
Received:  March 21, 2024.     Revised: April 29, 2024.                                                                                                   243 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.19 

 

 
A Lightweight Deep Learning-Based Ocular Disease Prediction Model Using 

Squeeze-and-Excitation Network Architecture with MobileNet Feature 

Extraction 

 

Amera W. Al-funjan1          Hanaa M. Al Abboodi2*          Najlaa Abd Hamza3 

Wafaa M. Salih Abedi4          Alaa H. Abdullah2 

 
1College of Education for Pure Sciences, University of Babylon, Babylon, Iraq 

2Department of Electrical Engineering, University of Babylon, Iraq 
3College of Nursing, University of Baghdad, Baghdad, Iraq 

4Management Information System Department, City University Ajman, UAE 

* Corresponding author’s Email: hanaa.ali@uobabylon.edu.iq 

 

 
Abstract: The field of ophthalmology offers great promise for improving patient care and outcomes via automated 

diagnosis of eye illnesses. Using the Squeeze-and-Excitation Network (SENet) with a Mobile-Net backbone, we 

describe a unique deep-learning method for automatic illness categorization from retinal images in this paper. Using a 

lightweight transfer learning model with dramatically decreased parameters, we aim to achieve high accuracy and 

robust performance in binary classification tasks, such as normal vs. cataract and normal vs. other disease classes. We 

create and assess a lightweight model using a sizable dataset of retinal pictures from the Ocular Disease Intelligent 

Recognition (ODIR) database. We achieve remarkable accuracy values that surpass 99.9% on both training and 

validation datasets for all classification tasks through extensive testing and validation. Our models demonstrate 

constant performance metrics and small loss values, highlighting their efficacy and dependability in automated illness 

detection. We also review our models’ clinical applicability and possible influence in helping medical professionals 

with early illness diagnosis, treatment planning, and patient management. Our research constitutes a noteworthy 

progression in AI-based ocular illness diagnosis, providing a dependable and practically applicable structure for 

automated disease categorization from retinal images. 

Keywords: Ocular disease classification, Squeeze-and-excitation network, Mobile-net, Feature extraction, Transfer 

learning. 

 

 

1. Introduction 

The eye is one of the most vital organs for daily 

tasks [1, 2]. Retinal damage can be irreversibly 

damaged by eye illnesses [3]. Eye problems can lead 

to blindness or vision impairment, which makes it 

difficult for people to read, drive, recognize faces, 

and navigate their surroundings [3]. Motor, linguistic, 

emotional, social, and cognitive development 

impairments may occur in children with significant 

visual impairment [4]. Low academic attainment is a 

typical issue for visually impaired school-aged 

children. Reducing symptoms and stopping disease 

development are treatment goals for these illnesses. 

Vision rehabilitation has been shown to be extremely 

helpful in restoring functioning for individuals with 

irreversible vision loss resulting from a range of eye 

disorders, including glaucoma and trauma-related 

consequences [5]. 

Medical imaging creates visual representations of 

the internal architecture of the human body using a 

variety of methods [6]. For non-invasive assessments 

of physiological processes and anatomical 

characteristics, it is essential [7, 8]. Medical 

practitioners use these images to track, identify, and 

treat illnesses. AI-based techniques can be used by 

healthcare facilities to treat eye issues effectively [9, 

10]. These algorithms can recognize early-stage cases 
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of eye disorders by evaluating the medical images 

including optical coherence tomography (OCT) and 

retinal images [9]. 

Advanced artificial intelligence (AI) methods 

proved significant ability in evaluating patient 

pictures and conducting remote consultations [11]. 

Furthermore, the AI application enables remote 

monitoring of patients’ ocular issues, decreasing the 

requirements for frequent in-person examinations 

[12]. AI algorithms can classify patients, and 

individuals, critical groups depending on the severity 

of their conditions [13]. A range of patient data, such 

as genetic information, imaging results, and medical 

history are evaluated by machine learning and its 

algorithm to provide suggestions for individualized 

therapy [14]. Also, these procedures ensure 

treatments are tailored to meet patients’ needs and 

characteristics. 

Recently, image-based Convolutional Neural 

Network (CNN) models have been employed to use 

the retinal, fundus, and OCT scans to categorize eye 

illnesses in different stages [15]. The first step of this 

process requires collecting a large scale of medical 

images that cover various eye disorders. Visual 

representations of eye disorders were obtained using 

medical imaging equipment or databases. A labeled 

dataset has been trained using the CNN model and 

supervised learning techniques [16]. In training, the 

model can identify features, textures, and patterns in 

the pictures that function as biomarkers for different 

types of ocular disorders [17]. After optimization, the 

model is tested on a separate dataset to evaluate its 

real-time performance [18]. 

In our work, we proposed a unique lightweight 

deep learning model that uses cutting-edge 

convolutional neural network (CNN) architectures 

that integrate the features of MobileNet as a deep 

feature extraction with a light structure with Squeeze-

and-Excitation Network based on channel-wise 

feature recalibration concept to classify ocular 

diseases automatically from retinal pictures. Our 

work presented sophisticated image processing 

techniques, including Sobel edge detection and 

principal component analyses of PCA to analyze 

retinal images. This work investigates binary 

classification tasks: normal vs. cataract images; 

normal against various disease classes: glaucoma and 

mild non-proliferative retinopathy. Obtain data from 

the Ocular Disease Intelligent Recognition (ODIR) 

database, carefully pre-process retinal images to 

guarantee consistency and model architecture 

compatibility, and choose suitable deep learning 

models for ocular disease classification. A thorough 

assessment of model performance has been made 

using evaluation measurements such as the area 

under the receiver operating characteristic curve 

(AUC-ROC), accuracy, recall, F1 score, and precision. 

The rest of this paper is structured as follows: Section 

2 introduces the related works of eye disease 

prediction using advanced machine learning models. 

The methodology includes many steps, including pre-

processing and statistical feature extraction, and our 

transfer learning model, which combines deep 

features of Mobile-Net and Squeeze-and-Excitation 

Network (SENet), is explained In Section 3. Model 

evaluation and performance analysis are described in 

Section 4. We provide the experimental results and 

analysis in section 5. Comparative analysis is 

explained in section 6. We conclude this paper with 

experimental findings and analysis in section 7. 

2. Literature review 

Ophthalmologists and optometrists evaluate 

symptoms, make clinical observations, and conduct 

diagnostic tests to classify eye ailments 

conventionally [18]. A comprehensive clinical 

examination of the patient’s ocular condition is 

performed before the treatment begins. Medical 

specialists with expertise in optometry or 

ophthalmology evaluate and analyze visible signs 

and symptoms of visual problems during this 

evaluation [19]. Fundus photography provides 

researchers in this field with excellent-resolution 

retinal pictures that are vital for better diagnosis [20].  

Deep learning models (DL) extract pertinent 

information from medical pictures, such as OCT and 

retinal scans, and then classify these images. When 

classifying eye diseases, these characteristics might 

include anomalies in the structure of the retina, blood 

vessels, or lesions. Many types of eye diseases have 

been detected using DL models [21, 22]. These 

models can be constructive when patients arrive with 

many coexisting ocular diseases. DL models may 

attain consistency in diagnosis and classification [23]. 

