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Abstract: Line-to-line fault (LLF) is considered one of the most common electrical faults occurring on the array side 

of the Photovoltaic System (PVS). This research proposes a diagnostic method to detect and classify LLFs under low 

mismatch levels, and higher fault impedances of up to 45 ohm when compared to other methods that did not exceed 

25 ohm. The proposed method uses robust ML classifiers, namely Quadratic Discriminate Analysis (QDA) and 

Feed-Forward Neural Network (FNN), to design the required models. For this purpose, seven efficient features 

including array 2-voltages, array 2-currents, fill factor, maximum power to irradiance ratio, and voltage-temperature 

product, are extracted from the I-V characteristics curve of the employed Photovoltaic (PV) array. This is done under 

normal and faulty conditions, with a wide range of climate conditions. The faults are first detected by a detection 

module, then classified according to their mismatch levels by using classification module. Each module uses two 

Machine Learning (ML) models which represent the QAD and FNN classifiers.  The results demonstrate that the 

proposed method can detect the LLFs, even under critical conditions of mismatch and impedance, with an average 

accuracy of 99.81% and 100% for QDA and FNN respectively. In addition, it classifies the severity of these faults 

with an average accuracy of 99.28% and 100% for both adopted models. 

Keywords: Photovoltaic system, Line-to-Line fault, Fault detection and classification, Machine learning, Quadratic 

discriminate analysis, Feed-Forward neural network. 

 

 

1. Introduction  

PV is recognized as the best method of obtaining 

energy from the environment. Its market has the 

highest rate of growth on a global scale, due to its 

direct conversion of solar energy into electrical 

energy, pollution-free operation, long PV panel 

lifespan, lack of noise, installation in a variety of 

geographic locations, ease of maintenance, ability to 

be installed off-grid, and ability to connect to the 

power grid [1-3]. These benefits made the 

production of electricity using PV systems (PVSs) 

to increase rapidly. The PVS is divided into two 

main sections. The first is the DC side, which is 

primarily made of a solar PV array, which in turn 

consist of several PV modules, connected in series 

and parallel to produce the desired current and 

voltage for the inverter input. The second is the AC 

side, which is made of an inverter and the grid 

system [4, 5]. 

The PVS eventually experiences failures, as any 

other systems. These failures are typically caused by 

different PVS faults, which may occur in both the 

DC and AC sides [6, 7]. The majority of these faults 

take place in the DC side of the PVS, particularly in 

the PV array component [8]. Electrical faults are the 

most common in PV arrays. They include Short 

Circuit Fault (SCF), Open Circuit Fault (OCF), Arc 

Fault (AF), LLF, and Ground Fault (GF). The 

presence of these faults can lead to a reduction in the 

lifetime of the PV modules, a decrease in system 

power output creates significant safety hazards [9-

11]. Hence, Fault Detection and Classification 

(FDC) in the PV array is a crucial task to mitigate 

potential risks and undesirable situations, that may 

occur during the operation of the PV array. It is 

imperative to promptly identify and rectify these  
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Figure. 1 10×3 PV array affected by four types of LLF 

 

faults, to prevent the occurrence of unwanted 

scenarios [11, 12]. 

An LLF refers to an unintentional SCF between 

two points, which have different voltage potentials. 

This could happen due to corrosion, mechanical 

damage in the DC junction box, water intrusion, or 

wire chewing by rodents [4, 13]. The severity of the 

LLF is determined by the mismatch level (mismatch 

percentage), which is represented by the number of 

modules, which are impacted by an LLF in a string, 

to the number of hole modules in that string, or can 

be determined by the fault impedance value, which 

is defined by the impedance of the short-circuit path 

[14, 15]. 

Fig. 1 shows a 10x3 PV array, that is affected by 

four cases of LLF, two of them have 10% and 20% 

mismatch percentages, as in F1 and F2, respectively, 

and the others have the exact mismatch percentages 

but with fault impedance represented by Rf. 

The presence of LLF causes a substantial 

voltage drop in the faulty string, causing a back-

feeding current flow, to this string from the other 

non-affected ones. Higher mismatch levels in LLF 

result in higher fault current, due to the inclusion of 

more units in the fault loop. The same happens in 

the case of lower impedance values, where lower 

resistance values of the faulty path result in a larger 

reverse current passing through that path [10, 13]. 

To detect the LLF in the PV array, each string is 

fitted with a conventional protection device, as 

shown in Fig. 1, where an Over Current Protection 

Device (OCPD) is used, according to the National 

Electric Code (NEC), article 690 [16]. In practice, 

each OCPD is actually a fuse. 

The fuse rating (If) of any OCPD is usually 

given by the following expression [14]: 

 

 𝐼𝑓 = 2.1 𝐼𝑠𝑐
𝑆𝑇𝐶 (1) 

 

Where 𝐼𝑠𝑐
𝑆𝑇𝐶  represents the string short circuit 

current at Standard Test Conditions (STC). 

