (categorical features, such as the networked,

mainframe, personal computer, mini computer, and

multi-platform).

On the other hand, it uses a complete dataset of

two public datasets in the context of SEE. Thus, our

data set will be assigned to 𝑋 using the MCAR and

MNAR mechanism [41], meaning the probability

that a missing value does not depend on any value in

the data set. It can be defined in the missing rates

matrix, given the dataset 𝑋 the missing indicator

matrix is denoted by 𝑀 ∈ (0,1)𝑛×𝑑 for 𝑀 =
{𝑚1, 𝑚2, … , 𝑚𝑖} to show the missing value in 𝑋 ,

where the ith vector 𝑚𝑖 = {𝑚1𝑗, 𝑚2𝑗, … , 𝑚𝑖𝑗}

corresponds to the observation 𝑥𝑖𝑗 . In such a way

that, 𝑥𝑖𝑗 missing if and only if 𝑚𝑖𝑗 = 0, otherwise if

not missing 𝑚𝑖𝑗 = 1. State that 𝐷∗ = (𝑋𝑛
∗ , 𝑦𝑛), 𝑋𝑛

∗ ∈

𝑅𝑑 is a basic truth dataset with no missing data.

Received: February 22, 2024. Revised: May 1, 2024. 304

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

The use of dataset 𝐷 was accomplished by

establishing the suitable missing rates matrix 𝑀

(10% to 80%). As a result, the imputation function

can be defined in accordance with the equation:

𝑓: 𝑅𝑑 × (0,1)𝑑 → 𝑅𝑑 = (𝑥, 𝑚) → 𝑓′(𝑥, 𝑚) (6)

Implementing this function (𝑓′) is to find the

best function by minimizing the reconstruction

metric.

4.2 Inducing missingness

Initially, it introduces missingness in two

distinct ways for each data set. Generally, our goal

for all scenarios is to generate a missing proportion

between 10% and 80% by altering the tuning

probabilities by the below-described stages:

− Add a uniform vector 𝑣 with 𝑛 observations

and values ranging between 0 and 1 into the

dataset, where 𝑛 represents the total number of

observations in the dataset.

− MCAR with a uniform distribution, ensure that

all attributes contain missing values, where

𝑣𝑖 ≤ 𝑡, 𝑖 ∈ 1: 𝑛, 𝑡 represents the missing

threshold, This threshold varies from 10% to

80%.

− MNAR with a uniform distribution, take a

random sample of two attributes from the

dataset, 𝑥1 and 𝑥2, then calculate the median of

each of those attributes, 𝑚1 and 𝑚2 . Set all

attributes to be missing values where 𝑣𝑖 ≤
𝑡, 𝑖 ∈ 1: 𝑛 and (𝑥1 ≤ 𝑚1 𝑜𝑟 𝑥2 ≥ 𝑚2).

4.3 Model ratining scheme

The experiment started by collecting two

publicly available real-world data sets (Cocomo81

and ISBSG-IFPUG datasets) to analyze the effects

of missingness mechanisms and inducing

missingness on imputation methods. All data sets in

this experiment contain complete datasets (without

missing values). Because the data set includes a

mixture of numeric and categorical, it uses the

ordinal encoding technique to convert categorical

data to numerical to keep losses and metrics simple.

On the other hand, min-max standardization can also

be applied to the input data for faster convergence.

As a result, normalization ensures that all inputs are

contained within a range that is comparable to one

another [42].

Several of the initial datasets underwent

preprocessing to eliminate instances containing only

a small number of missing values. Subsequently, we

generated missing data by introducing missing

values at eight distinct levels (ranging from 10% to

80% dataset missing rates), adhering to both MCAR

and MNAR mechanism. This was achieved using a

state-of-the-art generation method employed in our

experiments.

In this study, missing 𝑥𝑖𝑗 values in the dataset

will be represented as "NaN". Additionally, the

matrix 𝑋 ∈ 𝑅𝑛×𝑑 is utilized to determine whether

the value in 𝑥𝑖𝑗 is missing. X components can be

described as:

𝑋 = {
0 𝑥𝑖𝑗 = 𝑁𝑎𝑁

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

Assume dataset 𝑋 is represented by an 𝑛 × 𝑑

matrix, where 𝑖 = 1, … , 𝑛 as a pattern and 𝑗 =
1, … , 𝑑 as attributes. The elements of 𝑋 are

represents by 𝑥𝑖𝑗 , each individual feature in 𝑋 is

represents by 𝑥𝑗 and each pattern is referred to as

𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑗, … , 𝑥𝑖𝑑) . It uses the

multivariate MCAR and MNAR configuration.

Where MCAR and MNAR select all attributes with

missing values, 𝑥𝑖𝑗 in the dataset will be missing

until the desired rate of between 10% and 80% is

reached.

In this section, the framework is the DAE-based

missing value imputation method. Assume 𝑥𝑖𝑗 is a

basic truth. That is, there is no missing value in 𝑥𝑖𝑗.

Then, the missing value is denoted by 𝑥𝑖𝑗. Before to

data entry, the DAE randomly selects a value from

the original dataset and transforms it to 0. In neural

network training, missing values are commonly

represented as 0. When missing data, the noise is

computed as 0 and returned to the original data.

