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Abstract: A frequent problem in building initial software effort estimation (SEE) models is the existence of many 

missing values in historical software engineering datasets. Due to human intervention, this is caused by frequent 

damage to software project data. Loss of information and bias in data analysis due to missing data are serious 

problems. This study proposes a method to estimate missing data using a masked-denoising autoencoder (Masked-

DAE) with L2-norm regularization, which can handle various types of data, missing patterns, proportions, and 

distributions. In this study, Cocomo81 and ISBSG-IFPUG datasets from open-source repositories were used. This 

experiment involved five missing data techniques, eight missing data rates (from 10% to 80%), and two missingness 

mechanisms (MCAR: missing completely at random and MNAR: missing not at random). The results show that the 

proposed Mask-DAE method has the best imputation performance in terms of imputation errors by outperforming 

DAE, k-nearest neighbor imputation (kNNI), random forest (RF) imputation, multiple imputations by chained 

equation (MICE), mean imputation and mode imputation. We find that the prediction error rate increases with the 

rate of missing data. Furthermore, prediction errors generated by MCAR mechanisms are lower than those generated 

by MNAR. Nevertheless, our method can reduce the model variance, which results in lower generalization error. 

Keywords: Software effort estimation, Missing data imputation, Denoising autoencoder, Missingness mechanisms. 

 

 

1. Introduction  

The problem in building an initial software 

effort estimation (SEE) model is that historical 

software engineering data sets often contain large 

amounts of missing values. This is because many 

collected software projects are typically corrupted 

due to human intervention [1]. In software 

engineering, the loss of information and bias in data 

analysis caused by missing data is a serious issue [2], 

which can cause a decrease in the performance of 

the algorithm used [3]. It often leads to errors in 

training and model analysis and negatively impacts 

the quality of the learning process, resulting in 

biased inferences if neglected [2, 4]. 

In the meantime, understanding the mechanism 

of missing data and the associated missing rates is 

crucial for comprehending the impact of missing 

data on a specific analysis or method that involves 

handling missing data [5, 6]. On the other hand, 

there are three approaches to solving problems with 

missing data, including tolerance, deletion, and the 

imputation technique [5, 7, 8]. 

The tolerance method is an embedded strategy 

where the analysis is performed directly on a dataset 

containing missing data [5, 8]. Despite its apparent 

ease of use, the tolerance method is not a 

dependable approach and, at times, produces a less 

accurate estimate than the deletion procedure [5, 6, 

8]. In contrast, practitioners find delete techniques 

most enticing due to their simplicity. However, they 

have several disadvantages after deleting valuable 

data, including a loss of precision and result bias [8]. 

Meanwhile, Huang et al. (2017) stated that listwise 

deletion is becoming less common because it 

reduces data completeness, making it less suitable 

for applying derived models [9]. 
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The missing data imputation technique replaces 

the missing value with an appropriate estimate by 

utilizing the available data and connecting the 

missing data, followed by the application of the 

standard complete data method for the filled data [5, 

6, 8]. This makes the imputation method preferred 

and attracts the most research attention from 

academia and industry [2, 10]. Nevertheless, it's 

crucial to customize the imputation method 

according to the specific missingness mechanism 

present, as an inappropriate selection can introduce 

bias in performance [11]. 

Several studies on SEE have offered various 

approaches to imputing missing data. These 

methods range from simply substituting missing 

values with column averages to more complicated 

imputations based on several different machine 

learning models and statistical techniques [2], for 

example, mean imputation [12], hot-deck imputation 

[13], random forest (RF) imputation [14, 15], k-

nearest neighbor imputation (kNNI)[12],[16-18], 

and multiple imputations by chained equation 

(MICE) [15, 19]. Implicitly assumes that the 

imputation model fails to address errors or 

ambiguities in the imputation process [2] and 

exhibits an increasingly constrained capacity to 

capture highly nonlinear relationships [10]. In 

addition, several imputation models cannot handle 

mixed data types [20] and random missing data 

patterns [2]. 

Several generative methods rooted in deep 

learning attempt to address this issue by modeling 

the joint distribution of all features of the missing 

data simultaneously [21]. Deep learning techniques 

are a popular topic, but their application for 

imputation purposes has received less attention [11]. 

Denoising autoencoder (DAE) is an unsupervised 

learning method used for unlabeled data to restore 

missing data from noisy input [22]. Unfortunately, 

the generative approach suffers from the problem of 

overfitting when working on small data sets [23]. 

Meanwhile, this approach can be utilized to reduce 

process uncertainty and the influence of corruption 

[24] and can deal with more complicated data sets 

(higher number of samples and dimensions) [11]. 

Because of its ability to learn the representation of 

noisy data, DAE is of great interest in many fields. 

This study aims to devise a DAE-based deep 

learning approach capable of autonomously 

acquiring latent representations and connections 

among intricate variables. The DAE was developed 

to generate a clear output from a noisy input. 

However, missing data may rely on unobservable 

latent representations within the input dataset space. 

As a result, the DAE can map our input data into a 

higher-dimensional subspace, enabling us to retrieve 

the missing information subsequently. 

The subsequent sections of this paper are 

structured as follows: Section 2 reviews relevant 

research. Section 3 presents the methods/approach 

adopted in this paper. Section 4 presents our model 

and elucidates the experimental configuration. 

Section 5 presents the empirical assessment and 

presents the findings. Finally, Section 6 concludes 

with conclusions and offers recommendations for 

future work. 

2. Related work  

The issue in building an initial estimation model 

is that historical software engineering data sets often 

contain large amounts of missing values. The loss of 

information and bias in data analysis caused by 

missing data is a severe issue in software 

engineering [2, 3], which can cause a decrease in the 

performance of the algorithm used [3, 25]. If 

neglected, it often leads to errors in training and 

model analysis and negatively impacts the quality of 

the learning process, leading to biased inferences [2, 

4, 25]. Thus, many approaches have been proposed 

to handle this problem.  