According to [15], the maximum faulty current 

(back-feeding current) through the string during an 

LLF is given by; 

 

 𝐼back = (𝑛𝑠 − 1)𝐼𝑆𝐶
𝑆𝑇𝐶 (2) 

 

Where 𝑛𝑠 is the number of strings in the PV array. 

Although this conventional method has the 

benefits of being easy to implement with low cost, it 

is unable to detect the fault in the case of low back-

feeding current values, that can be caused by a low 

mismatch level, and/or a high impedance of the 

shorted line. This is because the back-feeding 

current, which is produced from these cases, may 

not be able to melt the fuse [14, 15]. Other cases that 

make the fault undetectable, are the operation at low 

irradiance levels, and the presence of a blocking 

diode installed on each string of the PV array, which 

blocks the back-feeding current [4, 13, 17]. All these 

reasons make the detection of an LLF a big 

challenge. 

Few studies attempt to detect and classify LLFs 

under conditions of low mismatch level and/or high 

fault impedance using ML methods. These methods 

include Decision Tree (DT) based [18], Graph-

Based Semi-Supervised Learning (GBSSL) [19], 

Support Vector Machine (SVM) [10], Two-Stage 

SVM [20], Weighted Ensemble Learning-Based 

[21], multiple ML algorithms [15, 17], Deep 

Learning Method Based on Convolutional Neural 

Network (CNN) and/or Bidirectional Gated 

Recurrent Unit (Bi-GRU) [22], and Optimized SVM 

[23]. However, some of these studies don’t involve 

critical values of mismatch and impedance [18, 19], 

where these studies did not include mismatch levels 

lower than 30% and fault impedances higher than 20 

Ω. Other studies rely only on the detection approach, 

they showed low accuracy results, at low mismatch 

and high impedance conditions [10, 19, 20], e.g., 

[20] did not exceed 82.15% in the best case. Some 

studies could only classify the LLF as a part of other 

employed faults, where they are not concentrating 

on classifying this fault according to its mismatch 

levels [15, 21, 22]. Study [15] concentrates on the 

severity of fault impedances in LLF and ignores the 
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severity of mismatch levels, while [22] concentrates 

on the severity of mismatch levels and ignores the 

effect of impedance value. In addition, the [22] 

depended on deep learning that needs to a large 

dataset to train and learn the model. Other studies 

are able to get higher-accuracy results using Logistic 

Regression (LR), Navi bias (NB), and SVM 

classifiers, but with highest impedance value, which 

is at most 25 Ω [17, 21, 23]. Finally, almost all 

previous studies except [19] and [22] studies are 

common in using same ML techniques which are 

(DT, SVM, KNN, LR, and NB).  

All the previously mentioned (except [19] and [22]) 

studies have in common that they used from the 

same algorithms group (DT, SVM, KNN, LR, and 

NB) in their methods and neglected the other 

algorithms. 

This study proposes an intelligent method to 

detect and classify the LLF. The proposed method 

adopted challenging values of low mismatch levels, 

and high fault impedance values, under different 

climatic conditions, using efficient ML classifiers, 

FNN and QDA.  

The main contributions of this study are: 

• The primary features have been extracted under 

wide range of I-V characteristics of the PV array. 

MATLAB/Simulink-based model is utilized to 

differentiate between faulty and normal situations. 

• New features denoted by 𝛾𝑚𝑝𝑝  and 𝛼  were 

introduced to increase the diagnostic performance. 

•  Two modules have been joined, one for fault 

detection and the second for fault classification. 

• Two different and robust ML classifiers were 

developed which are QDA and FNN. 

• The suggested methods can detect and classify 

LLF with high accuracy and with low mismatch 

levels and high impedance challenging. 

2. Fault detection and classification 

challenges  

Since the I-V curve of any PVS is directly 

affected by any changes, that occur in the PV array, 

any fault condition may change the shape of that 

curve. However, detecting and classifying faults 

based on I-V curve changes is very difficult task, 

when compared to other methods. Distinguishing 

faulty and normal curves can be very challenging in 

some cases. For a better understanding, seven I-V 

curves of the PV array shown in Fig. 2 are recorded 

by simulating the array shown in Fig. 1 under a 

normal operation case and six different cases of LLF 

scenarios, with different values of mismatch and 

impedance, all these simulations are implemented  

under STC. These I-V curves are assigned from C0  

 
Figure. 2 I-V curves of normal condition and selective 

faulty cases 

 

to C6, as shown in Fig. 2.  

From Fig. 2, the following issues can be 

observed: 

1) Curves represented by low mismatch levels and 

high impedances are too close to the normal 

curve C0 (especially C1 and C2), where it is a 

big challenge to distinguish between these faulty 

conditions and the normal condition.  