The current investigations have proposed a 

dataset and classification methods for ocular diseases. 

Li and colleagues [24] released a fundus imaging 

collection. They used the dataset to assess cutting-

edge DL methods. They stressed the importance of 

using a successful DL approach when categorizing 

the fundus pictures. Blood vessel extraction from the 

photographs proposed by Sundaram et al.  [25]. For 

categorization, they used the hybrid segmentation 

technique. Their study focused on extracting blood 

vessels in Fundus Images of  the retina through a 

hybrid segmentation model. This work’s main 

disadvantage was that the authors neglected the 

feature extraction stage, which may have 

significantly enhanced the model’s accuracy and 
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complexity reduction. He and colleagues (2021) [26] 

introduced a multi-label disease classification 

methodology. They used a deep network and a spatial 

correlation module SCM to categorize the eye 

conditions. The main limitation of this work was the 

model’s computational complexities due to the 

significant number of layers for its structure and the 

required 100 epochs for network training to achieve 

an accuracy of around 0.94, which required 74.2 

million trainable parameters. Also, the model data 

was heavily unbalanced. 

Gour and Khanna  presented a multiclass image 

classification technique [27].  They used two models 

based on transfer learning to find anomalous patterns. 

The best results of around 0.96 as an achieved 

accuracy were obtained from the first transfer 

learning model that consists of ResNet, InceptionV3, 

MobileNet, and VGG16, with total trainable 

parameters for their suggested model of around 63 

million as a main limitation for this model that refer 

to its computation complexity requirements. Junayed 

et al. [28] used the CNN model with hyper-parameter 

optimization to identify only cataracts. Similar to Xu 

et al.  [29] suggested a DL-based approach to identify 

glaucoma. A limited number of training examples 

were used to train these two models when each work 

focused on predicting only a single class that refers to 

its major disadvantage.      

Wahab Sait [30] presented an eye disease 

classification based on deep learning methods with 

ODIR and EDC datasets. He achieved validation 

accuracy with both datasets ODIR and EDC 99.1 and 

99.4, respectively. One of the critical drawbacks of 

this model was its high computation complexity, 

which resulted from the high trainable parameters of 

his proposed model, around 24 million with the 

ODIR dataset. Moreover, limited generalizability 

may be seen when applying models trained on data 

from a particular population to a distinct group. DL 

models have quick image interpretation speed. 

However, its real-time diagnosis is limited by 

regulatory clearances, processing resources, and 

medical device integration. It is essential to develop 

methods for implementing research findings from 

academic studies in practical contexts. Consistent 

benchmark datasets are required for DL models for 

various eye conditions that would enable more 

trustworthy evaluations and comparisons of distinct 

DL models. 

Al-Fahdawi and his co-authors [31] presented 

and enhanced a deep neural model that employed 

SENet as a primary classifier and tested it with two 

phases: first when successive pre-processing methods 

and the second phase applied SENet block directly on 

OIA-ODIR images without any pre-processing 

procedures, then the authors compared the 

classification results for both strategies. One of this 

work’s limitations is that it did not consider the 

importance of applying the feature extraction method, 

which is a critical step in enhancing the classification 

accuracy and decreasing the model computation 

complexity that aims to reduce the model 

implementation requirements. 

On the other hand, our suggested model 

employed two feature extraction steps, including 

engineering feature extraction represented by 

applying PCA, and deep features have been extracted 

by the MobileNet pre-trained model. These steps 

integrated with the SENet block achieved our optimal 

research goal to construct a general lightweight 

model that can predict eye diseases from any input 

image. Our novel model structure that integrated the 

PCA features and deep features with the binary 

classification employed to solve the multi-class 

classification challenges in order to significantly 

reduce the model complexity, and implementation 

requirements while maintaining the model’s high 

performance. 

3. Methodology 

The proposed deep learning structure that 

combines the Squeeze-and-Excitation Network 

(SENet) as a deep learning architecture designed to 

enhance convolutional neural networks’ (CNNs’) 

performance based on channel-wise feature 

recalibration and Mobile-Net as pre-trained 

models for feature extraction as shown in Fig. 2 as a 

block diagram. It aims to identify three ocular 

illnesses in ODIR dataset images. This research seeks 

to categorize three eye illnesses based on ODIR 

imaging. Three primary components make up our 

proposed system. First, the input image is pre-

processed to increase contrast, decrease noise, and 

boost the deep-learning models’ learning ability. 

Second, an efficient framework for deep feature 

extraction and fusion is used to derive discriminative 

processing, model architecture selection, training, 

assessment, performance analysis, comparison with 

baseline models, and discussion of findings are all 

included in the technique. 

3.1 Data acquisition and preparation 

An organized ophthalmic database called Ocular 

Disease Intelligent Recognition (ODIR) has five 

thousand patient records [24]. ODIR database 

gathered extensive retinal images covering several 

disease classifications, such as mild non-proliferative 

retinopathy, glaucoma, and cataracts, to ensure 

enough data for both model training and assessment.  
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Figure. 1 Methodology for Ocular Disease Classification deep learning model based on transfer learning between Mobil-

Net and SENet structure with PCA features with binary classification 

 

 

 
Figure. 2 The sample of our dataset included four classes: 

Normal, Cataract, Glaucoma, and Moderate non-

proliferative retinopathy 
 

 

In our study, we utilized this database and performed 

extensive EDA. For classification, we collected and 

prepared data for four selected eye diseases: cataract, 

normal glaucoma, and moderate non-proliferative 

retinopathy. 

The training and testing set for these four classes 

of images have been prepared. The distribution of the 

training and testing set is 1353 images in the training 

set and 372 images in the testing set.  Now, each 

training and testing set contains four more classes of 

diseases. We selected 500 images in the training set 

(250 for the left eye and 250 for the right eye) for each 

class and 100 images in the testing set for each class, 

but glaucoma has a limited number of images, so 

there we selected 190 images for the left eye and 190 

images for right eyes.  

Even though the cataract has 518 images in the 

directory, many images are missing in the root 

images directory, so we have around 262 cataract 

images, which we get in the training folder. The 

glaucoma class also has 190 images available for 

each eye in the directory, but in the root images 

directory, we can get up to 200 images only. The 

same goes for PR eye diseases. In the testing set, there 

is no such class imbalance. 

The class imbalance issue has been sorted out 

through the image augmentation algorithm in the pre-

processing step of our proposed model by artificially 

increasing the size of images to obtain higher 

accuracy for each disease. The sample images for 

each class are explained in Fig. 2. 

3.2 Pre-processing 

The retinal pictures underwent pre-processing. 

Many steps have been applied, such as pre-processing, 

which involves image downsizing to a standard size 

(224x224 pixels), colour mode conversion, and 

optional data augmentation methods like rotation and 

flipping. The pre-processing procedures employed in 

this work enhance the data resolution for better deep 
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learning performance. Data Augmentation adds 

changes to the training data, and data augmentation 

techniques like flipping, rotating, and zooming can 

improve the models’ resilience and generalizability. 