For instance, they proposed a new technique, 

imputing missing data, based on the multi-spike 

neural network (IMD-SNN) learning method. This 

study uses the MonitorAr dataset with three 

attributes: humidity, temperature, and atmospheric 

pressure. The results show that IMD-SNN provides 

high prediction accuracy compared to I-MLP 

(Imputation-based multilayer perceptron) and I-kNN 

for three attributes with missing percentages (5%, 

10%, 25%, and 50%). However, SNN requires less 

time for the training and testing process. 

Unfortunately, neural networks may struggle to 

capture underlying patterns in data effectively [26]. 

Ou et al. (2023) proposed a missing time series 

data interpolation method based on random forest 

and generative adversarial interpolation network 

(RF-GAIN). Use of public datasets from Western 

Reserve University in the United States. The results 

show that the RMSE of interpolation results based 

on RF-GAIN in cases of single-segment and multi-

segment missing data is only 0.0157 (3%), 0.0386 

(10%), and 0.0527 (20%) better than the random 

forest algorithm, generative adversarial interpolation 

network, and k-nearest neighbor. The advantages of 

the RF-GAIN algorithm are combined so that the 

interpolation results are close to the actual value. 

Unfortunately, this method has its computational 

complexity and is expensive [27]. 
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Meanwhile, the study of Li et al. (2024) 

comprehensively compared the performance of 8 

imputation methods (Simple imputation, regression 

imputation, expectation-maximization (EM), MICE, 

kNN, clustering imputation, random forest (RF), and 

decision tree (CART)) in each scenario in the study 

real-world cohort in Xinjiang, China. The results of 

the study, using a missing rate of 20%, showed that 

the most effective imputation methods were 

achieved by kNN (MAE: 0.2032, RMSE: 0.7438, 

AUC: 0.730, CI: 0.719-0.741) and RF (MAE: 

0.3944, RMSE: 1.4866, AUC: 0.777, CI: 0.769-

0.785). EM, CART, and MICE achieved the next 

best performance, while simple, regression and 

cluster imputation obtained the worst. kNN and RF 

showed superior performance and were more adept 

at imputing missing data in the predictive modeling 

of Cohort study datasets [28]. 

Psychogyios et al. (2023) propose a new missing 

value imputation method based on denoising 

autoencoders (DAE) with kNN for pre-imputation 

tasks. We used four Electronic Health Records 

(EHR) data sets, and the missing proportions were 

10%, 20%, 30%, 40%, and 50% for the three 

missingness mechanisms. Our proposed deep 

learning approach performs better than baseline 

standards (such as Simple, kNN, RF, MICE, and 

GAIN), resulting in better imputation and predictive 

results. Unfortunately, this method is complex in 

managing missing data. This approach requires 

complex preprocessing steps and is computationally 

intensive to produce a correct data representation 

[29]. 

A denoising autoencoder (DAE) based on time 

series data representation was proposed by Huamin 

et al. (2020). This DAE was created by 

reconstructing the data with the help of a recurrence 

plot (RP) and a gramian angular field (GAF). Based 

on the experimental results using MSE values, 

assign values to the dataset of ECG200 (GAF: 

0.0048; RP: 0.0037), Face all (GAF: 0.0134; RP: 

0.0221), Swedish leaf (GAF: 0.0098; RP: 0.0092), 

OSU leaf (GAF: 0.0077; RP:0.0121), Wafer 

(GAF:0.0240; RP:0.0069), 50 words (GAF:0.0101; 

RP:0.0108), and Coffee were given values by the 

experimental results utilizing (GAF:0.0336; 

RP:0.0234). On the other hand, this approach is only 

helpful for univariate time series. It only applies to 

more complex multivariate time series [30]. 

Abnane et al. (2023) proposed and built 11 

heterogeneous ensemble imputation techniques, 

whose members are from the following single 

imputation techniques: kNN, expectation 

maximization, support vector regression (SVR), and 

decision trees (DTs). Evaluated over six SDEE 

datasets from the PROMISE repository. Overall, 

SVR and DT imputations are the best techniques for 

constructing ensemble imputations. The results 

show that ensemble imputation significantly 

improves the performance of SEE techniques. 

However, no particular ensemble imputer provides 

the best results in all contexts [31]. 

Kim and Chung (2020) proposed a multi-modal 

stacked denoising autoencoder (MMSDAE) that 

aims to estimate missing data during the data 

collection and processing stages of the Korean 

National Health Nutrition Examination Survey 

(KNHNES). Our method yields higher accuracy at a 

missing rate of 5%-30% than other conventional 

methods (such as kNNI, singular value 

decomposition, and Mean). Unfortunately, at a 

missing rate of 25%, our method yielded a value of 

0.9217. At the same time, the single modal 

denoising autoencoder (DAE) had an accuracy of 

0.932, with a slight difference of around 0.01, which 

is within the limits allowed in data analysis. On the 

other hand, our MMSDAE model saves additional 

time when processing large amounts of data [32].  

In the meantime, Tihon et al. (2021) proposed 

the DAE with mask attention (DAEMA) and 

released it in the UCI repository. This method 

outperforms other methods (such as DAE, MIDA, 

MissForest, Mean, and AimNet) currently used on 

multiple missing data samples under MCAR and 

MNAR. Unfortunately, when working with small 

datasets, the performance of these methods is 

 
Table 1. List of notations 

Notations Description 

𝑥̂ Input that has been corrupted 

𝑐(𝑥̂)  Hidden representation 

𝑊′  The weight matrix that links the input and 

hidden layers 

𝑏′  The bias vector of nodes that are part of 

the hidden layer 

𝑠𝑖𝑔.  Logistics activate function 

𝑧  Reconstructed vectors 

𝑐′  The bias vector of nodes belonging to the 

output layer 

𝑥  Original data 

𝜃 Model parameter 

∅  Unidentified parameters 

𝑋𝑛 Missing values 

𝑋𝑜 Observed values 

𝑥𝑖
𝑜 ; 𝑥𝑖

𝑛  The observed and missing features 

𝑓(∙) User-specified activation function 

𝑔(∙)  User-defined activation function 

𝐿(∙) Loss function 

𝐷 Dataset 

𝑀  Missing indicator matrix 

𝑋𝑛 Input variable dataset 

𝑦𝑛 Target variable dataset 
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relatively poor. Thus, DAEMA requires adequate 

data to predict the data distribution [21]. 