2) Curves represented by low mismatch levels and 

low impedances, are very close to those 

represented by higher mismatch levels and 

higher impedances (C1 and C2, C3 and C4, C5 

and C6), where it is considered another challenge 

to classify these faulty conditions from each 

other. 

However, detecting and classifying these faults 

requires the extraction of efficient features from the 

I-V curve, collecting a sufficient dataset that covers 

many faulty cases under different conditions, and 

choosing a proper ML classifier for this dataset. 

3. The proposed method  

The proposed method is based on ML 

techniques to detect and classify the LLF, under 

challenging scenarios of mismatch level and fault 

impedance value. This method consists of two 

modules, the first has two classes, that represent the 

normal and faulty cases, where its primary objective 

is to detect the LLF case, through a binary 

classification process. The second module includes 

multiple classes, that represent the mismatch 

percentage severity, its job is to classify the detected 

LLF using a multiclass classification process, as 

shown in Fig. 3.  

Each module involved two ML (QDA and FNN). 

The purpose of employing two classifiers is to 

compare their performance and select the best
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Figure. 3 The flowchart of the proposed method 

 

 
Figure. 4 The workflow structure of the two detection and classification modules 

 

classifier in each module. 

To implement these models, a set of features is 

extracted from the I-V curve of the PV array. These 

features are then used to collect the necessary 

training/testing dataset. The dataset is produced 

using MATLAB/Simulink, across several climate 

and fault scenarios. Subsequently, the dataset is 

labelled and subjected to preprocessing procedure, 

in order to facilitate its suitability for the subsequent 

training and testing phases.  

The proposed models are trained using 80% of 

the dataset, while the remaining 20% are used for 

testing. In addition, an extra testing procedure is 

implemented, using another unseen dataset to assess 

the robustness, effectiveness, and generality of the 

proposed method. Finally, the performance of the 
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trained models is conducted using accuracy 

confusion matrix, and F1-score confusion matrix. 

The Bayesian Optimization (BO) method is adopted 

in this paper, to assign the optimal hyperparameters 

for the FNN, and hence achieve the best possible 

performance of the FNN model.  

Fig. 4 shows the workflow structure of the 

proposed method. The subsequent subsections 

provide a more comprehensive elaboration of each 

individual phase. 

3.1 Feature extraction 

The initial step involves the extraction of 

appropriate features from the I-V curve. These 

features must possess certain characteristics, they 

must be capable of effectively describing a faulty 

scenario, and differentiating them from other 

complex scenarios, scalable for PVSs of different 

sizes, having smaller dimensions to enhance the 

training process, and conserve memory, and easily 

measurable. In this study seven distinct features are 

derived from the I-V curves of the employed PV 

array in the following manner: 

• Features 1 to 4 (f1- f4): These features are 

regarded as the fundamental key elements of the 

PV array I-V curve, which are directly derived 

from it. These features are Vmpp, Impp, Voc, and Isc. 

Where Vmpp and Impp are the array voltage and 

current at the maximum power point of operation, 

respectively, while Voc is the maximum voltage, 

that the array can produce with no load, and Isc is 

the maximum current, that the array can deliver 

when the load is short-circuited. 

• Feature 5 (f5): This feature is extracted from the 

previous four features. it is called the Fill Factor 

(FF), which determines the maximum power 

output from the array [10]. The FF is defined as, 

 

 𝐹𝐹 =
𝑉𝑚𝑝𝑝×𝐼𝑚𝑝𝑝

𝑉𝑜𝑐×𝐼𝑠𝑐
 (3) 

 

• Feature 6 (f6): This feature takes the irradiance 

(G) into account. It’s called Gamma at MPP 

(𝛾𝑚𝑝𝑝), it’s  

• defined as the ratio of the output maximum PV 

power to the solar irradiance [15, 24], as given 

below.  

 

 𝛾𝑚𝑝𝑝 =
𝑃𝑚𝑝𝑝

𝐺
=

𝑉𝑚𝑝𝑝×𝐼𝑚𝑝𝑝

𝐺
 (4) 

 

• Feature 7 (f7): This feature ( 𝛼 ) involves the 

surface temperature of the PV array (T). It is 

worth noting that the voltage of the PV array is 

directly influenced by T. Consequently, this 

feature is expressed by multiplying 𝑉𝑚𝑝𝑝 and T as 

follows: 

 

 𝛼 = 𝑉𝑚𝑝𝑝 × 𝑇  (5) 

 

3.2 Dataset generation and labeling 

Two different datasets are generated in this 

paper. The first is the original dataset (D), which is 

used for training and testing the proposed ML 

models. The second dataset is an unseen dataset 

(Dunseen), which is used to implement a second test 

process, to evaluate the generalization of these 

models. This is accomplished by modelling the PV 

array configuration as depicted in Fig. 1 using 

MATLAB/Simulink environment, to record and 

store the values of the seven features. The PV array 

consists of 3 parallel strings, each has 10 modules 

connected in series. The maximum power generated 

by this array is 9.5 kW under STC (Irradiance=1000 

W/m2 and Temperature=250 C). Each PV module is 

a type of SunPower SPR-315E-WHT-D with the 

following STC electrical specifications addressed in 

Table 1. 