We perform data augmentation during training by 

creating augmented pictures on the fly using tools 

like ImageDataGenerator. Normalizing the picture 

pixel values to a similar scale facilitates faster 

convergence and training process stabilization. 

Usually, we divide the pixel values by 255 (for the [0, 

255] scale) or by mean and the standard deviation to 

normalize them. The photographs can be cropped to 

match their aspect ratio, and unnecessary background 

information can be removed to focus the model’s 

attention on the relevant areas of Interest. This 

strategy offers two advantages: it reduces 

computational costs and increases model efficiency. 

These pre-processing steps ensure the input data is 

appropriately organized, standardized, and improved 

to facilitate practical training of deep learning models 

for classifying ocular disorders from retinal pictures. 

3.2.1 Edge detection on ocular disease retinal images 

The Sobel operator was applied to extract edges 

from the grayscale retinal images, emphasizing 

regions with significant variations in intensity.  

 

 
Figure. 3 Edge detection for Normal, Cataract, Glaucoma, 

and moderate non-proliferative retinopathy 

This tool is applied to the input images as a vital pre-

processed step to prepare our data for successive 

processing, including feature extracting and classifier. 

This method is crucial for identifying the boundaries 

of structures in images, enabling subsequent 

processing and extraction of features. The classes 

from the ODIR database have been analyzed using 

the Sobel edge detection method, and the results are 

shown in Fig. 3. We can depict particular boundaries 

within the cataract image that indicate structural 

inconsistencies demonstrative of the infection. The 

edges are repressed within the normal retinal image, 

suggesting the nonappearance of recognizable 

neurotic surrenders. This stark differentiation 

highlights the viability of the Sobel edge location in 

recognizing sound and unhealthy retinal components. 

Additionally, similar trends in edge detection 

were observed when we expanded our study to 

include images of moderate non-proliferative 

retinopathy and glaucoma. Image regions 

corresponding to pathological abnormalities 

associated with these diseases have clear and visible 

edges. This finding confirms the effectiveness of 

Sobel edge detection in capturing relevant anatomical 

information important for disease diagnosis and 

classification. Applying this method improves the 

accuracy and reliability of eye disease detection 

algorithms by assisting in extracting valuable details 

and their subsequent classification. 

3.3 Data binary grouping based on image labels 

Our work suggests solving the multiclass 

classification challenge by applying a binary 

classification technique for classifying eye diseases. 

Once the data has been pre-processed, it is 

categorized into three binary classifications based on 

data labeling: Normal against Cataract, Normal 

versus Glaucoma, and Moderate non-proliferative 

Retinopathy versus Normal. The binary classification 

method was chosen because it can easily 

accommodate extraneous features in datasets of any 

size. 

3.4 Principal component analysis (PCA) for 

feature extraction 

Principle component analyses PCA is an 

established method that is widely applied to machine 

learning and image processing. By transforming 

high-dimensional data sets to high-dimensional space 

reduction, it tries to extract the most significant 

sources of variance while ignoring pertinent 

information.  

We employ PCA in our work to minimize the 

dimensionality of big data sets while maintaining the  
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Figure. 4 PCA was applied individually for Normal vs. 

Cataract, Glaucoma, and moderate non-proliferative 

retinopathy 

 

 

highest degree of information from the original data. 

In this part, PCA is used to minimize the 

dimensionality of retinal pictures obtained by the Eye 

Disease Intelligent.  

Identification (ODIR) database and make it 

possible to display details regarding the underlying 

data distribution. By finding and measuring pertinent 

data connections, altering the data to preserve the 

most significant associations, and eliminating the 

remainder, this technique lowers dimensionality. The 

association between features is analyzed using the 

covariance matrix C, as shown below [32]. 

 

𝐶 =
1

𝑀
 ∑ 𝛷𝑛𝛷𝑛𝑇 =𝑀

𝑁=1 𝐴𝐴  (1) 

 

𝐴 = [𝛷1, 𝛷2, … . . , 𝛷𝑀]   (2) 

 

𝛷𝑖 = 𝑥𝑖 − �̃�    (3) 

 

�̃� =
1

𝑀
∑ 𝑥𝑖

𝑀
𝑖=1     (4) 

 

Where xi is the N×1 vector representing the input 

retinal dataset, this vector contains the input eye 

images. Eigenvectors and eigenvalues have been 

obtained by performing a linear transformation or 

eigen decomposition on the Covariance Matrix. Then, 

our data was converted into principal components 

using Eigenvectors. The significance of these 

correlations has been assessed by Fig. 4, which 

explains the visual representation of applying PCA 

on the binary grouping data that demonstrated the 

specific patterns between the Normal Images vs 

Cataract, Glaucoma, and Mild non-proliferative 

retinopathy individually. After PCA dimensionality 

reduction, the distribution of images in a two-

dimensional space defined by main components is 

shown in scatter plots. 

Interestingly, discrete clusters arise for every 

class, suggesting that the PCA treatment identified 

identifiable patterns. A coherent clustering of cataract 

photos indicates that the illness has standard 

structural features. In the limited feature space, 

normal pictures reflect their unique visual features 

and create their cluster. This distinction highlights the 

PCA’s effectiveness in discriminating between 

retinal pictures with cataracts and those without, 

providing the foundation for further classification 

tasks. After the dimensionality reduction of PCA, 

discrete clusters are obtained for every class, which 

outlines traits inherent in the individual illness states. 

Images with moderate non-proliferative retinopathy 

show a coherent clustering, indicative of common 

structural abnormalities linked to the disease by 

employing eigenvalues and retaining the crucial 

components. 

3.5 Model architecture 

We have chosen a cutting-edge deep learning 

architecture to classify eye diseases using the 

Squeeze-and-Excitation Network (SENet) on a 

Mobile-Net foundation. The architecture was 

selected because of its effectiveness in eye disease 

prediction tasks and its capacity to compromise 

computational efficiency and model complexity. 
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3.5.1 Mobile-Net deep feature extraction 

Mobile-Net is a collection of efficient neural 

network architectures for embedded and mobile 

vision applications. Google developed it in response 

to the need for high-performance, low-weight models 

that could be used with low-resource devices, such as 

Internet of Things gadgets, mobile phones, and 

embedded systems. Specifically, Mobile-Net models 

have gained widespread recognition for their 

effectiveness, compact size, and efficiency in various 

computer vision applications. The advent of Mobile-

Net pre-trained models has led to a substantial 

advancement in constructing neural network 

architecture. Nowadays, building efficient deep-

learning models for embedded and mobile vision 

applications relies essentially on transfer learning 

concepts. Mobile-Net models, which offer a careful 

trade-off between accuracy and efficiency, are 

essential for enabling artificial intelligence on 

devices with limited resources because they are 

crucial in the current context of edge computing and 

computer vision. 

As shown in Fig. 5, MobileNet, the pre-trained 

model, has been employed as an intelligent feature 

extraction network due to its key characteristics, 

including many features that decrease the model size 

significantly while keeping the model performance 

efficient. Mobile-Net is based on depth-wise 

separable convolutions, which splits the convolution 

process into depth-wise and pointwise convolutions. 