According to the author, this study differs from 

other research. Most previous research addresses 

missing data in the classification field using 

machine learning or deep learning approaches. 

Meanwhile, our study addresses missing data in the 

field of regression with a rate of missing data from 

10% to 80%; two missingness mechanisms and a 

small data set are applied. An improved deep 

learning approach using masked-denoising 

autoencoder (Masked-DAE) with L2-norm 

regularization. 

3. Background knowledge  

In this section, we have discussed the 

introduction and studies related to the formulation of 

the problem and explained the list of notations used 

in this work. A list of notations is presented in Table 

1. 

3.1 Denoising autoencoder 

The denoising autoencoder (DAE) follows a 

process similar to the autoencoder, with the 

distinction of introducing noise to the input data [33]. 

Vincent et al. (2010) designed the DAE to eliminate 

noise from data. This noise is characterized by high 

dimensions in hidden layers and stochastic input 

corruption [34]. The DAE reconstruction capability 

estimates the data distribution implicitly as an 

asymptotic distribution of a Markov chain that 

alternates between corruption and denoising [35], as 

shown in Figure 1. 

Encoding is performed on the corrupted inputs, 

introducing noise to the original input data via 

random mapping [33]. 

 

𝑐(𝑥) = 𝑠𝑖𝑔(𝑊′𝑥̂ + 𝑏′)                    (1) 

 

Where 𝑥  represents the input that has been 

corrupted through stochastic mapping, 𝑐(𝑥) denotes 

the hidden representation, 𝑠𝑖𝑔. signifies the logistics 

activate function, 𝑊′  represents the weight matrix 

that links the input and hidden layers, and 

𝑏′ indicates the bias vector of nodes that are part of 

the hidden layer. 

The decoding process involves reverse mapping 

the 𝑐(𝑥) back into the original feature space. 

 

𝑧 = 𝑠𝑖𝑔(𝑊′𝑐(𝑥) + 𝑐′)                   (2) 

 

The reconstructed vectors are denoted as 𝑧, the 

weight matrix between the hidden layer and output  

 

Figure. 1 Denoising Autoencoder Architecture 

 

layer is denoted as 𝑊′, and the bias vector of nodes 

belonging to the output layer is denoted as 𝑐′. 

In order to acquire the optimal DAE model, the 

reconstruction error can be minimized as follows: 

 

𝜃 = ‖𝑥 − 𝑧 ‖2
                   (3) 

 

Where 𝑥  represents the original data, 𝑧 

represents the reconstructed vectors, and 𝜃 refers to 

the encoder and decoder parameters, encompassing 

weight matrices and bias vectors. 

3.2 Missingness mechanisms 

Many methods for estimating missing values 

have been proposed in recent decades [11]. Missing 

data are indicated by null, NaN, n/a, or a blank 

space, which means free space for non-zero data 

[32]. Most missing data occur irregularly and 

differently, and deleting observations can lead to 

loss of information [6]. Comprehending the impact 

of missing data on a specific analysis or method 

entails understanding the mechanism behind the 

missing data [5, 6]. Missing data can be categorized 

into three groups: missing completely at random 

(MCAR) denotes a scenario where the absence of 

data is uncorrelated with all features and happens 

randomly. Missing at random (MAR) characterizes 

a scenario where the absence of data is not linked to 

the missing features but rather to other features. 

Missing not at random (MNAR) transpires when the 

lack of data is associated with the missing features 

and is not random [6]. Unfortunately, MNAR is the 

most difficult because it requires modeling the 

missing data mechanism [36]. 

This mechanism can be generated in various 

methods, and the literature provides numerous 

examples [37]. Huang et al. (2015) examined the 

mechanisms of missingness, making assumptions 

regarding the rates of missing data (10%, 20%, and 

30%) across three mechanisms: MCAR, MAR, and 

non-ignorable (NI) [12]. Abnane et al. (2018) 

conducted 1134 experiments using seven datasets, 

employing kNN imputation methods with Euclidean 
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and Manhattan distances. They investigated three 

types of missingness mechanisms (MCAR, MAR, 

and NI) across missing data rates ranging from 10% 

to 90% [3, 5, 38]. Abnane et al. (2021) investigated 

how the ensemble imputation technique affects the 

accuracy of the SEE method as measured by the 

standard accuracy criteria. They did this by 

comparing it to the single imputation technique. The 

findings indicate that the accuracy of the SEE 

method significantly improves when employing 

heterogeneous ensemble-based imputation as 

opposed to single imputation [39]. In the meantime, 

Jing et al. (2016) used a semi-supervised regression 

technique to impute the missing effort labels (10%, 

20%, and 40%) without investigating the effect of 

the missingness mechanism [13]. 

3.3 Mask based missingness 

Collier et al. (2020) introduces a latent variable 

model that perceives the observed data as a result of 

a corruption process affected by a binary 

missingness mask. This methodology can be applied 

to data sets with both ignorable and non-ignorable 

missingness. However, the choice of model 

architecture should be customized to suit the 

specific underlying missingness mechanism [36]. 

Let the data be decomposed into components 

such that 𝑋 = {𝑋𝑜, 𝑋𝑛} , with 𝑋𝑜  represents the 

observed values and 𝑋𝑛  is the missing values. For 

each observation vector 𝑥𝑖
𝑜, 𝑥𝑖

𝑛 denote the observed 

and missing features of 𝑥𝑖 , respectively. 

Additionally, consider 𝑅  as a matrix of the same 

dimensions as 𝑋 , where the entries 𝑟𝑖𝑗 = 𝐼  (𝑥𝑖𝑗  is 

observed) for the ith observation and jth feature, 

with 𝐼(. ) representing the indicator function. Thus, 

𝑅 serves as the "mask" matrix corresponding to 𝑋, 

such that 𝑥𝑖
𝑜 = {𝑥𝑖𝑗: 𝑟𝑖𝑗 = 1} and 𝑥𝑖

𝑛 = {𝑥𝑖𝑗: 𝑟𝑖𝑗 = 1}  

for all 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑝 [40]. 

Missingness was classified into three major 

categories, or mechanisms, in the research by Little 

and Rubin (2002). These MCAR, MAR, and MNAR 

satisfy the following relations: (1) MCAR: 

𝑝(𝑥𝑖 , 𝑧𝑖, ∅) = 𝑝(𝑟𝑖|∅) , (2) MAR: 𝑝(𝑥𝑖 , 𝑧𝑖, ∅) =
𝑝(𝑥𝑖

𝑜|∅) , and (3) MNAR:  𝑝(𝑥𝑖, 𝑧𝑖 , ∅) =
𝑝(𝑟𝑖|𝑥𝑖

𝑜,  𝑥𝑖
𝑛, 𝑧𝑖, ∅). In this context , ∅  represents the 

unidentified parameters associated with the 

missingness model  𝑝(𝑥𝑖, 𝑧𝑖 , ∅) , where 𝑟1 =
{𝑟𝑖1, … , 𝑟𝑖𝑝} . When considering the missingness 

mask  𝑅 , the marginal log-likelihood can be 

expressed as: 

 

𝑙𝑜𝑔𝑝𝜓,𝜙(𝑋𝑜, 𝑅) = 

𝑙𝑜𝑔 ∬ 𝑝𝜓,𝜙(𝑋𝑜, 𝑋𝑛, 𝑍, 𝑅)𝑑𝑋𝑛𝑑𝑍           (4) 

4. Experiment design  

4.1 Problem formulation 

Our method is an easy way to generate data 

imputation based on a project 𝐷  in the context of 

SEE. Consider a training set of N software projects. 

Then, we can denote Equation (5). 

 

𝐷 = {(𝑋𝑛, 𝑦𝑛)}𝑛=1
𝑁                        (5) 

 

Consider a typical unsupervised learning setting 

with the training set according to Equation (5). 𝑋 ∈
𝑅𝑛×𝑑 is a data matrix arranged with 𝑛 (input, target) 

pairs 𝐷𝑛 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}  and 𝑑 

includes device features software development such 

as the type of software development, team expertise 

and functional measures consisting of numerical and 

categorical data types, then 𝑥𝑖 =
(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑗, … , 𝑥𝑖𝑑) ∈ 𝑅𝑑. Meanwhile, 𝑦 ∈ 𝑅1 is 

the actual effort to develop this software. In this 

work, categorical data is converted to numerical data 

using ordinal encoding to keep losses and metrics 

simple so that a data set contains only numeric 

features. 

Consider an i.i.d (independent and identically 

distributed) sample of the unknown distribution 

𝑞(𝑋, 𝑦)  with corresponding marginals 𝑞(𝑋)  and 

𝑞(𝑦) . Express the 𝑞0(𝑋, 𝑦)  and 𝑞0(𝑋)   empirical 

distributions determined by the sample in 𝐷𝑛. 𝑋 is a 

random vector with d-dimensions, and its 𝑅𝑑 ordinal 

features typically have discrete ordinal values such 

as low, normal, high, very high, and extra high for 

programmers capability. On the other hand, its 

numerical features typically have continuous values 

such as lines of code. 𝑋 can also be represented as 

[0,1]𝑑  (categorical features, such as the networked, 

mainframe, personal computer, mini computer, and 

multi-platform). 

On the other hand, it uses a complete dataset of 

two public datasets in the context of SEE. Thus, our 

data set will be assigned to 𝑋 using the MCAR and 

MNAR mechanism [41], meaning the probability 

that a missing value does not depend on any value in 

the data set. It can be defined in the missing rates 

matrix, given the dataset 𝑋  the missing indicator 

matrix is denoted by 𝑀 ∈ (0,1)𝑛×𝑑  for 𝑀 =
{𝑚1, 𝑚2, … , 𝑚𝑖}  to show the missing value in 𝑋 , 

where the ith vector 𝑚𝑖 = {𝑚1𝑗, 𝑚2𝑗, … , 𝑚𝑖𝑗} 

corresponds to the observation 𝑥𝑖𝑗 . In such a way 

that, 𝑥𝑖𝑗 missing if and only if 𝑚𝑖𝑗 = 0, otherwise if 

not missing 𝑚𝑖𝑗 = 1. State that 𝐷∗ = (𝑋𝑛
∗ , 𝑦𝑛), 𝑋𝑛

∗ ∈

𝑅𝑑 is a basic truth dataset with no missing data. 
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The use of dataset 𝐷  was accomplished by 

establishing the suitable missing rates matrix 𝑀 

(10% to 80%). As a result, the imputation function 

can be defined in accordance with the equation: 

 

𝑓: 𝑅𝑑 × (0,1)𝑑 → 𝑅𝑑 = (𝑥, 𝑚) → 𝑓′(𝑥, 𝑚)    (6) 

 

Implementing this function (𝑓′) is to find the 

best function by minimizing the reconstruction 

metric. 

4.2 Inducing missingness 

Initially, it introduces missingness in two 

distinct ways for each data set. Generally, our goal 

for all scenarios is to generate a missing proportion 

between 10% and 80% by altering the tuning 

probabilities by the below-described stages: 

− Add a uniform vector 𝑣  with 𝑛  observations 

and values ranging between 0 and 1 into the 

dataset, where 𝑛 represents the total number of 

observations in the dataset. 

− MCAR with a uniform distribution, ensure that 

all attributes contain missing values, where 

𝑣𝑖 ≤ 𝑡, 𝑖 ∈ 1: 𝑛, 𝑡  represents the missing 

threshold, This threshold varies from 10% to 

80%. 

− MNAR with a uniform distribution, take a 

random sample of two attributes from the 

dataset, 𝑥1 and 𝑥2, then calculate the median of 

each of those attributes, 𝑚1  and 𝑚2 .  Set all 

attributes to be missing values where 𝑣𝑖 ≤
𝑡, 𝑖 ∈ 1: 𝑛 and (𝑥1 ≤ 𝑚1 𝑜𝑟 𝑥2 ≥ 𝑚2).  