The D dataset is collected by simulating this 

model, under normal operation case which referred 

as F0. The other five cases of LLF are considered 

with different mismatch levels, namely F1 has 10% 

mismatch, F2 has 20%, F3 has 30%, F4 has 40%, 

and F5 50%. A total of 3960 samples are collected 

from this process. Note that each case of (F0-F5) is 

simulated under numerous scenarios of fault 

impedances, and climate conditions of irradiance 

and temperature. The Dunseen dataset has 324 samples, 

this dataset is collected by simulating the cases (F0-

F5), and new two cases F6 of 60% and F7 of 70% 

mismatch, under different scenarios of fault 

impedances and climate conditions, when compared 

to the D dataset scenarios. 

Each of the D and Dunseen datasets is divided into 

two sub-datasets. One is dedicated to the detection 

module, and the other is used for the classification 

module. In total, four sub-datasets are created, as 

detailed in Table 2. The sub-datasets associated with 

the detection module, contain all the acquired data  

 
Table 1. Electrical specifications of the PV module 

Maximum power (Pmax) 315.072 W 

Open-circuit voltage (Voc) 64.6 V 

Short-circuit current (Isc) 6.14 A 

Voltage at maximum power point (Vmp) 54.7 V 

Current at maximum power point (Imp) 5.76 A 
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Table 2. The generated datasets with their labels for each module 

 

cases, while the sub-datasets employed in the 

classification module, include only the fault cases, 

i.e., excluding the normal case. 

The detection module is designed to apply 

binary classification. As a result, the sub-datasets 

associated with this module, are labelled with only 

two classes: NF, which refers to the normal case F0, 

and F, which refers to the faulty cases (F1-F7). On 

the other hand, the classification module is 

developed as a multiclass classification system, in 

which its sub-datasets are assigned to four 

distinctive class labels. These labels are denoted as 

M10, which corresponds to the F1 case, M20 for F2, 

M30 for F3, and M≥40 for fault cases of mismatch 

values that equal or greater than 40% (F4-F7). 

3.3 Data preprocessing 

To increase the accuracy of the QDA and FNN 

classifiers and reducing their training cost, a data 

scaling method is needed, to reduce the difference in 

scale, among the feature values (attributes) in the 

dataset. Two main approaches are usually used for 

this purpose, namely normalization and 

standardization.   

The standardization approach is applied in this 

research, due to its advantage in dealing with 

outliers, unlike the normalization approach [25]. 

Each attribute is standardized by the following 

equation [15]: 

 

 𝑥′ =
𝑥−𝜇𝑥

𝜎𝑥
 (6) 

 

Where 𝑥′ is the standardized attribute value, 𝑥 is the 

original attribute value, 𝜇𝑥 and 𝜎𝑥 are the mean and 

standard deviation of 𝑥, respectively.  

3.4 The employed classifiers 

3.4.1. Quadratic discriminant analysis (QDA) 

The Discriminant Analysis (DA) is a ML 

algorithm used for classification and dimensionality 

reduction. The primary goal of DA is to find the 

combination of features, that best separates the 

classes in a dataset. There are two types of DA, 

namely Linear Discriminant Analysis (LDA) and 

QDA. The QDA is an extension of LDA, that 

reduces the requirement of a shared covariance 

matrix across all classes. Conversely, every class is 

permitted to possess its individual covariance matrix. 

This provides greater flexibility for modelling 

complex relationships inside each class. The main 

purpose of QDA, is to probabilistically allocate a 

given observation(s) to the class with the highest 

likelihood. This is carried out using a quadratic 

discriminant function 𝑔𝑘(𝑥) as a classification rule, 

that estimates the parameters of a Gaussian 

distribution for each class [26, 27]. This function is 

obtained using the following algorithm [26]: 

1) Construct a training dataset (𝑋)  consist of 𝑁 

samples (𝑥)   each consist of 𝑀  variables 

(feature), and it is labeled with 𝐶 classes (𝑘). 
2) Calculating the priori probability of each class 

(𝜋𝑘) based on the training data: 

 

Dataset 

type 
Case of PV array 

Irradiance 

(W/m2) 

Temp. 