Consequently, a value of 0 is inserted for missing

data, which is then replaced by a non-zero predicted

value obtained through a trained neural network. To

enhance the robustness of the learned model and

prevent overfitting, the DAE distorts the original

input 𝑥 to 𝑥 by introducing additional slight noise

(isotropic Gaussian noise) [10].

The encoder mapped the corrupted input 𝑥 to the

h-dimensional of the hidden representation

(embedding) 𝑦 = 𝑓(𝑊𝑥 + 𝑏) . Where 𝑓(∙) is the

user-specified activation function. 𝑊 is the coding

of the weight matrix 𝑑 ∗ ℎ, while 𝑏 is the bias vector

for coding ℎ . Finally, the 𝑦 insertion result is

remapped to reconstruct 𝑥 original input via the

decoder. The transformation function is similar to

𝑧 = 𝑔(𝑊′𝑦 + 𝑏′) , where 𝑔(∙) is a user-defined

activation function.

The primary goal of the DAE is to minimize the

reconstruction error between the initial input 𝑥 and

Received: February 22, 2024. Revised: May 1, 2024. 305

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

Figure. 2 Proposed Masked DAE L2-norm regularization

model

the reconstructed output 𝑧 → 𝑎𝑟𝑔 𝑚𝑖𝑛𝜃𝐿(𝑥, 𝑧),

where 𝜃 = {𝑊, 𝑊′, 𝑏, 𝑏′} represents the

optimization parameters, and 𝐿(∙) denotes a loss

function used to quantify the discrepancy between

the input 𝑥 and 𝑧 . It's worth mentioning that the

output 𝑧 generated by the DAE is a deterministic

outcome of the corrupted input 𝑥, not the original

input 𝑥 . The optimization of parameters aims to

ensure that if the embedding 𝑦 effectively captures

the crucial features of the original input 𝑥 from its

corrupted version 𝑥, it enables the reconstruction 𝑧

of the original input 𝑥.

The proposed framework of the model can be

seen in Figure 1.

4.4 Hyperparameter setting

The proposed Masked-DAE model,

incorporating L2-norm regularization, requires a

tailored set of hyperparameters to effectively

address the specific problem, adjusting according to

the extent of corruption within the dataset. To

enhance the generalization performance of the deep

neural network (DNN), the embedding dimension of

the hidden layer is set to 128 for all training

benchmarks, ensuring a comprehensive

representation of relevant datasets. As DNNs are

proficient in feature extraction, the number of

hidden units is gradually reduced to mitigate

dimensionality issues. Training is conducted for 100

iterations (epochs) with an early stop strategy to

monitor reconstruction losses over known elements.

Given the limited dataset in our study, L2-norm

regularization parameters are set to 1×10−4,

accompanied by a dropout probability of 0.5 to

prevent overfitting. However, excessive L2

regularization may lead to overweighting and

suboptimal fitting. Each autoencoder optimization

phase involves training the simple 3-layer feed-

forward network 10 times. Using the Adam

optimizer in TensorFlow, the default learning rate

for both networks is set to 1×10−3 for the DAE.

Rectified linear unit (ReLU) activation functions are

utilized in the hidden layers to address the issue of

vanishing gradients associated with sigmoid

functions [43, 44]. Additionally, random Gaussian

noise of 0.2 is added at each time step of the training

data progression to mitigate noise-related challenges

throughout the training process [45]. Mean squared

error (MSE) loss was used for each internal

pretraining autoencoder's output layer.

This study has compared six advanced

techniques, including DAE [2], MICE [46], RF

imputation [14], kNNI [5], mean imputation, and

mode imputation, to validate our methodology.

kNNI connects incomplete patterns according to the

value of kNN [11, 47]. For kNNI, consider

Euclidean distances and a set of nearest neighbors

[11]. The kNNI parameter is set as k=5 due to low

imputation error within an acceptable timeframe and

being able to reconstruct the complete data set at

once [48].

MICE, a multiple imputation method, creates

separate conditional models for each missing data

item [49]. The number of iterations for each

imputation is established as two prominent

hyperparameters in MICE. These parameters are set

according to the convergence criterion of the model

parameters. RF imputation mainly targets repair

datasets. RF imputation uses a maximum of ten

iterations (n=10) and 100 estimators with no leaf-

node limitations. For the RF imputation approach,

the number of iterations and trees utilized in the

ensemble are specified [50]. MICE and RF

imputation have the same maximum number of

iterations.

5. Result and discussion

5.1 Convergence of model loss analysis

The simulation is carried out on previously

processed data with a batch size of 128. Figure 3

illustrates the Masked-DAE learning process based

on training and validation losses with the best

configuration of the model. It can be seen that the

loss values converge rapidly within 100 iterations. A

gradual increase in the accuracy of the training and

Received: February 22, 2024. Revised: May 1, 2024. 306

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

(a) (b)

Figure. 3 Validation Loss During Training of Masked DAE L2-Norm Regulization Models: (a) Cocomo81 dataset and

(b) IFPUG dataset

(a)

(b)

Figure. 4 Scatterplot of Dataset Showing Outliers: (a) The MCAR (left) and MNAR (right) for Cocomo81 data and

(b) The MCAR (left) and MNAR (right) for IFPUG data

validation data is depicted in the first 10-20 epochs.