4.3 Model ratining scheme 

The experiment started by collecting two 

publicly available real-world data sets (Cocomo81 

and ISBSG-IFPUG datasets) to analyze the effects 

of missingness mechanisms and inducing 

missingness on imputation methods. All data sets in 

this experiment contain complete datasets (without 

missing values). Because the data set includes a 

mixture of numeric and categorical, it uses the 

ordinal encoding technique to convert categorical 

data to numerical to keep losses and metrics simple. 

On the other hand, min-max standardization can also 

be applied to the input data for faster convergence. 

As a result, normalization ensures that all inputs are 

contained within a range that is comparable to one 

another [42]. 

Several of the initial datasets underwent 

preprocessing to eliminate instances containing only 

a small number of missing values. Subsequently, we 

generated missing data by introducing missing 

values at eight distinct levels (ranging from 10% to 

80% dataset missing rates), adhering to both MCAR 

and MNAR mechanism. This was achieved using a 

state-of-the-art generation method employed in our 

experiments. 

In this study, missing 𝑥𝑖𝑗  values in the dataset 

will be represented as "NaN". Additionally, the 

matrix 𝑋 ∈ 𝑅𝑛×𝑑  is utilized to determine whether 

the value in 𝑥𝑖𝑗  is missing. X components can be 

described as: 

 

𝑋 = {
0   𝑥𝑖𝑗 = 𝑁𝑎𝑁

1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                         (7) 

 

Assume dataset 𝑋  is represented by an 𝑛 × 𝑑 

matrix, where 𝑖 = 1, … , 𝑛  as a pattern and 𝑗 =
1, … , 𝑑  as attributes. The elements of 𝑋  are 

represents by 𝑥𝑖𝑗 , each individual feature in 𝑋  is 

represents by 𝑥𝑗  and each pattern is referred to as 

𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑗, … , 𝑥𝑖𝑑) . It uses the 

multivariate MCAR and MNAR configuration. 

Where MCAR and MNAR select all attributes with 

missing values, 𝑥𝑖𝑗  in the dataset will be missing 

until the desired rate of between 10% and 80% is 

reached. 

In this section, the framework is the DAE-based 

missing value imputation method. Assume 𝑥𝑖𝑗  is a 

basic truth. That is, there is no missing value in 𝑥𝑖𝑗. 

Then, the missing value is denoted by 𝑥𝑖𝑗. Before to 

data entry, the DAE randomly selects a value from 

the original dataset and transforms it to 0. In neural 

network training, missing values are commonly 

represented as 0. When missing data, the noise is 

computed as 0 and returned to the original data. 

Consequently, a value of 0 is inserted for missing 

data, which is then replaced by a non-zero predicted 

value obtained through a trained neural network. To 

enhance the robustness of the learned model and 

prevent overfitting, the DAE distorts the original 

input  𝑥  to 𝑥  by introducing additional slight noise 

(isotropic Gaussian noise) [10]. 

The encoder mapped the corrupted input 𝑥 to the 

h-dimensional of the hidden representation 

(embedding) 𝑦 = 𝑓(𝑊𝑥 + 𝑏) . Where 𝑓(∙)  is the 

user-specified activation function. 𝑊  is the coding 

of the weight matrix 𝑑 ∗ ℎ, while 𝑏 is the bias vector 

for coding ℎ . Finally, the 𝑦  insertion result is 

remapped to reconstruct 𝑥  original input via the 

decoder. The transformation function is similar to 

𝑧 = 𝑔(𝑊′𝑦 + 𝑏′) , where 𝑔(∙)  is a user-defined 

activation function.  

The primary goal of the DAE is to minimize the 

reconstruction error between the initial input 𝑥 and 



Received:  February 22, 2024.     Revised: May 1, 2024.                                                                                                  305 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.23 

 

 

Figure. 2 Proposed Masked DAE L2-norm regularization 

model 

 

the reconstructed output 𝑧 → 𝑎𝑟𝑔 𝑚𝑖𝑛𝜃𝐿(𝑥, 𝑧), 

where 𝜃 = {𝑊, 𝑊′, 𝑏, 𝑏′}  represents the 

optimization parameters, and 𝐿(∙)  denotes a loss 

function used to quantify the discrepancy between 

the input 𝑥  and 𝑧 . It's worth mentioning that the 

output 𝑧  generated by the DAE is a deterministic 

outcome of the corrupted input 𝑥, not the original 

input 𝑥 . The optimization of parameters aims to 

ensure that if the embedding 𝑦 effectively captures 

the crucial features of the original input 𝑥 from its 

corrupted version 𝑥, it enables the reconstruction 𝑧 

of the original input 𝑥. 

The proposed framework of the model can be 

seen in Figure 1. 

4.4 Hyperparameter setting 

The proposed Masked-DAE model, 

incorporating L2-norm regularization, requires a 

tailored set of hyperparameters to effectively 

address the specific problem, adjusting according to 

the extent of corruption within the dataset. To 

enhance the generalization performance of the deep 

neural network (DNN), the embedding dimension of 

the hidden layer is set to 128 for all training 

benchmarks, ensuring a comprehensive 

representation of relevant datasets. As DNNs are 

proficient in feature extraction, the number of 

hidden units is gradually reduced to mitigate 

dimensionality issues. Training is conducted for 100 

iterations (epochs) with an early stop strategy to 

monitor reconstruction losses over known elements. 

Given the limited dataset in our study, L2-norm 

regularization parameters are set to 1×10−4, 

accompanied by a dropout probability of 0.5 to 

prevent overfitting. However, excessive L2 

regularization may lead to overweighting and 

suboptimal fitting. Each autoencoder optimization 

phase involves training the simple 3-layer feed-

forward network 10 times. Using the Adam 

optimizer in TensorFlow, the default learning rate 

for both networks is set to 1×10−3 for the DAE. 

Rectified linear unit (ReLU) activation functions are 

utilized in the hidden layers to address the issue of 

vanishing gradients associated with sigmoid 

functions [43, 44]. Additionally, random Gaussian 

noise of 0.2 is added at each time step of the training 

data progression to mitigate noise-related challenges 

throughout the training process [45]. Mean squared 

error (MSE) loss was used for each internal 

pretraining autoencoder's output layer. 