(C) 

Fault 

impedance 

(Ω) 

No. of 

samples 

Total 

no. of 

samples 

Label 

Detection module datasets 

D 
Normal operation (F0) 100:100:1000 0:5:50 - 110 

3960 
NF 

LLFs (F1-F5) 100:100:1000 0:5:50 0:5:30 3850 F 

Dunseen 
Normal operation (F0) 150:200:550 2.5:10:22.5 - 9 

324 
NF 

LLFs (F1-F7) 150:200:550 2.5:10:22.5 3:10:33 & 45 315 F 

Classification module datasets 

D 

LLF (F1) (10% mismatch) 100:100:1000 0:5:50 0:5:30 770 

3850 

M10 

LLF (F2) (20% mismatch) 100:100:1000 0:5:50 0:5:30 770 M20 

LLF (F3) (30% mismatch) 100:100:1000 0:5:50 0:5:30 770 M30 

LLFs (F4 & F5) (40% & 

50% mismatch) 
100:100:1000 0:5:50 0:5:30 1450 M≥40 

Dunseen 

LLF (F1) (10% mismatch) 150:200:550 2.5:10:22.5 3:10:33 & 45 45 

315 

M10 

LLF (F2) (20% mismatch) 150:200:550 2.5:10:22.5 3:10:33 & 45 45 M20 

LLF (F3) (30% mismatch) 150:200:550 2.5:10:22.5 3:10:33 & 45 45 M30 

LLFs (F4-F7) (40%-70% 

mismatch) 
150:200:550 2.5:10:22.5 3:10:33 & 45 180 M≥40 
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 𝜋𝑘 =
𝑛𝑘

𝑁
   , 𝑘 = 1,2, … . . , 𝐶 (7) 

 

Where 𝑛𝑘  is the number of samples in class 𝑘, 

and 𝑁 is the total number of dataset samples. 

3) Computing the mean vector for each class (𝜇𝑘) 
by the following equation: 

 

 𝜇𝑘 = 
 

𝑛𝑘
 ∑ 𝑥𝑖

𝑘𝑛𝑘
𝑖=  (8) 

 

Where 𝑥𝑖
𝑘 is the i-th sample in class 𝑘. 

4) Calculating the covariance matrix ∑  𝑘 for each 

class 𝑘 as in Eq. (9). 

 

 ∑ =
 

𝑛𝑘− 
∑ (𝑥𝑖

𝑘 − 𝜇𝑘)(𝑥𝑖
𝑘 − 𝜇𝑘)

𝑇𝑛𝑘
𝑖=  𝑘  (9) 

 

5) Computing the quadratic discriminant function 

𝑔𝑘(𝑥) for each class 𝑘: 

 

𝑔𝑘(𝑥) = −
1

2
log|𝛴𝑘| − 

 

2
(𝑥 − 𝜇𝑘)

𝑇𝛴𝑘
− (𝑥 − 𝜇𝑘) + log(𝜋𝑘) (10) 

 

6) Finally, the classification process is 

accomplished by assigning the new sample 𝑥 to 

the class with the highest discriminant function 

value: 

 

 Class(𝑥) = arg𝑚𝑎𝑥
𝑘

 𝑔𝑘(𝑥) (11) 

 

As shown in Eq. (10), the decision boundary in 

QDA is quadratic, making it more flexible than the 

LDA, but it requires the estimation of more 

parameters. The algorithm is suitable when the 

assumption of equal covariance matrices, for all 

classes is not met, as in the datasets employed in this 

work. It is worth noting that the QDA does not 

possess any explicit user-configurable 

hyperparameters, that may be adjusted before the 

training. The algorithm computes the covariance 

matrices and mean vectors for each class, from the 

data through the training process. 

3.4.2. Feed-forward neural network (FNN) 

This network, also known as Multilayer 

Perceptron, is one of the main types of Artificial 

Neural Networks. It is widely employed in ML for 

classification tasks, due to its ability of modelling 

complex functions in data. The structure of the FNN 

is composed of neurons, also known as nodes, which 

are organized into layers. The initial layer is referred 

as the input layer, the last layer is known as the 

output layer, and the layers in between are the 

hidden layers. Every neuron in the hidden layers is 

fully connected with all the neurons in the preceding 

and succeeding layers. The connection between any 

two connected neurons is defined by a weight 

coefficient (w). Furthermore, each neuron in an 

individual layer (except the input layer) is 

characterized by a threshold coefficient, usually 

called the bias (b). The term "feed-forward" came 

from the fact, that the information inside this 

network flows only in one direction, moving only 

from the input nodes to the output nodes [28–30].  

Fig. 5 shows the structure of the proposed FNN 

which is used for the classification task. 

Note that the structure of the detection task FNN 

used in this paper only differs in the number of 

output classes, where it has only two classes (NF & 

F). 

However, each neuron in the hidden and output 

layers has an activation function (f), which provides 

non-linearity function to the network, allowing it to 

model complex relation. The general output formula 

(z) of each hidden and output neuron is determined 

by Eq. (12) [29]. 