There is a rapid decrease in the training and

validation data loss, and a constant curve is

observed. This shows the smooth learning process of

the Masked-DAE model, and there will be no

overfitting until the 100th epoch. The Masked-DAE

model performs best and reduces the training and

validation losses to a close of 0. This indicates a

gradual convergence of training and validation

losses, indicating that the time complexity of

Masked-DAE is very low. The optimal global

solution can be obtained when the resulting sample

distribution is the same as the actual data

distribution. This confirms that our model does not

“overfit” the entire data set.

This discovery suggests that the Masked-DAE

model effectively minimizes the expected loss

across the empirical distribution of observed data

and a subset of previously observed corrupted data,

thereby mitigating potential biases.

Received: February 22, 2024. Revised: May 1, 2024. 307

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

Using an autoencoder learning approach that is

unmodified during fine-tuning will result in high

processing costs and decreased learning efficiency

due to the large number of parameters [32].

Consequently, customization necessitates a

computationally efficient strategy. In this instance,

the training data must be reconfigured depending on

the workload. When constructing the autoencoder

using dropout techniques, numerous parameters are

considered to get superior outcomes over non-

dropout procedures. Encoder-decoders can learn the

regression data pattern more quickly and produce

better performance in preventing overfitting, which

will be observed if the NN is deeper when the

dropout strategy is applied.

5.2 Outlier detection evaluation

See the Figure 4, the distribution of outliers in

the dataset using a scatterplot. Our method performs

better in detecting outliers in the missingness

mechanism of MCAR than MNAR.

At least one variable in each data set exhibited

outliers, consistent with earlier research on this topic,

which found that outliers are a regular occurrence in

empirical software engineering datasets [51]. In

particular, there are outliers in the distribution of

effort values for data sets. However, there are only a

small number of outliers in our imputed data, as

slight deviations may not represent a significant

assumption violation.

5.3 Comparison with existing methods

Our study involved a phase in which missing

values were intentionally created, followed by

imputation. The results are categorized based on

metrics such as mean absolute error (MAE), root

mean square error (RMSE), and two missingness

mechanisms, MCAR and MNAR. The configuration

type is uniform, and the missing rate (MR) ranges

from 10% to 80%. Table 2 illustrates the average

outcomes for all datasets utilized in this analysis. As

anticipated, an increase in the missing rate correlates

with a decline in imputation quality (as indicated by

MAE and RMSE). The method employed by the

researcher is evaluated by assessing the point

prediction performance using MAE and RMSE,

with the best values highlighted in bold. In contrast,

the poorer values are indicated in italics.

Table 2 on the Cocomo81 dataset, it can be

explained that our Masked-DAE method has the

lowest MAE and RMSE values (presented

sequentially), which shows that it is the method that

has the best performance on the MCAR mechanism

of 3.306; 48.385 (MR 10%) and MNAR mechanism

2.724; 30.274 (MR 20%). Meanwhile, RF in the

MNAR mechanism is 0.686; 10.648 (MR 10%), and

in the MCAR mechanism, 5.303; 64.881 (20%). On

the other hand, at MR (30%), the Mode imputation

has the best performance in all mechanisms. At MR

70%, our Masked-DAE method performs best on the

MNAR mechanism of 24.675; 214.988, while the

Modus imputation on the MCAR mechanism was

22.561; 238.603. In contrast to MR 40%, 50%, 60%,

and 80%, our Masked-DAE method performs best in

all mechanisms. kNNI has the worst performance at

MR 80%. In contrast, Mode imputation performs

poorly at MR 10%, while Mean imputation performs

poorly at MR 20%, 40%, and 50%. Meanwhile,

MICE at MR is 10%, 20%, 30%, 70%, and 80%.

Finally, RF was worst at MR at 30%, 50%, 60%,

70%, and 80%.

The IFPUG dataset shows that MR 10%, 20%,

40%, 50%, 60%, and 70% show that our Masked-

DAE method performs best (for MAE and RMSE

values) on the MCAR and MNAR mechanisms.

Meanwhile, at MR 30%, the best performance of our

Masked-DAE method is on the MNAR mechanism

with an RMSE value of 211.665 and RF on the

MCAR mechanism of 186.406. Meanwhile, the

baseline model DAE performed well at MR 30%

with MAE values of 22.597 (MCAR) and 19.507

(MNAR). On the other hand, at MR 80%, the

method we propose has the best performance on

MNAR with an MAE value of 161.195 and a mean

RMSE value on MNAR of 741.625. On the other

hand, kNNI has the best performance at MR 80% in

the MCAR mechanism with a value of 145.383;

815.389. Considering the MCAR and MNAR

mechanisms, our Masked-DAE is the best method in

almost all scenarios. kNNI is also the best approach

at the highest MR of 80%, although it has the worst

performance at MRs of 10%, 20%, and 70%. In

contrast, Mode imputation performs poorly at MR

50%, 60%, 70%, and 80%, while Mean imputation

performs poorly at MR 40% and MICE at MR 30%

and 60%. Finally, the RF is worst at MR 50% and

80%.