This study has compared six advanced 

techniques, including DAE [2], MICE [46], RF 

imputation [14], kNNI [5], mean imputation, and 

mode imputation, to validate our methodology. 

kNNI connects incomplete patterns according to the 

value of kNN [11, 47]. For kNNI, consider 

Euclidean distances and a set of nearest neighbors 

[11]. The kNNI parameter is set as k=5 due to low 

imputation error within an acceptable timeframe and 

being able to reconstruct the complete data set at 

once [48].  

MICE, a multiple imputation method, creates 

separate conditional models for each missing data 

item [49]. The number of iterations for each 

imputation is established as two prominent 

hyperparameters in MICE. These parameters are set 

according to the convergence criterion of the model 

parameters. RF imputation mainly targets repair 

datasets. RF imputation uses a maximum of ten 

iterations (n=10) and 100 estimators with no leaf-

node limitations. For the RF imputation approach, 

the number of iterations and trees utilized in the 

ensemble are specified [50]. MICE and RF 

imputation have the same maximum number of 

iterations. 

5. Result and discussion  

5.1 Convergence of model loss analysis 

The simulation is carried out on previously 

processed data with a batch size of 128. Figure 3 

illustrates the Masked-DAE learning process based 

on training and validation losses with the best 

configuration of the model. It can be seen that the 

loss values converge rapidly within 100 iterations. A 

gradual increase in the accuracy of the training and  
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(a)                                                                                       (b)  

Figure. 3 Validation Loss During Training of Masked DAE L2-Norm Regulization Models: (a) Cocomo81 dataset and 

(b) IFPUG dataset 

 

  
(a) 

 
(b)  

Figure. 4 Scatterplot of Dataset Showing Outliers: (a) The MCAR (left) and MNAR (right) for Cocomo81 data and 

(b) The MCAR (left) and MNAR (right) for IFPUG data 

 

 

validation data is depicted in the first 10-20 epochs. 

There is a rapid decrease in the training and 

validation data loss, and a constant curve is 

observed. This shows the smooth learning process of 

the Masked-DAE model, and there will be no 

overfitting until the 100th epoch. The Masked-DAE 

model performs best and reduces the training and 

validation losses to a close of 0. This indicates a 

gradual convergence of training and validation 

losses, indicating that the time complexity of 

Masked-DAE is very low. The optimal global 

solution can be obtained when the resulting sample 

distribution is the same as the actual data 

distribution. This confirms that our model does not 

“overfit” the entire data set. 

This discovery suggests that the Masked-DAE 

model effectively minimizes the expected loss 

across the empirical distribution of observed data 

and a subset of previously observed corrupted data, 

thereby mitigating potential biases. 
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Using an autoencoder learning approach that is 

unmodified during fine-tuning will result in high 

processing costs and decreased learning efficiency 

due to the large number of parameters [32]. 

Consequently, customization necessitates a 

computationally efficient strategy. In this instance, 

the training data must be reconfigured depending on 

the workload. When constructing the autoencoder 

using dropout techniques, numerous parameters are 

considered to get superior outcomes over non-

dropout procedures. Encoder-decoders can learn the 

regression data pattern more quickly and produce 

better performance in preventing overfitting, which 

will be observed if the NN is deeper when the 

dropout strategy is applied. 

5.2 Outlier detection evaluation 

See the Figure 4, the distribution of outliers in 

the dataset using a scatterplot. Our method performs 

better in detecting outliers in the missingness 

mechanism of MCAR than MNAR.  

At least one variable in each data set exhibited 

outliers, consistent with earlier research on this topic, 

which found that outliers are a regular occurrence in 

empirical software engineering datasets [51]. In 

particular, there are outliers in the distribution of 

effort values for data sets. However, there are only a 

small number of outliers in our imputed data, as 

slight deviations may not represent a significant 

assumption violation. 

5.3 Comparison with existing methods 

Our study involved a phase in which missing 

values were intentionally created, followed by 

imputation. The results are categorized based on 

metrics such as mean absolute error (MAE), root 

mean square error (RMSE), and two missingness 

mechanisms, MCAR and MNAR. The configuration 

type is uniform, and the missing rate (MR) ranges 

from 10% to 80%. Table 2 illustrates the average 

outcomes for all datasets utilized in this analysis. As 

anticipated, an increase in the missing rate correlates 

with a decline in imputation quality (as indicated by 

MAE and RMSE). The method employed by the 

researcher is evaluated by assessing the point 

prediction performance using MAE and RMSE, 

with the best values highlighted in bold. In contrast, 

the poorer values are indicated in italics. 

Table 2 on the Cocomo81 dataset, it can be 

explained that our Masked-DAE method has the 

lowest MAE and RMSE values (presented 

sequentially), which shows that it is the method that 

has the best performance on the MCAR mechanism 

of 3.306; 48.385 (MR 10%) and MNAR mechanism 

2.724; 30.274 (MR 20%). Meanwhile, RF in the 

MNAR mechanism is 0.686; 10.648 (MR 10%), and 

in the MCAR mechanism, 5.303; 64.881 (20%). On 

the other hand, at MR (30%), the Mode imputation 

has the best performance in all mechanisms. At MR 

70%, our Masked-DAE method performs best on the 

MNAR mechanism of 24.675; 214.988, while the 

Modus imputation on the MCAR mechanism was 

22.561; 238.603. In contrast to MR 40%, 50%, 60%, 

and 80%, our Masked-DAE method performs best in 

all mechanisms. kNNI has the worst performance at 

MR 80%. In contrast, Mode imputation performs 

poorly at MR 10%, while Mean imputation performs 

poorly at MR 20%, 40%, and 50%. Meanwhile, 

MICE at MR is 10%, 20%, 30%, 70%, and 80%. 

Finally, RF was worst at MR at 30%, 50%, 60%, 

70%, and 80%. 

The IFPUG dataset shows that MR 10%, 20%, 

40%, 50%, 60%, and 70% show that our Masked-

DAE method performs best (for MAE and RMSE 

values) on the MCAR and MNAR mechanisms. 

