
Received:  February 11, 2024.     Revised: April 25, 2024.                                                                                               148 

International Journal of Intelligent Engineering and Systems, Vol.17, No.4, 2024           DOI: 10.22266/ijies2024.0831.12 

 

 
A Novel Approach for Detecting Unauthorized Requests in Software-Defined 

Networks Using Hybrid Particle Swarm and Automated Grey Wolf Optimizer 

Algorithm 

 

Aminata Dembele1*          Elijah Mwangi2          Kennedy K. Ronoh3           Edwin O. Ataro4 

 
1Departement of Electrical Engineering Pan African University Institute for Basic Sciences, 

Technology and Innovation (PAUSTI), Nairobi, Kenya 
2Department of Electrical and Information Engineering, University of Nairobi, Kenya 

3School of Computing and Engineering Sciences, Strathmore University, Nairobi, Kenya 
4Department of Electrical and Information Engineering, Technical University, Nairobi, Kenya 

* Corresponding author’s Email: aminata.dembele@students.jkuat.ac.ke 

 

 
Abstract: Software Defined Networking (SDN) is a technology that consolidates network management through a 

unified controller. However, it is vulnerable to attacks like distributed denial of service (DDoS) due to reliance on a 

single control plane. In order to address this, a new approach called Hybrid Particle Swarm Optimization (PSO) and 

Automated Modified Grey Wolf Optimizer Algorithm (AMGWOA) is proposed in this paper. We enhance the 

efficiency of detecting and preventing malicious requests in SDN frameworks by combining PSO and AMGWOA. 

Our PSOAMGWO method outperforms conventional grey wolf optimizer and particle swarm optimization techniques, 

achieving a remarkable 100% accuracy in detecting harmful requests within 0.5 seconds under the same sample size 

of traffic requests. This approach not only reduces detection time but also minimizes storage and computing resource 

utilization. 
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1. Introduction 

The extensive distribution of mobile devices, 

along with the introduction of advanced technologies 

like the Internet of Things and cloud computing, has 

led to an unparalleled rise in the number of networked 

devices on the Internet. Consequently, there has been 

a substantial rise in the expansion and intricacy of 

large-scale networks, which presents various 

challenges. The current network technologies and 

infrastructure lack the ability to efficiently handle 

large and complex networks in a flexible and easily 

controllable manner [1]. 

Software Defined working (SDN) facilitates 

“programmable networking”, a pioneering method 

that decouples control decisions from routing 

hardware. This separation enables the delivery of 

flexible and dynamic services within wireless 

communication networks [2]. 

   Within the domain concerning Software-

Defined Networking (SDN), network intelligence is 

centralized within a software-based controller, 

identified as the control plane. This configuration 

empowers network devices, particularly OpenFlow 

switches, to operate as simple packet forwarding 

entities, known as the data plane. The OpenFlow 

protocol [3] allows for programming these devices 

using an open interface. 

While the concept of separating the control plane 

and data plane in SDN technology offers notable 

benefits such as enhanced flexibility, cost-

effectiveness, and efficient administration, it also 

introduces new vulnerabilities [4]. The SDN 

controller functions as the central intelligence of the 

network. If the controller is compromised, the entire 

network is exposed to risk. Multiple recent research 
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studies have indicated that the SDN paradigm is 

susceptible to DDoS attacks perpetrated by malicious 

users [5] [6] [7]. These attacks are characterized by 

the controller manipulation by numerous puppet 

hosts to launch an assault on the target system. This 

leads to the exhaustion of the resources within the 

targeted system and presents a risk to its continuous 

functioning. 

    Throughout a DDoS assault on an SDN 

network, the switch produces a continuous flow of 

packet messages that the controller needs to handle. 

These events exert strain on the resources of the 

controller, leading to an expansion of switch routing 

tables, and provide a possible risk to the security of 

encrypted connections between controllers and 

switches.  This situation has the potential to cause 

significant disruption to the entire SDN. 

    If a DDoS attack occurs in the SDN, the 

communication channel is quickly limited, causing a 

depletion of controller resources and a substantial 

deterioration in service quality.  Current techniques 

for identifying DDoS attacks in SDN networks face 

challenges in extracting features effectively, leading 

to low detection accuracy and elevated false negative 

rates. Consequently, it becomes essential to employ 

advanced Optimization techniques, such as 

metaheuristic algorithms, to swiftly and accurately 

detect attacks. 

   Recently, two optimization methods, namely 

Grey Wolf Optimizer (GWO) and Particle Swarm 

Optimization (PSO), have been developed to tackle 

issues of network security and computing [8]. These 

algorithms all have the same goal in consideration: to 

identify the best solutions and to improve 

convergence performance. PSO [9] is an optimizer 

that utilizes a swarm of particles to explore a limited 

search space and identify the optimal solutions to a 

given problem. Particle swarm optimization is an 

optimization approach that is suited for dimensional 

optimization and has strong comprehensive search 

capabilities. Due to its ability to effectively explore 

global optimum solutions, rapid convergence, and 

ease of implementation, PSO is frequently integrated 

into hybrid methodologies [10]. 

GWO is a bio-inspired optimization method that 

emulates the social structure and hunting patterns of 

grey wolves to progressively enhance solutions to 

optimization issues [11]. The natural hunting and 

dominant behavior of grey wolves are modeled by 

this algorithm [11].The algorithm’s underlying 

principles and has received positive feedback from 

the optimization community. 