Table 2 summarizes the imputation performance

of all methods compared across diverse datasets

with various missing patterns. The objective of the

imputation approach is to accurately recover missing

data, ranging from minor to severe corruption.

Therefore, this study anticipates that the erroneous

distribution will align closely with the actual

distribution after employing this strategy. The

outcomes obtained from the proposed model

demonstrate superior point prediction performance

compared to those from the model discussed in the

related work section. Specifically, our method

Received: February 22, 2024. Revised: May 1, 2024. 308

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

Table 2. The Comparison of Missing Data Imputation Methods based on MAE and RMSE Values

MR Methods

Cocomo81 dataset IFPUG dataset

MAE RMSE MAE RMSE

MCAR MNAR MCAR MNAR MCAR MNAR MCAR MNAR

10% Proposed 3.306 2.404 48.385 24.270 0.796 1.520 9.101 19.056

DAE 5.890 3.684 52.026 53.627 4.673 4.151 11.445 35.199

kNNI 3.445 1.987 55.820 25.231 60.155 32.317 744.333 556.344

MICE 5.311 9.189 67.972 145.959 4.975 2.293 93.353 40.036

RF 5.644 0.686 144.833 10.648 20.753 31.598 249.505 368.768

Mean 5.187 5.519 62.723 70.322 32.210 20.257 353.618 220.897

Mode 11.730 2.010 216.394 37.977 45.107 13.969 456.142 193.937

20% Proposed 6.316 2.724 75.991 30.274 5.739 5.540 65.729 51.976

DAE 7.271 4.701 85.636 80.038 22.136 9.474 93.956 59.663

kNNI 6.646 3.365 118.592 41.158 47.472 33.916 586.159 418.784

MICE 15.771 17.442 308.598 192.509 37.124 42.840 398.142 369.287

RF 5.303 10.685 64.881 224.990 23.815 60.321 207.756 728.972

Mean 16.898 10.034 199.959 182.011 44.996 35.466 636.375 283.311

Mode 13.750 15.223 54.045 352.547 18.443 69.793 157.387 844.081

30% Proposed 8.678 11.834 72.741 98.392 24.676 26.392 202.184 211.665

DAE 13.367 13.677 79.842 84.197 22.597 19.507 226.120 259.782

kNNI 15.473 11.538 348.12 212.095 48.105 39.078 395.322 255.661

MICE 10.419 31.361 147.685 332.220 88.157 67.967 854.851 593.036

RF 24.300 18.599 223.360 261.175 22.946 54.685 186.406 403.866

Mean 11.211 20.886 96.467 267.619 76.640 103.846 681.657 857.599

Mode 5.202 11.261 57.370 213.097 58.658 68.636 508.257 631.472

40% Proposed 10.617 12.660 143.815 98.800 52.143 29.525 398.964 219.776

DAE 21.515 19.447 143.362 143.509 62.720 52.004 310.034 255.163

kNNI 22.567 23.829 318.633 244.953 121.985 37.617 811.585 295.468

MICE 25.697 21.905 345.227 292.651 69.073 137.426 438.957 879.304

RF 16.548 16.298 248.651 212.620 82.895 74.661 692.553 586.787

Mean 27.117 28.450 387.962 395.681 124.070 138.314 859.921 925.915

Mode 15.279 12.891 352.234 211.058 96.630 119.925 782.265 912.196

50% Proposed 18.599 13.687 197.893 85.533 76.038 53.318 469.233 381.913

DAE 23.719 24.570 234.159 251.787 77.887 90.851 517.310 614.748

kNNI 28.288 23.801 399.586 242.154 117.596 127.250 602.568 928.755

MICE 39.360 33.760 401.452 237.054 131.128 78.384 792.996 472.419

RF 43.292 33.840 424.769 361.185 122.832 172.077 562.737 924.259

Mean 35.435 33.755 452.248 273.073 110.735 122.160 566.573 760.592

Mode 25.099 21.707 370.625 290.342 133.217 171.049 1027.238 1126.739

60% Proposed 20.400 18.297 215.043 204.279 81.882 82.129 376.911 403.129

DAE 34.892 27.982 233.659 227.895 91.266 88.445 395.561 456.647

kNNI 31.104 33.850 263.076 290.560 135.758 127.854 876.388 885.781

MICE 30.940 31.198 304.300 383.954 320.712 149.847 1826.202 911.182

RF 46.371 42.163 374.008 423.405 148.538 173.024 894.732 1007.413

Mean 41.902 33.841 389.637 278.517 195.561 114.394 850.860 615.531

Mode 31.217 22.643 418.524 292.401 165.013 186.022 1017.772 1164.86

70% Proposed 26.260 24.675 253.586 214.988 107.498 109.234 592.747 531.431

DAE 37.672 32.239 236.108 214.103 122.864 114.154 635.749 822.252

kNNI 35.303 38.113 394.687 452.334 211.032 415.663 927.164 1540.646

MICE 43.822 87.003 369.255 481.355 165.836 119.508 884.633 635.878

RF 76.450 49.289 513.202 447.956 184.978 165.668 1054.253 1013.437

Mean 41.066 39.527 396.057 456.852 124.740 158.471 853.492 868.519

Mode 22.561 27.132 238.603 307.087 157.856 205.404 1016.635 1243.637

80% Proposed 30.119 26.728 307.702 286.112 160.065 161.195 914.576 936.705

DAE 42.729 42.255 362.108 294.103 169.632 185.339 886.235 1057.880

kNNI 43.001 71.347 346.867 378.263 145.383 197.361 815.389 943.972

MICE 43.393 48.784 425.472 458.618 180.631 197.056 1032.851 998.224

RF 39.671 41.271 454.728 458.193 353.463 227.259 1593.668 1160.655

Mean 40.728 43.346 396.021 448.179 207.079 168.663 938.500 741.625

Mode 35.210 40.352 425.935 468.506 157.842 229.432 1012.731 1261.187

Received: February 22, 2024. Revised: May 1, 2024. 309

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

(a)

(b)