Meanwhile, at MR 30%, the best performance of our 

Masked-DAE method is on the MNAR mechanism 

with an RMSE value of 211.665 and RF on the 

MCAR mechanism of 186.406. Meanwhile, the 

baseline model DAE performed well at MR 30% 

with MAE values of 22.597 (MCAR) and 19.507 

(MNAR). On the other hand, at MR 80%, the 

method we propose has the best performance on 

MNAR with an MAE value of 161.195 and a mean 

RMSE value on MNAR of 741.625. On the other 

hand, kNNI has the best performance at MR 80% in 

the MCAR mechanism with a value of 145.383; 

815.389. Considering the MCAR and MNAR 

mechanisms, our Masked-DAE is the best method in 

almost all scenarios. kNNI is also the best approach 

at the highest MR of 80%, although it has the worst 

performance at MRs of 10%, 20%, and 70%. In 

contrast, Mode imputation performs poorly at MR 

50%, 60%, 70%, and 80%, while Mean imputation 

performs poorly at MR 40% and MICE at MR 30% 

and 60%. Finally, the RF is worst at MR 50% and 

80%. 

Table 2 summarizes the imputation performance 

of all methods compared across diverse datasets 

with various missing patterns. The objective of the 

imputation approach is to accurately recover missing 

data, ranging from minor to severe corruption. 

Therefore, this study anticipates that the erroneous 

distribution will align closely with the actual 

distribution after employing this strategy. The 

outcomes obtained from the proposed model 

demonstrate superior point prediction performance 

compared to those from the model discussed in the 

related work section. Specifically, our method 



Received:  February 22, 2024.     Revised: May 1, 2024.                                                                                                  308 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.23 

 

Table 2. The Comparison of Missing Data Imputation Methods based on MAE and RMSE Values 