 

 𝑧 =  (∑  𝑁
𝑖= 𝑤𝑖𝑥𝑖 + 𝑏) (12) 

 

Where, N is the number of input connections to 

the node, 𝑤𝑖  is the weight associated with the i-th 

input connection, 𝑥𝑖 is the input value from the i-th 

connection, b is the bias term associated with the  

node, and f is the activation function, which is 

applied as elementwise to the result. 

The network is trained through these layers, to 

map input features to target class labels, through a 

process called supervised learning. The training of 

the FNN uses labelled data, to iteratively adjust the 

weights and biases, with a backpropagation process 

until the network can accurately predict the class 

labels for new unseen data [28, 31]. 

The FNN has many hyperparameters that must 

be set before the training process. The choice of 

hyperparameters significantly influences the 

performance and behaviour of the network  [32]. 

These hyperparameters are represented by: (i) The 

number of hidden layers, (ii) The size of each 

hidden layer (number of neurons in each hidden 

layer), (iii) The choice of the activation function, 

(iv) The learning Rate, (v) The layer weights Initials, 

(vi) The layer biases Initials, (vii) The maximum 

number of training iterations, and (viii) 

Regularization strength. 

In the proposed FNN model, some of these 

hyperparameters are manually set as follows:  

- Learning Rate = 0.001 
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Figure. 5 FFN architecture used for LLF classification 

 

- Layer weights Initializer = random values (0-1) 

- Layer biases Initializer = zeroes 

- Maximum number of training iterations = 1000 

- The Activation function of the output layer = 

softmax 

As shown in Fig. 5, the number of hidden layers 

and the number of neurons in each hidden layer are 

not initially set, because they are set using the BO 

method [33]. This technique is used to determine the 

ideal hyperparameter value for the FNN classifier 

and, which provides the best possible performance 

for the trained model. BO is acknowledged to be 

more effective than alternative techniques, at 

locating the ideal parameters in a reasonable length 

of time [34]. The activation function and the 

regularization strength are also set by using this 

optimizer. In this research the BO is used to select 

the optimal hyperparameter values from the 

following ranges and options:  

- Number of hidden layers (1-2)  

- Size of each hidden layer (1-100)  

- Activation function of hidden layers (ReLU, tanh, 

and sigmoid).  

- Regularization strength (nonnegative scalar 

between 0-1). 

3.5 Training and testing 

Before implementing the suggested detection 

and classification models, The D dataset as listed in 

Table 2, is divided into two sets of data using a 

Hold-Out Validation method [15], as illustrated in 

the workflow structure of the proposed method 

shown in Fig. 3. These sets are the training data 

(80% of D) and the holdout data (20% of D). The 

training data (Dtrain) is used to train the models, 

while the holdout data (Dholdout) is used for testing. 

Furthermore, another testing process is employed in 

this work by using the Dunseen as listed in Table 2. 

3.5.1. Training 

To avoid the overfitting problem in the training 

process and estimate its performance, a K-fold 

cross-validation (K-FCV) method [35] with k=5 is 

used in this paper. To train the QDA and FNN, in 

each module, a total of 3168 samples (Dtrain) (88 

normal operation and 3080 LLF samples) are used, 

to train the detection module, whereas only 3080 

samples of LLF cases are used to train the 

classification module. 

The BO technique is used to determine the 

optimal values, of some hyperparameters of the 

FNN classifier through the training process.  

3.5.2. Testing 

Two testing scenarios are implemented in this 

paper. The first scenario is utilized to evaluate the 

performance of the trained models, using a portion 

of Dholdout dataset. The second test scenario is used to 

validate the generalization performance of the 

proposed models, by examining their ability to 

detect faults by using the Dunseen dataset. 

To test the trained QDA and FNN models in 

each module using the first scenario, a total of 792 

samples Dholdout (22 normal operation and 770 LLF 

samples) are used to test the detection module, 

whereas only 770 samples of LLF cases are used to 

test the classification module. On the other hand, to 

establish the second test scenario, a total of 324 

samples of the Dunseen dataset (9 normal operation 

and 315 LLF samples) are used to test the detection 

module, whereas only 315 samples of LLF cases are 

used to test the classification module. 

3.5.3. Performance metrics 

A Confusion Matrix (CM) tool [36] is used to 

assess the performance of the ML models. The CM 

for binary classification problem is shown in Fig. 6. 

Two confusion matrix (CM) metrics: 

classification accuracy and F1-score, have been used 

to assess the performance of the models. 

- Classification accuracy: This metric represents 

the total number of correct predictions in each 

class divided by the total number of dataset 

samples. The accuracy can be calculated from the 

CM in Fig. 6 according to the following 

expression [37]: 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (13) 

 

Where TP (True Positive) represents the 

numbers of data in class1 that are correctly predicted, 

TN (True Negative) represents the numbers of data  
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Figure. 6 The confusion matrix  

 

 

in class2 which are correctly predicted, FP (False 

Positive) represents the numbers of data in class2 

that are incorrectly predicted as class1, and FN 

(False Negative) represents the numbers of data in 

class1 that are incorrectly predicted as class2. 