Figure. 5 The Simulation Results of the Comparison of Imputation Methods: MAE Values: (a) Comparison between

MAE results obtained from two mechanisms on the Cocomo81 dataset and (b) Comparison between MAE results

obtained from two mechanisms on the IFPUG dataset

(a)

(b)

Figure. 6 The Simulation Results of the Comparison of Imputation Methods: RMSE Values: (a) Comparison between

RMSE results obtained from two mechanisms on the Cocomo81 dataset and (b) Comparison between RMSE results

obtained from two mechanisms on the IFPUG dataset

Received: February 22, 2024. Revised: May 1, 2024. 310

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

exhibits the best performance in two project datasets

at high missing rates, ranging between 40% and

80%. This study shows that the prediction error rate

increases with the rates of missing data.

Meanwhile, the prediction error produced by the

MCAR mechanisms is lower than that produced by

the MNAR mechanisms. We find that kNNI

increases with the percentage of missing data,

regardless of the mechanism of missing data.

However, our developed method can reduce model

variance, resulting in lower generalization errors.

Our Masked-DAE method is more consistent

and performs better than other popular imputation

methods, regardless of metric. As observed in Table

2, the extent of performance disparity varies

depending on the dataset and competing methods.

Also, strong metrics should have little effect on

outliers. The noisy RMSE distribution shifts more

than the MAE ones. Thus, it is identified that the

RMSE is less strong against outliers. On the other

hand, MAE suffers from imprecision when the

model error follows a normal distribution. However,

MAE was also reported to have unbiased results and

did not show an asymmetric distribution.

On the other hand, Figures 5 and 6 compare

imputation methods using MAE and RMSE. In this

case, it also observed that the measurement error

rate for all models was presented in visualization to

facilitate observing the performance of the

imputation methods.

Findings from two real-world datasets indicate

the applicability of the proposed method, which can

be used on numerical and categorical data.

Moreover, the DAE approach can avoid multiple

computations, local minimums, and missing

gradient problems [32], and using backpropagation

techniques with various propagation and optimizer

functions makes learning easier [52]. Conversely,

L2-norm regularization serves to decrease the

variance of the model, thereby leading to a reduction

in generalization error. Moreover, dropout reduces

overfitting when training limited data sets [53]. This

explains why our model has the highest accuracy

rate among the popular approaches utilized in this

study. Our method can perform much better in

almost all datasets with small set sizes. Even with

adding the value, the proportion of missingness

increases, indicating that our method appears less

affected by the missing rates. This gives a profit for

a high missing rate. However, for missing data that

has an extremely high rate, our method takes a lot of

time to calculate and has a higher computational

cost.

The RF method provides an inbuilt procedure

for dealing with missing values by weighing the

frequency of values observed in the variable with

the random forest closeness after being trained on

the calculated mean initial data set [54]. On the

other hand, this method requires a complete set of

response variables to train the forest [14]. The kNNI

method offers straightforward computation.

Consequently, it proves particularly effective when

applied to datasets characterized by less complex

feature variance issues. This simplicity is similar to

more basic techniques like mean imputation, where

all missing values are replaced with the sample

mean, potentially resulting in a significant reduction

in variance [55]. kNNI has overlapping steps for

evaluating similarities between software projects.

MICE relies internally on simple regression, which

may not be able to map complex patterns. MICE has

no resistance to noise/outliers and is strongly

affected by the missing rate. Other methods, such as

mean and mode imputation, can change the data

variance so that it can provide less efficient

estimates.

6. Conclusion

In this paper, we enhance existing deep learning

architectures by introducing improvements to the

training procedure and its architecture. We leverage

two comprehensive datasets in the SEE field to

assess the proposed approach's efficacy. In our

investigation, various missing rates and missingness

mechanisms patterns are applied. The results

indicate that the introduced Masked-DAE with L2-

Norm Regularization approach outperforms others.