This characteristic reduces the computation demands 

since the spatial and channel dimensions are treated 

independently. The MobileNet model employed a 

width multiplier parameter to control the network’s 

width, which can balance model performance and 

size, one of the essential features in MobileNet that 

decreases the model complexity. A resolution 

multiplier is an extra parameter of MobileNet that 

controls the input resolution of the model. Lower 

resolutions result in smaller models and faster 

inference. Inverted residual blocks are used in several 

MobileNet versions to reduce computing costs while 

maintaining model integrity. 

Pre-trained MobileNet as a transfer learning 

model was trained on large-scale datasets such as 

ImageNet. These pre-trained models may be 

modified using smaller, task-specific datasets for 

various computer vision applications. Depth-wise 

separable convolut ions  DSC: A factor ized 

convolution, the MobileNet model uses depth-wise 

separable convolutions to break down a standard 

c o n v o l u t i o n  i n t o  a  d e p t h - w i s e  a n d  o n e -

dimensional convolution known as a pointwise 

convolution. The depth-wise convolution uses a  

 
Figure. 5 The proposed architecture of transfer learning 

by integrating Mobil-Net and SENet Model features for 

Retina image prediction 

 

 

single filter to train the input channels individually. 

Then, these single filters are combined using 

dimension pointwise convolution. A conventional 

convolution involves just one step to filter and 

combine inputs into a new set of outputs divided into 

two layers by the depth-wise separable convolution. 

These two layers are one for filtering and another for 

connecting. A significant reduction in processing and 

model size is achieved with this factorization. A 

typical convolution layer generates two square 

feature maps, one for input F with size DF × DF × N 

and the second for output G with size DG× DG × M. 

DF and DG represent the input and output feature map 

spatial dimensions (width and height).   CNN layer 

parameters are described by the convolution kernel K 

of size DK ×DK × N× M, where DK refers to the spatial 

width and height of the kernel and output channels, 

respectively. For standard convolution, the output 

feature map is calculated as follows: 

 

𝐺𝑘,𝑙,𝑚 = ∑ 𝐾𝑖,𝑗,𝑚,𝑛𝑖,𝑗,𝑛 · 𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑛 (5) 

 

There is a multiplicative relationship between the 

computational cost, the kernel size (Dk), the feature 
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map size (DF), and the input and output channels (N 

and M, respectively). All of these variables and how 

they interact are covered by MobileNet models. 

Depth-wise separable convolutions were initially 

applied to separate the relationship between the size 

of the kernel and output channel numbers. 

Two layers comprise Depth-wise Separable 

Convolutions (DSC): pointwise and depth-wise 

convolutions.  Each input channel (input depth) gets 

its filter via depth-wise convolutions. Afterward, the 

output of the depth-wise layer is linearly combined 

using pointwise convolution, a primary 1×1 

convolution. MobileNets employ either the batch 

norm or the ReLU nonlinearity for each layer. One 

way to express depth -wise convolution with an input 

depth of one filter per channel is as follows: 

 

𝐺ˆ𝑘,𝑙,𝑛 = ∑ 𝐾ˆ𝑖,𝑗,𝑛𝑖,𝑗 · 𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑛      (6) 

 

Kˆ is the kernel of the depth-wise convolution 

applied to the mth channels in F to generate the mth 

channels of Gˆ, the output feature map. Depth-wise 

Separable Convolution (DSC) cost can be computed 

by combining the dimensional cost of its component 

(depth-wise convolution and pointwise convolution) 

by summation process as explained in the following: 

 

𝐷𝑆𝐶𝐶𝑂𝑠𝑡 = 𝐷𝐾 × 𝐷𝐾 × 𝑁 × 𝐷𝐹𝐷𝐹 

+𝑁 × 𝑀 × 𝐷𝐹 × 𝐷𝐹 (7) 

 

The computation cost can be reduced by 

emphasizing convolution as a two-phase 

procedure filtering and combining that involving 

dividing the DSC cost on the standard convolution 

cost expressed as below: 

 
𝐷𝐾×𝐷𝐾×𝑁×𝐷𝐹×𝐷𝐹+𝑁×𝑀×𝐷𝐹×𝐷𝐹

𝐷𝐾×𝐷𝐾×𝑁×𝑀×𝐷𝐹×𝐷𝐹
=

1

𝑁
+

1

𝐷𝐾
2  (8) 

 

Width Multiplier: The first hyper-parameter to 

decrease the CNN computational cost is a 

fundamental parameter called width multiplier, 

which is added to construct the lightweight model. In 

MobileNet networks, the width multiplier is 

responsible for evenly transforming each 

layer. Mathematically, the width multiplier will be 

multiplied by the input and output channels to 

become 𝛼𝑁 and 𝛼𝑀 , respectively. The width 

multiplier significantly affects the MobileNets due to 

the reduced computational cost of DSC and the 

number of parameters fourfold. The width multiplier 

takes values between 0 and 1. The computational cost 

of applying a width optimizer on DSC is described as 

follows: 

 

𝐷𝑆𝐶𝐶𝑂𝑠𝑡 = 𝐷𝐾 × 𝐷𝐾 × α𝑁 × 𝐷𝐹 × 𝐷𝐹 

+𝛼𝑁 × 𝛼𝑀 × 𝐷𝐹 × 𝐷𝐹  (9) 

 

Resolution Multiplier: Resolution Multiplier 𝜌  is 

another hyperparameter related to the input image 

resolution employed in the MobileNet to decrease the 

internal representation of each layer after applying it 

to the input image.  The computational cost of using 

Resolution Multiplier on depth-wise separable 

convolution is described as follows: 

 

𝐷𝑆𝐶𝐶𝑂𝑠𝑡 = 𝐷𝐾 × 𝐷𝐾 × α𝑁 × ρ𝐷𝐹 × 𝜌𝐷𝐹 

+𝛼𝑁 × 𝛼𝑀 × 𝜌𝐷𝐹 × 𝜌𝐷𝐹 (10) 

 

With only a little loss in accuracy, MobileNet 

employs 3×3 depth-wise separable convolutions, 

which caused a considerable reduction in the 

computation of standard convolutions. MobileNet is 

used in our suggested model structure for deep 

feature extraction from ODIR pre-processed images 

due to the low computational cost of depth-wise 

convolutions. Then, the reduction in MobileNet 

resolution has been sorted out by applying SENet as 

a classifier to deal with the MobileNet extracted 

feature map. 

3.5.2 SENet model 

The Squeeze-and-Excitation Network (SENet) is 

a deep learning architecture designed to enhance the 

performance of convolutional neural networks CNNs 

by channel-wise feature recalibration. SENet was 

first described in “Squeeze-and-Excitation Networks” 

research by Jie Hu, Li Shen, and Gang Sun, published 

in 2017 [33]. SENet thoroughly describes the 

interaction among several feature vectors to enhance 

the representative capacity of neural networks. CNNs 

have significantly transformed various computer 

vision applications, such as segmentation, object 

detection, and image categorization. While CNNs 

have achieved considerable success, they frequently 

encounter challenges such as overfitting, vanishing 

gradients, and extracting significant features from the 

input data. 