- F1-score: As seen in Table 2, the collected 

datasets are imbalanced, especially in the 

detection module. In this case, evaluating the 

performance using the classification accuracy 

metric alone is considered insufficient. F1-score is 

an efficient CM metric that is usually used to 

assess the performance of the ML classifiers in the 

case of an imbalanced dataset [38]. The F1-score 

is calculated from the CM as, 

 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
 (14) 

 

Where Precision and Recall are another CM 

metrics that can be calculated from Eq. (15) and Eq. 

(16), respectively. 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (15) 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (16) 

 

In this paper, a sample-weighted F1-score metric 

is used beside the accuracy metric for binary and 

multiclass classification problems to evaluate the 

performance of the four trained models. This metric 

can be computed as, 

 

 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑤𝑖 × 𝐹1 𝑠𝑐𝑜𝑟𝑒𝑖
𝑁
𝑖=   (17) 

 

Where N is the number of classes in the dataset 

and ѡi can be defined as, 

 

 𝑤𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
  (18)  

 

Table 3. The optimized hyperparameters of FNN models 

 

 
Figure. 7 The training accuracy of the four models 

 

4. Results and discussion  

4.1 Training results 

The optimized parameters of the FNN models 

are listed in Table 3. The BO methods sets different 

parameters, to train each FNN classifier in both 

modules, except for the number of hidden layers, 

which is set with only one layer for both modules, 

giving the classifiers faster learning speed, than the 

two- or three-layers scenario. 

 

 
Figure. 8 The training time of each model
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Table 4. Performance results of the proposed method using the two testing scenarios 

 

Fig. 7 shows the training accuracy (k-fold cross-

validation accuracy) of the four models. The training 

accuracy reflects how well the model fits the 

training data. It gives an estimation of how well it 

generalizes to unseen data. From Fig. 7, it can be 

seen that the FNN classifier outperforms the QDA 

classifier, in terms of training accuracy for both 

detection and classification tasks with a training 

accuracy of 100%, making it more promising for 

detecting unseen faults. 

Fig. 8 shows the amount of time, that the ML 

models take to learn from the training datasets. It is 

worth noting that the training time of the 

classification task is lower than the training time of 

the detection task. This can be attributed to the 

training datasets in classification modules, being 

larger than in the dataset in the detection modules, 

the multiclass classification learning process usually 

takes more time, than the binary classification 

process, and the FNN classifier in the classification 

module has more layers, than the detection module. 

In addition, The QDA classifier has a lower training 

time, than the FNN classifier in both modules. 

4.2 Testing results 

As mentioned before, the performance of the 

four trained models is evaluated based on two CM 

metrics: classification accuracy and F1-score. The 

accuracy and weighted F1-score of the four trained 

models for the two testing scenarios are summarized 

in Table 4, and the corresponding CMs are 

illustrated in Fig. 9.  

As can be seen from the table, the proposed 

method was able to detect the faulty cases (F) with 

an average F1-score equal to 99.17% using the QDA 

classifier and 100% using the FNN classifier, while 

it could classify these faulty cases according to their 

mismatch severities (M=10, M=20, M=30, M≥40) 

with an average F1-score equal to 99.28% for the 

QDA classifier and 100% for the FNN classifier. 

 

 
(a)                                             (b) 

Figure. 9 The testing CMs: (a) using hold-out data and (b) 

using unseen data

Model type 
Model 

no. 
Classifier 

F1-score 
Average  

F1-score 

Accuracy 
Average 

accuracy 1’st   test 

scenario 

2’st   test 

scenario 

1’st   test 

scenario 

2’st   test 

scenario 

Fault 

detection 

1 QDA 99.74 98.6 99.17% 99.62% 100% 99.81 

2 FNN 100% 100% 100% 100% 100% 100% 

Fault 

classification 

3 QDA 98.56% 100% 99.28% 98.57% 100% 99.28% 

4 FNN 100% 100% 100% 100% 100% 100% 
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Table 5. Comparative results between the proposed method and other methods reported in the literature 

 

In contrast, the proposed method can detect the 

faulty cases F with an average accuracy of 99.81%, 

using the QDA model and 100% using the FNN 

model, while it can classify these faulty cases with 

an average accuracy of 99.28%, for the QDA model 

and 100%, for the FNN model. 

From the testing result, the following 

conclusions can be addressed: 

1)  All the models exhibit high F1-score results 

despite being trained with imbalanced datasets. 

2) The proposed method works efficiently, even 

with new fault cases, that are represented by the 

Dunseen dataset. 