MR Methods 

Cocomo81 dataset IFPUG dataset 

MAE RMSE MAE RMSE 

MCAR MNAR MCAR MNAR MCAR MNAR MCAR MNAR 

10% Proposed 3.306 2.404 48.385 24.270 0.796 1.520 9.101 19.056 

DAE 5.890 3.684 52.026 53.627 4.673 4.151 11.445 35.199 

kNNI 3.445 1.987 55.820 25.231 60.155 32.317 744.333 556.344 

MICE 5.311 9.189 67.972 145.959 4.975 2.293 93.353 40.036 

RF 5.644 0.686 144.833 10.648 20.753 31.598 249.505 368.768 

Mean 5.187 5.519 62.723 70.322 32.210 20.257 353.618 220.897 

Mode 11.730 2.010 216.394 37.977 45.107 13.969 456.142 193.937 

20% Proposed 6.316 2.724 75.991 30.274 5.739 5.540 65.729 51.976 

DAE 7.271 4.701 85.636 80.038 22.136 9.474 93.956 59.663 

kNNI 6.646 3.365 118.592 41.158 47.472 33.916 586.159 418.784 

MICE 15.771 17.442 308.598 192.509 37.124 42.840 398.142 369.287 

RF 5.303 10.685 64.881 224.990 23.815 60.321 207.756 728.972 

Mean 16.898 10.034 199.959 182.011 44.996 35.466 636.375 283.311 

Mode 13.750 15.223 54.045 352.547 18.443 69.793 157.387 844.081 

30% Proposed 8.678 11.834 72.741 98.392 24.676 26.392 202.184 211.665 

DAE 13.367 13.677 79.842 84.197 22.597 19.507 226.120 259.782 

kNNI 15.473 11.538 348.12 212.095 48.105 39.078 395.322 255.661 

MICE 10.419 31.361 147.685 332.220 88.157 67.967 854.851 593.036 

RF 24.300 18.599 223.360 261.175 22.946 54.685 186.406 403.866 

Mean 11.211 20.886 96.467 267.619 76.640 103.846 681.657 857.599 

Mode 5.202 11.261 57.370 213.097 58.658 68.636 508.257 631.472 

40% Proposed 10.617 12.660 143.815 98.800 52.143 29.525 398.964 219.776 

DAE 21.515 19.447 143.362 143.509 62.720 52.004 310.034 255.163 

kNNI 22.567 23.829 318.633 244.953 121.985 37.617 811.585 295.468 

MICE 25.697 21.905 345.227 292.651 69.073 137.426 438.957 879.304 

RF 16.548 16.298 248.651 212.620 82.895 74.661 692.553 586.787 

Mean 27.117 28.450 387.962 395.681 124.070 138.314 859.921 925.915 

Mode 15.279 12.891 352.234 211.058 96.630 119.925 782.265 912.196 

50% Proposed 18.599 13.687 197.893 85.533 76.038 53.318 469.233 381.913 

DAE 23.719 24.570 234.159 251.787 77.887 90.851 517.310 614.748 

kNNI 28.288 23.801 399.586 242.154 117.596 127.250 602.568 928.755 

MICE 39.360 33.760 401.452 237.054 131.128 78.384 792.996 472.419 

RF 43.292 33.840 424.769 361.185 122.832 172.077 562.737 924.259 

Mean 35.435 33.755 452.248 273.073 110.735 122.160 566.573 760.592 

Mode 25.099 21.707 370.625 290.342 133.217 171.049 1027.238 1126.739 

60% Proposed 20.400 18.297 215.043 204.279 81.882 82.129 376.911 403.129 

DAE 34.892 27.982 233.659 227.895 91.266 88.445 395.561 456.647 

kNNI 31.104 33.850 263.076 290.560 135.758 127.854 876.388 885.781 

MICE 30.940 31.198 304.300 383.954 320.712 149.847 1826.202 911.182 

RF 46.371 42.163 374.008 423.405 148.538 173.024 894.732 1007.413 

Mean 41.902 33.841 389.637 278.517 195.561 114.394 850.860 615.531 

Mode 31.217 22.643 418.524 292.401 165.013 186.022 1017.772 1164.86 

70% Proposed 26.260 24.675 253.586 214.988 107.498 109.234 592.747 531.431 

DAE 37.672 32.239 236.108 214.103 122.864 114.154 635.749 822.252 

kNNI 35.303 38.113 394.687 452.334 211.032 415.663 927.164 1540.646 

MICE 43.822 87.003 369.255 481.355 165.836 119.508 884.633 635.878 

RF 76.450 49.289 513.202 447.956 184.978 165.668 1054.253 1013.437 

Mean 41.066 39.527 396.057 456.852 124.740 158.471 853.492 868.519 

Mode 22.561 27.132 238.603 307.087 157.856 205.404 1016.635 1243.637 

80% Proposed 30.119 26.728 307.702 286.112 160.065 161.195 914.576 936.705 

DAE 42.729 42.255 362.108 294.103 169.632 185.339 886.235 1057.880 

kNNI 43.001 71.347 346.867 378.263 145.383 197.361 815.389 943.972 

MICE 43.393 48.784 425.472 458.618 180.631 197.056 1032.851 998.224 

RF 39.671 41.271 454.728 458.193 353.463 227.259 1593.668 1160.655 

Mean 40.728 43.346 396.021 448.179 207.079 168.663 938.500 741.625 

Mode 35.210 40.352 425.935 468.506 157.842 229.432 1012.731 1261.187 
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(a) 

 

 
(b) 

Figure. 5 The Simulation Results of the Comparison of Imputation Methods: MAE Values: (a) Comparison between 

MAE results obtained from two mechanisms on the Cocomo81 dataset and (b) Comparison between MAE results 

obtained from two mechanisms on the IFPUG dataset 

 

 

 
(a) 

 

 
(b) 

Figure. 6 The Simulation Results of the Comparison of Imputation Methods: RMSE Values: (a) Comparison between 

RMSE results obtained from two mechanisms on the Cocomo81 dataset and (b) Comparison between RMSE results 

obtained from two mechanisms on the IFPUG dataset 
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exhibits the best performance in two project datasets 

at high missing rates, ranging between 40% and 

80%. This study shows that the prediction error rate 

increases with the rates of missing data.  

Meanwhile, the prediction error produced by the 

MCAR mechanisms is lower than that produced by 

the MNAR mechanisms. We find that kNNI 

increases with the percentage of missing data, 

regardless of the mechanism of missing data. 

However, our developed method can reduce model 

variance, resulting in lower generalization errors. 

Our Masked-DAE method is more consistent 

and performs better than other popular imputation 

methods, regardless of metric. As observed in Table 

2, the extent of performance disparity varies 

depending on the dataset and competing methods. 

Also, strong metrics should have little effect on 

outliers. The noisy RMSE distribution shifts more 

than the MAE ones. Thus, it is identified that the 

RMSE is less strong against outliers. On the other 

hand, MAE suffers from imprecision when the 

model error follows a normal distribution. However, 

MAE was also reported to have unbiased results and 

did not show an asymmetric distribution. 

On the other hand, Figures 5 and 6 compare 

imputation methods using MAE and RMSE. In this 

case, it also observed that the measurement error 

rate for all models was presented in visualization to 

facilitate observing the performance of the 

imputation methods. 

Findings from two real-world datasets indicate 

the applicability of the proposed method, which can 

be used on numerical and categorical data. 

Moreover, the DAE approach can avoid multiple 

computations, local minimums, and missing 

gradient problems [32], and using backpropagation 

techniques with various propagation and optimizer 

functions makes learning easier [52]. Conversely, 

L2-norm regularization serves to decrease the 

variance of the model, thereby leading to a reduction 

in generalization error. Moreover, dropout reduces 

overfitting when training limited data sets [53]. This 

explains why our model has the highest accuracy 

rate among the popular approaches utilized in this 

study. Our method can perform much better in 

almost all datasets with small set sizes. Even with 

adding the value, the proportion of missingness 

increases, indicating that our method appears less 

affected by the missing rates. This gives a profit for 

a high missing rate. However, for missing data that 

has an extremely high rate, our method takes a lot of 

time to calculate and has a higher computational 

cost. 

The RF method provides an inbuilt procedure 

for dealing with missing values by weighing the 

frequency of values observed in the variable with 

the random forest closeness after being trained on 

the calculated mean initial data set [54]. On the 

other hand, this method requires a complete set of 

response variables to train the forest [14]. The kNNI 

method offers straightforward computation. 

Consequently, it proves particularly effective when 

applied to datasets characterized by less complex 

feature variance issues. This simplicity is similar to 

more basic techniques like mean imputation, where 

all missing values are replaced with the sample 

mean, potentially resulting in a significant reduction 

in variance [55]. kNNI has overlapping steps for 

evaluating similarities between software projects. 

MICE relies internally on simple regression, which 

may not be able to map complex patterns. MICE has 

no resistance to noise/outliers and is strongly 

affected by the missing rate. Other methods, such as 

mean and mode imputation, can change the data 

variance so that it can provide less efficient 

estimates. 

6. Conclusion  

In this paper, we enhance existing deep learning 

architectures by introducing improvements to the 

training procedure and its architecture. We leverage 

two comprehensive datasets in the SEE field to 

assess the proposed approach's efficacy. In our 

investigation, various missing rates and missingness 

mechanisms patterns are applied. The results 

indicate that the introduced Masked-DAE with L2-

Norm Regularization approach outperforms others. 

However, at an 80% missing rate, the kNNI method 

exhibits the best performance on the IFPUG dataset. 

Findings from this study show that the prediction 

error rate increases with the rate of missing data. 

Furthermore, prediction errors generated by 

MCAR mechanisms are lower than those generated 

by MNAR mechanisms. We find that kNNI 

improves with the percentage of missing data 

regardless of the missingness mechanism. Overall, 

the error of the missing data technique is influenced 

by the missingness mechanism. Nevertheless, our 

method can reduce the model variance, which 

results in lower generalization error. 

Further work could be developed in several 

directions, such as creating a real-time missing data 

imputation framework based on recurrent neural 

networks. Additionally, deep learning should be 

integrated with expert assessment approaches to 

assess the accuracy and validity of imputed data as a 

practical approach. 
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