A unique design structure called the “Squeeze-

and-Excitation block” has been introduced to 

overcome the challenges of CNNs. SE block aims to 

eliminate unnecessary features and enhance the 

ability to collect and emphasize crucial ones, 

optimizing the network’s overall performance. Since 

SENet is presented as a drop-in module to several 

CNN architectures, it is a versatile and potent tool for 

improving model efficiency and accuracy. The 

construction of the SE building block can be 

expressed mathematically by the following: 
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𝐹𝑡𝑟 = 𝑋 → 𝑈, 𝑋 𝜖 𝑅�́�×�́�×�́� . 𝑈𝜖𝑅𝐻×𝑊×𝐶   (11) 

 

Ftr represents any transformation such as 

convolution or set of convolutions. To do feature 

recalibration for these transformations that translates 

the input X to the feature mappings U where U ∈ R 
H×W×C, such a convolution, for instance, we might 

construct a similar SE block. A squeeze operation is 

first done to create a channel descriptor to the features 

U, aggregating feature maps over their spatial 

dimensions (H×W). This descriptor’s purpose is to 

encapsulate the worldwide distribution of channel-

wise feature responses, enabling data from the global 

receptive field to be used by all levels of the network. 

After the aggregation, the excitation process works as 

a self-gating mechanism that handles the embedding 

as input and produces a set of per-channel modulation 

weights. These weights are then applied to the feature 

maps U to create the output of the SE block, which 

may then be directly fed into the network layers 

above. 

By translating an input superscript feature 

mappings U ∈ R H×W×C, a transformation Ftr may be 

used to build a computational unit called a squeeze-

and-excitation block. For the filter kernels, V refers 

to the learned vector, which has the parameters of the 

c-th filter as explained below: 

 

𝑉 =  [𝑣1, 𝑣2. . . , 𝑣𝑐]  (12) 

 

Where vc represents the parameters of the filter 

when the output U of Ftr, which is assumed to be a 

convolutional operator, can be written as the 

following: 

 

𝑈 = [𝑢1, 𝑢2. . . , 𝑢𝐶]  (13) 

 

Where uC is computed from the convolution 

relationship denoted by ⁎ between a single channel of 

vC and corresponding channel X as explained in the 

following: 

 

𝑢𝑐 =  𝑣𝑐 ∗ 𝑋 = ∑ 𝑣𝑐
𝑠 ∗�́�

𝑠=1 𝑋𝑠     (14) 

 

𝑣𝑐 = [𝑣𝑐
1, 𝑣𝑐

2, 𝑣𝑐
3, … … , 𝑣𝑐

�́�]     (15) 

 

𝑋 = [𝑥1, 𝑥2, 𝑥3, … . . , 𝑥�́�]     (16) 

 

A two-dimensional spatial kernel is denoted by 

𝑣𝑐
𝑠  Representing a single channel vc that matches 

channel X. Because the output results from adding all 

the channels, vc inherently incorporates the channel 

dependencies, yet these dependencies overlap with 

the spatial correlation of the filter records. Our 

objective is to ensure the network can tune in more to 

informative characteristics, which can be used in 

future transformations while ignoring less relevant 

ones. To do this, we consider explicitly describing the 

interconnections of the channels such that the filter 

responses are adjusted in two stages, squeezing and 

excitation, before input into the subsequent 

transformation. 

 

Squeeze operator: Our approach to employing 

channel dependencies includes examining the signal 

to each channel in the output attributes. Due to the 

local receptive field of each learned filter, each unit 

of the transformation output U cannot use contextual 

information outside of this area. This issue is 

especially extreme at lower network layers with 

narrow receptive fields. The global squeezing 

of information added spatially into channel 

descriptors to address local receptive field issues. 

Using global average pooling generates channel-wise 

statistics. To get a statistic z ∈  RC, reduce U on 

spatial dimensions H × W. The      c-th element of 

squeeze transformations z is computed as follows: 

 

𝑧𝑐 =
1

𝐻×𝑊
∑ ∑ 𝑢𝑐 (𝑖, 𝑗)𝑊

𝑗=1
𝐻
𝑖=1         (17) 

 

Where zc is squeeze transformations of output 

feature map (Fsq(uc)), the outcome of the 

transformation U may be considered a set of local 

descriptors with statistics representative of all of the 

data. Utilizing such knowledge is expected in feature 

engineering tasks. We use the primary global average 

pooling method, acknowledging that more advanced 

aggregating techniques might also be used. 

 

Excitation Operator: After aggregating information 

in the squeeze process, we perform a second 

operation to capture channel-wise dependencies 

comprehensively. The function needs to satisfy two 

conditions: it must be adaptable, especially in its 

ability to understand a nonlinear connection between 

channels, and it should recognize a non-exclusive 

relationship to allow multiple channels to be 

emphasized rather than just one-hot activation. A 

sigmoid activation function with a basic gating 

procedure has been applied to achieve these 

requirements as explained in the following: 

 

𝑠 = σ(W2δ(W1z))   (18) 

 

Where s is the Excitation Operator of the squeeze 

transformation output with dimensional reduction, 𝜎, 

and δ are sigmoid and ReLU activation functions. 
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𝑊1 𝜖 𝑅
𝐶

𝑟
×𝐶

and 𝑊2 𝜖 𝑅𝐶×
𝐶

𝑟. The structure of the gating 

procedure is created as a bottleneck using two fully 

connected (FC) nonlinear layers to control model 

complexity and improve generalization. These layers 

include a dimensionality-reduction layer with 

parameters W1 and reduction ratio r, a ReLU 

activation function, and a dimensionality-increasing 

layer with parameters W2. The block’s final output is 

achieved by adjusting the transformation output U 

using the activations. 

 

F𝑠𝑐𝑎𝑙𝑒(u𝑐 , s𝑐) =  s𝑐  ·  u𝑐  (19) 

 

The multiplication process between the feature 

map uc and sc represents a channel-wise 

multiplication to obtain the final output of the SE 

block. 

3.5.3 Proposed model layers architecture 

Our research aims to classify eye disorders from 

retinal pictures by designing a robust, lightweight, 

deep-learning model. The Squeeze-and-Excitation 

Network (SENet), a cutting-edge convolutional 

neural network architecture renowned for collecting 

necessary information and improving model 

performance, is incorporated into the suggested 

design. Table 1 explains our model layers’ structural 

properties. The input layer of the model is made to 

take retinal images. The dimensions of input images 

should be (224×224). The MobileNet model is the 

foundation for feature extraction to use pre-trained 

weights and leverage transfer learning. Then, 

MobileNet was chosen because it effectively extracts 

high-level deep features from ODIR images and its 

lightweight design. SE Block (Squeezing and 

Excitation Mechanism) included: 

 

Global Average Pooling: generates channel-wise 

feature vectors by averaging feature mappings across 

spatial dimensions. 