However, at an 80% missing rate, the kNNI method

exhibits the best performance on the IFPUG dataset.

Findings from this study show that the prediction

error rate increases with the rate of missing data.

Furthermore, prediction errors generated by

MCAR mechanisms are lower than those generated

by MNAR mechanisms. We find that kNNI

improves with the percentage of missing data

regardless of the missingness mechanism. Overall,

the error of the missing data technique is influenced

by the missingness mechanism. Nevertheless, our

method can reduce the model variance, which

results in lower generalization error.

Further work could be developed in several

directions, such as creating a real-time missing data

imputation framework based on recurrent neural

networks. Additionally, deep learning should be

integrated with expert assessment approaches to

assess the accuracy and validity of imputed data as a

practical approach.

Received: February 22, 2024. Revised: May 1, 2024. 311

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, R. Marco; methodology, R.

Marco, and S. S. S. Ahmad; validation, R. Marco;

formal analysis, R. Marco; investigation, R. Marco,

and S. S. S. Ahmad; resources, R. Marco, and S. S.

S. Ahmad; data curation, R. Marco; writing—

original draft preparation, R. Marco, and S. S. S.

Ahmad; writing—review and editing, S. S. S.

Ahmad; visualization, R. Marco; supervision, S. S. S.

Ahmad; funding acquisition, R. Marco, and S. S. S.

Ahmad.

References

[1] L. Song, “Learning to Cope with Small Noisy

Data in Software Effort Estimation”, Thesis

Doctor of Philosophy, No. January, 2019.

[2] L. Gondara and K. Wang, “MIDA: Multiple

imputation using denoising autoencoders”,

Journal of Advances in Knowledge Discovery

and Data Mining, Vol. 10939, pp. 260–272,

2018.

[3] I. Abnane, M. Hosni, A. Idri, and A. Abran,

“Analogy Software Effort Estimation Using

Ensemble kNN Imputation”, In: Proc. of

International Conf. On Software Engineering

and Advanced Applications, Kallithea, Greece,

pp. 228–235, 2019.

[4] F. A. Amazal, A. Idri, and A. Abran, “Software

development effort estimation using classical

and fuzzy analogy: A cross-validation

comparative study”, International Journal of

Computational Intelligence and Applications,

Vol. 13, No. 3, pp. 1–19, 2014.

[5] I. Abnane and A. Idri, “Improved analogy-

based effort estimation with incomplete mixed

data”, In: Proc. of the 2018 Federated

Conference on Computer Science and

Information Systems, FedCSIS 2018, Vol. 15,

pp. 1015–1024, 2018.

[6] R. J. A. Little and D. B. Rubin, “The Analysis

of Social Science Data with Missing Values”,

Journal of Sociological Methods and Research,

Vol. 18, No. 2–3, pp. 292–326, 1989.

[7] J. Li, A. Al-Emran, and G. Ruhe, “Impact

Analysis of Missing Values on the Prediction

Accuracy of Analogy-based Software Effort

Estimation Method AQUA”, In: Proc. of

International Conf. on Empirical Software

Engineering and Measurement (ESEM),

Madrid, Spain, pp. 126–135, 2007.

[8] A. Idri, I. Abnane, and A. Abran, “Dealing with

missing values in software project datasets: A

systematic mapping study”, Studies in

Computational Intelligence, Vol. 653, No. Mv,

pp. 1–16, 2016.

[9] J. Huang, Y. F. Li, J. W. Keung, Y. T. Yu, and

W. K. Chan, “An empirical analysis of three-

stage data-preprocessing for analogy-based

software effort estimation on the ISBSG data”,

In: Proc. of International Conf. on Software

Quality, Reliability and Security, Prague,

Czech Republic, pp. 442–449, 2017.

[10] Q. Ma, W. C. Lee, T. Y. Fu, Y. Gu, and G. Yu,

MIDIA: exploring denoising autoencoders for

missing data imputation, Vol. 34, No. 6, 2020.

[11] A. F. Costa, M. S. Santos, J. P. Soares, and P.

H. Abreu, “Missing data imputation via

denoising autoencoders: The untold story”,

Springer Nature Switzerland, Vol. 11191

LNCS, pp. 87–98, 2018.

[12] J. Huang, H. Sun, Y. F. Li, and M. Xie, “An

Empirical Study of Dynamic Incomplete-Case

Nearest Neighbor Imputation in Software

Quality Data”, In: Proc. of 2015 IEEE

International Conference on Software Quality,

Reliability and Security, QRS 2015, No. Mi, pp.

37–42, 2015.

[13] X.-Y. Jing, F. Qi, F. Wu, and B. Xu, “Missing

data imputation based on low-rank recovery

and semi-supervised regression for software

effort estimation”, In: Proc. of the 38th

International Conference on Software

Engineering - ICSE ’16, No. 1, pp. 607–618,

2016.

[14] D. J. Stekhoven and P. Bühlmann, “Missforest-

Non-parametric missing value imputation for

mixed-type data”, Journal of Bioinformatics,

Vol. 28, No. 1, pp. 112–118, 2012.