3) Both classifiers show a notable level of F1-score 

and accuracy in detecting and classifying the 

LLF, even under challenging conditions of low 

levels of mismatch, and high fault impedance up 

to 45 Ω. Nevertheless, the FNN classifier 

demonstrates a notable advantage over the QDA 

classifier, by achieving a superior accuracy of 

100%. 

4.3 Comparison with other methods 

The effectiveness of the proposed method is 

compared to the outcomes of five different methods 

introduced in Section 1 [15, 22, 21, 17, 23], to 

provide additional validation for the proposed 

method. The comparison is based on various 

qualitative factors summarized in Table 5. Note that 

in studies that use more than one classifier (like [15, 

17], and the proposed method), only the result of the 

classifier of the highest accuracy is listed in this 

table. 

In addition to the implementation simplicity, 

Table 5 demonstrates that the proposed approach 

can handle the following challenges points: 

1) The mismatch level classes included four 

different mismatches cases (M=10, M=20, M=30, 

M≥40) compared to other methods that did not 

exceed three classes; hence, it introduced a 

higher challenge in the classification task. 

Case 

study 

Fault 

cases 

Included severities of 

mismatch (mm) and 

impedance (Rf) in LLF 

Used ML 

technique 

Number of 

features 
Accuracy 

[15] 

LLF 

OCF 

ARCF 

PSF 

MPPTF 

mm = 25% 

Rf = 0-30 Ω 
DT, KNN, SVM 4 

Tested by holdout data 

Det = 100%         SVM 

Class = 89.84%    SVM 

[22] 

LLF 

OCF 

PSF 

Mm = 25%, 50%, and 75% 

Rf = 0 Ω 
CNN, Bi-GRU 3 

Tested by holdout data 

Det = 99.46% 

Class = 100% 

[21] 
LLF 

OCF 

mm = 16%, 33%, and 50% 

Rf = 0-25 Ω 

weighted ensemble 

learning 

(LR,SVM, KNN) 

16 
Tested by holdout data 

Class = 98.61% 

[17] 
LLF 

GLF 

mm = 10%, 20%, and 

>20% 

Rf = 0-25 Ω 

(LR, NB, SVM) 

with Sequential 

Forward Search 

approach for feature 

selection 

Det. 

LR=8, NB=3          

SVM=2 
 

Class. 

LR=4, NB=5       

SVM=2 

Tested by holdout data 

Det = 98 %         NB 

Class = 96.4 %   LR 
 

Tested by unseen data 

Det=97.67%      NB 

Class=98.33%   LR 

[23] LLF 

mm = 10%, 20%, and 

≥30% 

Rf = 0-25 Ω 

(SVM) 

with a genetic 

algorithm for 

feature selection 

Det. = 3 

Class = 2 

Tested by holdout data 

Det = 100% 

Class = 99.12% 
 

Tested by unseen data 

Det=100% 

Class=100% 

Proposed 

method 
LLF 

mm = 10%, 20%, 30%, 

and ≥40% 

Rf = 0-45 Ω 

QDA 

FNN 
7 

Tested by holdout data 

Det = 100%       FNN 

Class = 100%    FNN 
 

Tested by unseen data: 

Det = 100%       FNN 

Class = 100%    FNN 
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2) The values of fault impedance can reach up to 45 

Ω compared to other mentioned methods, which 

did not exceed 30 Ω. 

3) The performance accuracy is 100% in both 

testing scenarios using the FNN classifier 

compared to other methods.  

In short, the proposed method was effectively 

able to detect and classify the LLF under several 

situations involving low mismatch levels and high 

fault impedances compared to the other reported 

methods listed in Table 5. 

5. Conclusion  

Detecting and classifying the LLF in the PVS 

under cases of low mismatch level and high fault 

impedance represent a big challenge. Little attention 

has been paid to the diagnosis of the LLF, that 

considers this scenario. This paper presents a robust 

ML method to detect and classify the LLF, under 

challenging conditions of mismatch and impedance. 

Two ML classifiers QDA and FNN are used in this 

work. These classifiers are employed to design four 

ML models: two for the detection module, and two 

for the classification module. The faulty cases are 

first distinguished from the normal case by the 

detection module, then the faults are classified by 

the classification module, according to their 

mismatch severity. The models are trained using a 

training dataset, extracted from seven key features 

of the PV array I-V curves, under normal operation 

and challenging LLF conditions, with different 

climates. The efficiency of this method is evaluated 

by testing the trained models with two testing 

datasets: a portion of the original collected dataset 

and a new unseen dataset. The proposed method can 

detect and classify the LLF under challenging 

scenarios of mismatch level, and fault impedance 

with a high average accuracy of 100% using the 

FNN model. The method outperforms the other 

methods reported in the literature, as it achieves 

better level of accuracy in diagnosing the LLF under 

higher fault impedance of 45 Ω. 
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