 

Squeeze Operation: reduces the size of the feature 

map using a 1x1 convolutional layer, then adds 

nonlinearity using a ReLU activation function. 

 

Excitation Operation: creates channel-wise scaling 

factors using sigmoid in a second 1x1 convolutional 

layer. These variables adjust each feature channel’s 

weight according to its relevance to the classification 

job. 

 

Multiply Operation: Feature maps are reweighted 

by performing element-wise multiplication with the 

calculated scaling factors, allowing the model to 

emphasize important traits while attenuating less 

significant ones. Global Average Pooling Creates an 

international representation of the input image by 

combining spatial data from many feature maps. 

Then, the Dense Layer was chosen as a bottleneck 

layer, a fully linked layer with 128 units, and ReLU 

activation allowed for nonlinear transformations and 

feature abstraction. Finally, the Output Layer 

involves one unit with a sigmoid activation function 

that makes up the last layer. This layer produces a 

probability score that indicates the likelihood of the 

input image belonging to a specific class (binary 

classification).  

 

 
Table 1. Model Layers Properties 

Layer   Output Shape Parameters Connected to 

input_1 (Input Layer) [(None, 224, 224, 3)] 0 [] 

mobilenet_1.00_224 (Functional) None, 7, 7, 1024) 3228864 ['inpute_1[0][0]'] 

global_average_pooling2d  (None, 1024) 0 ['mobilenet_1.00_224[0][0]'] 

reshape (Reshape) (None, 1, 1, 1024) 0 ['global_average_pooling2d 

[0][0]'] 

conv2d (Conv2D) (None, 1, 1, 64) 65600 ['reshape [0][0]'] 

conv2d_1 (Conv2D) (None, 1, 1, 1024) 66560 ['conv2d [0][0]'] 

multiply (Multiply) (None, 7, 7, 1024) 0 ['mobilenet_1.00_224[0][0]', 

'conv2d_1[0][0]'] 

global_average_pooling2d_1 (None, 1024) 0 ['multiply [0][0]'] 

dense (Dense) (None, 128) 131200 ['global_average_pooling2d_1[0]

[0]'] 

dense_1 (Dense) (None, 1) 129 ['dense [0][0]'] 
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The Adam Optimiser, a popular choice for training 

deep neural networks, is utilized to construct the 

model to meet the need for model compilation. 

3.5.4 Model training and hyperparameters 

The training dataset, which had been pre-

processed, was utilized to train the selected model 

architecture by stochastic gradient descent 

optimization. During training, the model acquired the 

capacity to discern relevant features from the retinal 

images and classify them into the appropriate disease 

categories. The model’s performance was monitored 

during its iterative training over multiple epochs 

using metrics such as accuracy and loss. The model 

hyperparameters were made thoroughly until our 

ultimate performance goal was reached, as shown in 

Table 2. The model is configured for binary 

classification, using binary cross entropy as the loss 

function. This loss function distinguishes normal 

photos from regular patients. In our approach, we 

have yet to conduct joint training for all classes. 

Instead, each class is individually classified against 

normal images. This approach offers a significant 

advantage, resulting in high model accuracy. Given 

the critical nature of medical applications, we 

prioritize performance and do not make any 

compromises on underfitting or overfitting. 

To achieve better performance, we employ adequate 

datasets and fine-tuned models to ensure a balanced 

distribution of classes when classifying photos. The 

hyperparameters are clearly explained in Table 2. 

 

 
Table 2. Model Hyper Parameters 

Hyper Parameter Value 

Epochs 100 

Batch Size 16 

Optimizer 
Adam (Learning 

rate=0.0001) 

Loss Binary Cross Entropy 

Activation Sigmoid 

4. Model evaluation and performance 

analysis 

Many metrics have been applied to evaluate our 

model performance statistically across multiple 

disease groups using accuracy, precision, recall, 

sensitivity, specificity, F1 score, and kappa criteria. 

The model’s performance is evaluated using these 

metrics on an independent test dataset. Additionally, 

a visual evaluation of the model predictions was 

performed to analyze possible misclassifications or 

areas for quality improvement. The performance of 

the trained model was evaluated by its ability to 

accurately classify retinal images in health and 

disease. AUC-ROC is used to comprehensively 

assess the diagnostic adeptness of our proposed 

model. Precision measures the accuracy 

in identifying a particular sample as positive out of 

all the projected samples. Recall refers to the 

proportion of correctly identified fundus diseases out 

of all the actual fundus diseases in the sample. The 

F1-score, a statistic that combines precision and 

recall, achieves greater values when both rates are 

high. The kappa score assesses the degree of 

agreement between categorized outcomes and their 

matching ground truth labels. The mathematical 

expressions for our evaluation metrics can be 

expressed as follows [34]: 

 

𝑅𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (20) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (21) 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 =  
2×𝑅𝑒𝑐𝑎𝑙𝑙 ×𝑝𝑒𝑠𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑝𝑒𝑠𝑐𝑖𝑠𝑖𝑜𝑛
  (22) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (23) 

 

Sensitivity = (TP +  FN) / (TP) (24) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 / (𝑇𝑁 +  𝐹𝑃) (25) 

 

𝐾𝑎𝑝𝑝𝑎 =  𝑃0 − 𝑃𝑒 / 1 − 𝑃𝑒  (26) 

 

𝑃0 =  ∑ 𝑇𝑃𝑖
𝑟
𝑖=1 / ∑ (𝑇𝑃𝑖 +  𝐹𝑁𝑖)𝑟

𝑖=1  (27) 

 

𝑃𝑒 =  ∑ 𝑇𝑃𝑖 + (𝑇𝑃𝑖 + 𝐹𝑁𝑖)𝑟
𝑖=1 /𝑁2 (28) 

 

5. Results and discussion 

This work investigates the possibilities of 

artificial intelligence in solving challenges in the 

ophthalmology field by building a robust and realistic  
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Figure. 6 Model performance with test data included Normal vs Cataract, Normal vs Glaucoma, and Normal vs. 

Moderate non-proliferative Retinopathy for Accuracy and Loss 

 

 
Table 3. Model Evaluation Results in Test Data from ODIR included our binary classification 

Evaluation Metric 

on Test Data 

Values 

Normal vs. Cataract 

Values 

Normal vs. Glaucoma 

Values 

Normal vs. Moderate non-

proliferative retinopathy 

Average 

performance 

Accuracy 1.0 1.0 0.99 0.996 

F1 score 1.0 1.0 0.99 0.996 

Precision 1.0 1.0 0.99 0.996 

Recall 1.0 1.0 0.99 0.996 

Sensitivity 1.0 1.0 0.99 0.996 

Specificity 1.0 1.0 0.99 0.996 

Kappa 0.98 0.96 0.95 0.963 

 

 

deep-learning model to classify eye diseases 

automatically. For this purpose, our study uses a 

lightweight, high-resolution model that combines 

powerful pre-processing techniques with carefully 

selected feature extraction methods. These methods 

include using the PCA algorithm to extract and select 

features, thereby reducing the dimensionality of the 

input data, which helps decrease the computation 

complexity significantly, minimize the model’s 

implementation requirements, such as execution time, 

and simplify hardware configuration. 