[15] C. Zhang, X. Cheng, J. Liu, J. He, and G. Liu,

“Deep sparse autoencoder for feature extraction

and diagnosis of locomotive adhesion status”,

Journal of Control Science and Engineering,

Vol. 2018, 2018.

[16] L. L. Minku and X. Yao, “Ensembles and

locality: Insight on improving software effort

estimation”, Journal of Information and

Software Technology, Vol. 55, No. 8, pp. 1512–

1528, 2013.

[17] W. Zhang, Y. Yang, and Q. Wang, “Using

Bayesian regression and EM algorithm with

missing handling for software effort prediction”,

Information and Software Technology, Vol. 58,

pp. 58–70, 2015.

[18] J. Huang et al., “Cross-validation based K

nearest neighbor imputation for software

Received: February 22, 2024. Revised: May 1, 2024. 312

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

quality datasets: An empirical study” , Journal

of Systems and Software, Vol. 132, pp. 226–

252, 2017.

[19] R. A. Hughes, I. R. White, S. R. Seaman, J. R.

Carpenter, K. Tilling, and J. A. C. Sterne,

“Joint modelling rationale for chained

equations”, BMC Medical Research

Methodology, Vol. 14, No. 1, 2014.

[20] S. Zhang, “Nearest neighbor selection for

iteratively kNN imputation” , Journal of

Systems and Software, Vol. 85, No. 11, pp.

2541–2552, 2012.

[21] S. Tihon, M. U. Javaid, D. Fourure, N. Posocco,

and T. Peel, “DAEMA: Denoising Autoencoder

with Mask Attention”, International

Conference on Artificial Neural Networks, Vol.

12891, pp. 229–240, 2021. [Online]. Available:

http://arxiv.org/abs/2106.16057.

[22] M. Kampffmeyer, S. Løkse, F. M. Bianchi, R.

Jenssen, and L. Livi, “Deep Kernelized

Autoencoders”, Springer International

Publishing, Vol. 10270 LNCS, pp. 419–430,

2017.

[23] R. Lall and T. Robinson, “Applying the

MIDAS Touch : An Accurate and Scalable

Approach to Imputing Missing Data”, APSA

Preprints, 2020.

[24] C. Jia, M. Shao, S. Li, H. Zhao, and Y. Fu,

“Stacked Denoising Tensor Auto-Encoder for

Action Recognition with Spatiotemporal

Corruptions”, IEEE Transactions on Image

Processing, Vol. 27, No. 4, pp. 1878–1887,

2018.

[25] S. K. Sehra, Y. S. Brar, N. Kaur, and S. S.

Sehra, “Research patterns and trends in

software effort estimation”, Journal of

Information and Software Technology, Vol. 91,

pp. 1–21, 2017.

[26] N. A. S. Al-Jamali, I. R. K. Al-Saedi, A. R.

Zarzoor, and H. Li, “A New Imputation

Technique Based a Multi-Spike Neural

Network to Handle Missing Data in the Internet

of Things Network (IoT)”, IEEE Access, Vol.

11, No. September, pp. 112841–112850, 2023.

[27] H. Ou, Y. Yao, and Y. He, “Missing Data

Imputation Method Combining Random Forest

and Generative Adversarial Imputation

Network”, Sensors, Vol. 24, No. 4, pp. 1112,

2024.

[28] J. Li et al., “Comparison of the effects of

imputation methods for missing data in

predictive modelling of cohort study datasets”,

BMC Medical Research Methodology, Vol. 24,

No. 1, pp. 1–9, 2024.

[29] K. Psychogyios, L. Ilias, C. Ntanos, and D.

Askounis, “Missing Value Imputation Methods

for Electronic Health Records”, IEEE Access,

Vol. 11, No. February, pp. 21562–21574, 2023.

[30] T. Huamin, D. Qiuqun, and X. Shanzhu,

“Reconstruction of time series with missing

value using 2D representation-based denoising

autoencoder”, Journal of Systems Engineering

and Electronics, Vol. 31, No. 6, pp. 1087–1096,

2020.

[31] I. Abnane, A. Idri, I. Chlioui, and A. Abran,

“Evaluating ensemble imputation in software

effort estimation”, Empirical Software

Engineering, Vol. 28, No. 56, 2023.

[32] J. C. Kim and K. Chung, “Multi-Modal Stacked

Denoising Autoencoder for Handling Missing

Data in Healthcare Big Data”, IEEE Access,

Vol. 8, pp. 104933–104943, 2020.

[33] Z. Sun and H. Sun, “Stacked Denoising

Autoencoder With Density-Grid Based

Clustering Method for Detecting Outlier of

Wind Turbine Components”, IEEE Access, Vol.

7, pp. 13078–13091, 2019.

[34] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio,

and P. A. Manzagol, “Stacked denoising

autoencoders: Learning Useful Representations

in a Deep Network with a Local Denoising

Criterion”, Journal of Machine Learning

Research, Vol. 11, pp. 3371–3408, 2010.

[35] Y. Bengio, L. Yao, G. Alain, and P. Vincent,

“Generalized denoising auto-encoders as

generative models”, Advances in Neural

Information Processing Systems, pp. 1–9, 2013.

[36] S. Ghalebikesabi, R. Cornish, L. J. Kelly, and C.

Holmes, “Deep Generative Pattern-Set Mixture

Models for Nonignorable Missingness”, arXiv ,

2021. [Online]. Available:

http://arxiv.org/abs/2103.03532.

[37] A. J. H. Almutlaq and D. N. A. Jawawi,

“Missing Data Imputation Techniques for

Software Effort Estimation: A Study of Recent

Issues and Challenges”, Advances in Intelligent

Systems and Computing, Vol. 1073, pp. 1144–

1158, 2020.

[38] I. Abnane, A. Idri, and A. Abran, “Fuzzy case-

based-reasoning-based imputation for

incomplete data in software engineering

repositories”, Journal of Software: Evolution

and Process, Vol. 32, No. 9, 2020.

[39] I. Abnane, A. Idri, M. Hosni, and A. Abran,

Heterogeneous ensemble imputation for

software development effort estimation, Vol. 1,

No. 1, Association for Computing Machinery,

2021.

[40] D. K. Lim, N. U. Rashid, J. B. Oliva, and J. G.

Ibrahim, “Handling Non-ignorably Missing

Received: February 22, 2024. Revised: May 1, 2024. 313

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024 DOI: 10.22266/ijies2024.0831.23

Features in Electronic Health Records Data

Using Importance-Weighted Autoencoders”,

arXiv:2101.07357, pp. 1–25, 2021. [Online].

Available: http://arxiv.org/abs/2101.07357.

[41] L. Gondara and K. Wang, “MIDA: Multiple

imputation using denoising autoencoders”,

Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in

Bioinformatics), Vol. 10939 LNAI, pp. 260–

272, 2018.

[42] Y. Wang, K. Li, S. Gan, and C. Cameron,

“Missing Data Imputation with OLS-Based

Autoencoder for Intelligent Manufacturing”,

IEEE Transactions on Industry Applications,

Vol. 55, No. 6, pp. 7219–7229, 2019.

[43] Y. Yang, K. Zheng, C. Wu, and Y. Yang,

“Improving the classification effectiveness of

intrusion detection by using improved

conditional variational autoencoder and deep

neural network”, Sensors (Switzerland), Vol. 19,

No. 11, 2019.

[44] A. Krizhevsky and G. Hinton, “Convolutional

deep belief networks on cifar-10”, Unpublished

manuscript, pp. 1–9, 2010. [Online]. Available:

http://scholar.google.com/scholar?hl=en&btnG

=Search&q=intitle:Convolutional+Deep+Belief

+Networks+on+CIFAR-10#0.

[45] C. Fan, M. Chen, R. Tang, and J. Wang, “A

novel deep generative modeling-based data

augmentation strategy for improving short-term

building energy predictions”, Building

Simulation, Vol. 15, No. 2, pp. 197–211, 2022.

[46] S. van Buuren and K. Groothuis-Oudshoorn,

“mice: Multivariate imputation by chained

equations in R”, Journal of Statistical Software,

Vol. 45, No. 3, pp. 1–67, 2011.

[47] J. Xia et al., “Adjusted weight voting algorithm

for random forests in handling missing values”,

Pattern Recognition, Vol. 69, pp. 52–60, 2017.

[48] P. Jönsson and C. Wohlin, “An evaluation of k-

nearest neighbour imputation using lIkert data”,

In: Proc. of International Software Metrics

Symposium, pp. 108–118, 2004.

[49] M. j Azur, E. A. Stuart, C. Frangakis, and P. J.

Leaf, “Multiple imputation by chained

equations: what is it and how does it work?”,

International journal of methods in psychiatric

research, Vol. 20, No. 1, pp. 40–49, 2011.

[50] N. Abiri, B. Linse, P. Edén, and M. Ohlsson,

“Establishing strong imputation performance of

a denoising autoencoder in a wide range of

missing data problems”, Neurocomputing, Vol.

365, pp. 137–146, 2019.

[51] M. F. Bosu and S. G. Macdonell, “Experience:

Quality benchmarking of datasets used in

software effort estimation”, Journal of Data

and Information Quality, Vol. 11, No. 4, 2019.

[52] Fuqiang Gu, Kourosh Khoshelham, Shahrokh

Valaee, Jianga Shang, and Rui Zhang,

“Locomotion Activity Recognition Using

Stacked Denoising Autoencoders”, IEEE

Internet of Things Journal, Vol. 5, No. 3, pp.

2085–2093, 2018.

[53] G. E. Hinton, N. Srivastava, A. Krizhevsky, I.

Sutskever, and R. R. Salakhutdinov,

“Improving neural networks by preventing co-

adaptation of feature detectors”, arXiv preprint,

pp. 1–18, 2012. [Online]. Available:

http://arxiv.org/abs/1207.0580.

[54] L. Breiman, “Random forests”, Journal of

Machine Learning, Vol. 45, pp. 1–122, 2001.

[55] Q. Song and M. Shepperd, “A new imputation

method for small software project data sets”,

Journal of Systems and Software, Vol. 80, No.

1, pp. 51–62, 2007.