The pre-processed features were presented to our 

proposed classifier, which combines MobileNet as a 

deep feature extraction technique and SENet, a 

channel-based feature adaptation method. We 

recommend applying a deep learning model trained 

on retinal images using a binary classification 

technique for classifying eye diseases. After data is 

pre-processed, it is then grouped depending on the 

data labeling into three binary classifications: Normal 

vs. Cataract group, Normal vs. Glaucoma group, and 

Moderate non-proliferative Retinopathy vs. Normal  
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Figure. 7 Confusion Matrix and ROC curve for Cataract vs Normal with ODIR dataset 

 

 
Figure. 8 Confusion Matrix and ROC curve for Glaucoma vs. Normal with ODIR dataset 

 

 
Figure. 9 Confusion Matrix and ROC curve for Moderate non-proliferative retinopathy vs Normal with ODIR dataset 
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Table 4. Our three binary classifications included model 

Evaluation Results with Unseen samples from IDRiD, Oculur recognition, and HRF datasets 

Evaluation 

Metric on Test 

Data 

Values 
Normal vs. 

Cataract 

Values 
Normal vs. 

Glaucoma 

Values 
Normal vs. Moderate non-

proliferative retinopathy 

Average 

performance  

Accuracy 0.98 1.0 0.99 0.996 

F1 score 0.98 1.0 0.989 0.989 

Precision 1.0 1.0 1.0 1.0 

Recall 0.96 1.0 0.987 0.982 

Sensitivity 0.96 1.0 0.981 0.980 

Specificity 0.97 1.0 0.994 0.996 

Kappa 0.89 0.95 0.94 0.926 

 

 

group. Our developed models demonstrate 

outstanding performance, achieving an impressive 

accuracy of over 99.9% on training and validation 

datasets. The high accuracy of the algorithm 

confirmsits ability to accurately classify retinal 

images into normal and diseased categories. 

Moreover, the model demonstrates high 

confidence in their predictions due to low loss values, 

around  10e-4. The predicted loss values also confirm 

the reliability of the models, showing that their 

predictions closely match the labels observed in 

practice. The model performance, including the 

accuracy and the loss rates, are visualized in Fig. 6. 

The design of the models allows efficient retrieval of 

relevant information. The robust performance and 

exceptional accuracy of retinal imaging can be 

attributed to the features highlighted in Table 3. By 

including the Squeeze-and-Excitation block as 

attention approaches, the models become more adept 

at reducing noise and directing their focus toward 

relevant information, significantly improving their 

ability to distinguish and generalize effectively. 

The confusion matrixes in Figs. 7 and 8 explained 

clearly that all cases of cataracts vs. normal glaucoma 

vs. typical were accurately identified with no false 

positives or false negatives, providing additional 

validation for the model’s performance. Our model 

performed well, earning 100% accuracy, precision, 

recall, and F1 score for cataracts vs normal and 

glaucoma vs normal prediction. The model’s 

accuracy in detecting these previously mentioned 

classes is confirmed by the confusion matrix, which 

shows no instances of misclassification. Similarly, 

the model’s accuracy, precision, recall, and F1 score 

remained high when tested on the mild non-

proliferative retinopathy vs. normal categorization 

task. The model performed quite well overall, even if 

there was one misclassification of a normal image, 

which showed that the model could distinguish 

between retinal photos with little to no error, as 

demonstrated in Fig. 9. These figures also explain the 

ROC curve, demonstrating the model’s outstanding 

discriminatory capacity and efficacy in 

differentiating between positive and negative 

situations. 

Our proposed model’s outstanding performance 

across multiple assessment metrics indicates how 

well it can automatically forecast eye diseases. That 

will help make a big difference in raising the standard 

of diagnosis and accelerating early clinical action. 

Even with the encouraging results, significant issues 

with our study still need to be examined further. The 

dataset may have biases due to its reliance on 

historical data. Furthermore, the models’ 

performance may vary under changing imaging 

conditions or in populations with varied demographic 

traits, highlighting the importance of robustness 

testing and validation. We employed image examples 

that matched our four classes and were gathered from 

diverse datasets to get around these 

difficulties, typical in machine learning model 

generalization. These images are collected from 

various sources, including IDRiD, Oculur 

recognition, and HRF datasets. As we have binary 

models, we consider our binary groups involved 

Normal vs. each class, Cataract, Glaucoma, and 

Moderate non-proliferative retinopathy in this 

evaluation step, where the trained model will test 

with entirely new and unseen images collected from 

various datasets. 

Figs. 10-12 explain the confusion matrix resulting 

from the validation stage when our validation 

samples have been submitted to our transfer learning 

trained model. The visualized outcomes show stable 

performance in predicting all classes, whereas Fig. 10 

shows only 1 class is wrongly classified as normal.  
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Figure. 10 Confusion Matrix and ROC curve for Normal Vs. Cataract from Unseen samples from IDRiD, Oculur 

recognition, and HRF datasets 

 

 
Figure. 11 Confusion Matrix and ROC curve for Normal Vs. Glaucoma from Unseen samples from IDRiD, Oculur 

recognition, and HRF datasets 

 

 
Figure. 12 Confusion Matrix and ROC curve for Normal Vs. Glaucoma from Unseen samples from IDRiD, Oculur 

recognition, and HRF datasets 
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Only two images from cataracts are improperly 

categorized due to the excellent performance of the 

trained model, which is reflected by its generalization 

capabilities to give superior performance on the 

prepared or test data and effectively give good 

accuracy for unseen test data from different databases. 

The ROC curve in these Figures proves the model’s 

excellent performance with a True positive and False 

positive class accuracy score, which is evidence of 

the model’s true generalization abilities. In this 

analysis, we aimed to test our trained model on 

unseen databases to evaluate its performance. It’s 

important to note that while a model may be excellent 

in training if it’s overfitting or underfitting, it will not 

develop true generalization capabilities, which are 

required as the model when in the real world, would 

face datasets from different sources. So, while 

training our model, we ensured that the model had 

enough fine-tuning so that when any data came, the 

extracted features would encompass the model to 

work as it genuinely worked on trained data. So, in 

this analysis, we tested our model on some new 

images, and the model’s excellent generalization 

capabilities were proved. 

On the other hand, model overfitting and 

underfitting as critical issues affecting the 

generalization of machine learning models have been 

investigated. When a model becomes overfit, its 

performance on unfamiliar data deteriorates because 

it has focused on memorizing the training set rather 

than deriving general principles from it. It is 

imperative to assess for overfitting, notwithstanding 

the high accuracy and minimum loss observed in the 

training and validation datasets. Overfitting can be 

indicated when the models manifest a serious 

variance in loss values with higher accuracy on the 

training data than the validation data. Underfitting 

occurs when a model’s performance quality is 

reduced with training and validation datasets due to 

its limitations in recognizing the relevant patterns in 

the data. Therefore, the experimental finding of our 

proposed model demonstrates that the absence of 

noticeable differences in performance between the 

training and validation datasets indicates that the 

model is flexible and successfully grasps the essential 

correlations within the data. 

6. Comparative analysis 

We comprehensively assessed our proposed 

model’s performance by comparing it to baseline 

models and state-of-the-art methodologies for 

identifying ocular disorders to establish its 

performance as a benchmark. A comparison study 

evaluated accuracy, processing efficiency, 

interpretability, and model complexity. Several 

studies have been conducted to address the 

difficulties associated with diagnosing eye disorders, 

such as handling severely imbalanced datasets and 

managing the high computational demands of models, 

which consume significant amounts of memory, 

processing, and time. 

Researchers in [26] focused on considering the 

correlation between left and right eyes for diagnosis. 

So, A dense correlation network DCNet model was 

proposed based on a spatial correlation module for 

feature correlation and a backbone CNN for feature 

extraction. This work extracts two groups of 

characteristics from the left and right images. Then, 

the spatial correlation module records the pixel-wise 

correlations between the two feature sets. This work 

attained 97.8 accuracy with a significant limitation of 

model complexity that required high computation 

requirements due to its massive number of trainable 

parameters reaching 25.4 million. 

The author in [30] proposed a deep learning 

model to create an eye disease classification using 

ShuffleNet V2 with Adam optimizer. This model 

cleared up fundus image noise and artifacts using 

denoising autoencoders with the wavelet search 

method and levy flight as feature extraction methods. 

This model required 23.5 million trainable 

parameters to achieve 99.1 classification accuracy.    

The authors in [35] proposed robust deep learning 

methods that enhance the detection performance by 

using a unique combination of a mixture loss function 

to autonomously identify eye disorders by analyzing 

retinal fundus color images. The proposed model 

combined the focal loss and correntropy-induced loss 

functions in a deep neural network model to enhance 

the classifier’s ability to recognize biomedical data. 

They suggested this method to overcome 

the dataset’s complexity due to class imbalances. 

Although the data imbalances have been sorted out in 

this work, the model saver from high computational 

complexities with trainable parameters reached 26.7 

million with a classification accuracy of 96.5. 

Researchers in [36] aimed to categorize an eye 

illness dataset using hybrid strategies combining 

feature extraction and fusion algorithms. They 

suggested enhancing the eye disease classification by 

applying a classical neural network with deep 

features extracted by integrated MobileNet and 

DenseNet121 deep features. This model achieved 

classification accuracy, reaching 98.7, regardless of 

its number of trainable parameters of 24.1 million, 

affecting its implementing requirements. 

Compared to all previously discussed works, our 

suggested model has many contributions  that  involve 

a novel transfer learning structure integrated between  
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Table 5. Comparison of our suggested model with the state-of-the-art model based on the values of various metrics and 

model complexity 

Reference Model Accuracy 

Sensit

ivity 

 

Specif

icity 

F1-

Score 
Kappa Dataset 

learning 

Rate 

Parame

ters in 

millions 

Ref. [26]  

Dense correlation 

network with 

spatial correlation 

features 

97.8 96.1 93.1 95.9 93.1 ODIR  0.001 25.4 

Ref. [35]  

Deep learning 

with a novel 

mixture loss 

function 

96.5 94.5 92.4 94.8 94.2 
ODIR 

  
0.001 26.7 

Ref. [30]  

whale 

optimization 

algorithm with 

Shuffle Net V2 

model 

99.1 98.9 96.3 98.9 96.4 ODIR 0.0001 23.5 

Ref. [36]  

ANN classifier-

based hybrid 

features 

98.7 96.9 91.3 97.0 94.8 ODIR  0.0001 24.1 

Our 

approach 

SENet with 

MobileNet 

Features 

Extraction with 

binary 

classification 

99.96 99.96 99.96 99.96 96.3 ODIR 0.0001 3.6 

 

 

deep features extracted by MobileNet with Squeeze-

and-Excitation Network based on channel-wise 

feature recalibration concept to classify ocular 

diseases automatically from retinal pictures. In 

addition, our model applies significant methods for 

pre-processing the input data, such as augmentation, 

normalization, color mode conversion, edge 

detection, and cropping. Data analysis and 

dimensionality reduction were performed by 

applying PCA to our binary groups during the feature 

extraction step. All these steps contribute 

significantly to presenting our lightweight 

classification model with only 3.4 million trainable 

parameters and a very high performance that 

outperforms all other mentioned works with accuracy 

at 99.9%. Around 7 folds have reduced our proposed 

model’s size and computation complexity compared 

to the state-of-the-art research in Table 5. 

7. Conclusion 

In summary, this study comprehensively 

examines the development and evaluation of deep 

learning models for automatically classifying eye 

illnesses based on retinal images by employing 

advanced lightweight model architectures based 

on the Squeeze-and-Excitation Network (SENet) 

built on a MobileNet basis. Our model has much 

fewer parameters compared to the state-of-the-art 

models. We have achieved remarkable accuracy rates 

above 99.9% on training and validation datasets 

across several binary classification tasks. Since the 

focus is on binary classification tasks to solve the 

multi-classification tasks and to predict whether an 

eye image represents a healthy case or one of the eye 

disease infections, the four classes that represent eye 

infection cases can be transformed into binary 

classification tasks. These four classes were grouped 

into three binary classification tasks: normal vs. 

cataract, normal vs. glaucoma, and moderate non-

proliferative retinopathy vs. normal.  

Our work investigates the transfer learning 

framework capability for automatically categorizing 

illnesses based on retinal images. Our algorithms’ 

consistent accuracy measurements and low loss 

values illustrate their reliability and effectiveness in 

automated sickness identification. Our models 

consistently distinguish between retinal images that 

indicate good health and illness, providing essential 

information for managing ophthalmology patients, 

planning treatments, and diagnosing diseases early on. 

Our study highlights the practical usability and 

potential impact of AI-powered diagnostic tools in 

the medical domain. They achieve this by 

implementing automated ailment categorization and 

streamlining the diagnostic procedure. 
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Notations: 
Symbols Definition of Symbol 

x ̃ Average of an input vector 

xi One dimension vector 

Φi Subtract the Mean 

A Covariance matrix 

C eigenvalues and eigenvectors 

DG 
Output feature map spatial 

dimensions 

DF Input feature map spatial dimensions 

DF × DF × N Input feature map size 

DG× DG × M Output feature map size 

α Width Multiplier 

ρ Resolution Multiplier 

N Input channels 

M Output channels 

DF Feature map size 

Dk Kernel size 

Kˆ Kernel of the depth-wise convolution 

DSC Depth-wise Separable Convolution 

H×W Spatial dimensions 

Ftr, Convolution operator 

vC Filter parameters  

X Corresponding channel 

Z Squeeze transformation 

S Excitation Operator 

𝜎 Sigmoid activation functions 

δ ReLU activation functions 

W1 
Dimensionality-reduction layer 

parameter 

W2 
Dimensionality-increasing layer 

parameters 

R Reduction ratio 

uc Feature map 

sc channel-wise multiplication 

TP True Positives 

TN True Negatives 

FP False Positives 

FN False Negatives 
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