Our earlier study in [12], we proposed Automated 

Modified Grey Wolf Algorithm (AMGWOA) for the 

automatic detection of DDoS attacks in SDN 

networks. AMGWOA is an algorithm designed for 

the purpose of detection of DDoS attacks in SDN 

environments. The algorithm is tailored to improve 

the efficiency of DDoS detection mechanisms within 

an SDN framework by leveraging an automated and 

modified version of the Grey Wolf Optimizer. This 

study aims to enhance AMGWOA approach by 

proposing a novel approach that combines PSO with 

AMGWOA. Results show considerable improvement 

in the rapid convergence of attack detection by the 

new PSOAMGWO algorithm. 

In order to improve detection accuracy and 

minimize system operating costs, it is necessary to 

react quickly within a limited timeframe. This study 

therefore presents a new approach that combines 

particle swarm optimization (PSO) and grey wolf 

optimization (GWO) to automatically prevent DDoS 

attacks in SDN networks in a significantly short time. 

This hybrid approach, PSOAMGWO, aims to detect 

and prevent the most harmful requests by the 

controller of the SDN. This strategy effectively 

reduces the danger of encountering a critical DDoS 

attack, minimizes latency, and ensures uninterrupted 

access to the controller for legitimate users. 

This research presents a novel approach designed 

to significantly improve the efficacy of attack 

detection. The methodology integrates PSO with the 

Automated Modified Grey Wolf Optimization 

technique (AMGWOA), leveraging the progress 

achieved in AMGWOA as described in our prior 

research [12]. Particle Swarm Optimization is 

frequently incorporated into hybrid methodologies 

because of its efficacy in exploring the global 

optimum, swift convergence, and 

straightforwardness. The extensive utilization of the 

grey wolf optimization method in addressing 

optimization problems is supported by its rapid 

iteration process. 

By combining the PSO-GWO algorithms, we 

leverage the benefits provided by both methods, 

leading to decreased electrical consumption, as well 

as overall execution time required for detecting 

attacks in SDN. This combination minimizes 

resource consumption and effectively leverages the 

strengths of each algorithm, therefore reducing their 

deficiencies [13]. The core concept is to enhance the 

exploitation capability of PSO while integrating the 

exploration potential of the GWO, harnessing the 

strengths of both methods in comparison to 

conventional metaheuristic algorithms [14]. To the 

best of our knowledge, the fusion of AMGWOA 

(Automated Modified Grey Wolf Optimization 

Algorithm) and PSO (Particle Swarm Optimization) 

has not been previously employed in an automated 

fashion for the identification of DDoS (Distributed 
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Denial of Service) attacks within Software-Defined 

Networking (SDN) contexts.  

This amalgamation presents a novel approach 

that capitalizes on the unique strengths and 

adaptability of both algorithms, aiming to enhance 

the accuracy and efficiency of DDoS attack detection 

within the SDN framework. The integration of these 

optimization techniques introduces a fresh 

perspective, potentially unlocking improved 

performance and robustness in addressing the 

challenges associated with identifying and mitigating 

DDoS attacks in SDN environments. 

The structure of our study is delineated as 

follows: Section 2 provides the contextual 

information for the research. Section 3 provides a 

succinct summary of previous research.  Section 4 

provides a comprehensive description of the design 

of our proposed algorithm, PSOAMGWO. Section 5 

provides a detailed discussion of the experimental 

approach employed and the resulting conclusions. 

The final remarks of the paper are summarized in 

Section 6. 

2. Background 

This section presents the following: an overview 

of SDN, DDoS attacks targeting the SDN controller, 

an overview of the Grey Wolf Optimizer, and particle 

swarm optimization algorithms. 

2.1 Software defined network 

Within an SDN network, there is a separation 

between software and hardware. The control plane, 

which determines traffic routing, is transitioned to 

software, but the data plane, which physically 

forwards traffic, remains in hardware. This allows 

network managers to apply a standardized interface 

to program and oversee the whole network, 

minimizing the need to individually manage each 

device. A standard SDN architecture comprises three 

components: 

1. Application layer: These applications convey 

resource requests or provide information 

about the network as a whole. 

2. Control layer: These controllers utilize 

information from applications to make 

decisions on how to route data packets. 

3. Infrastructure layer (Networking Devices): 

These devices receive instructions from the 

controller regarding the optimal path for data 

movement.  The interaction between these 

layers is enabled through northbound and 

southbound application programming 

interfaces (APIs). 

Fig. 1 depicts the architectural framework of this 

novel technology. 

 

 
Figure. 1 SDN framework comprising three layers 
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2.2 DDoS attacks targeting the SDN controller 

Controllers face a substantial vulnerability to 

DDoS threats because of the centralization of the 

computational capabilities of the SDN within the 

controller which may lend it to a single point of 

failure.  

The main issue arises from a significant quantity of 

manipulated puppet individuals launching assaults on 

the designated system. This leads to a rapid depletion 

of the resources of the specific system, ultimately 

resulting in a decrease in the quality of service or a 

possible shutdown. Considering the significant 

importance of SDN, a DDoS attack can trigger a 

sudden increase in packets from switches that reach 

the controller. As a result, this puts pressure on the 

controller resources, jeopardizing the network 

stability because the SDN controller integrity is 

affected or if it is unable to meet the switch requests. 

Simultaneously, the flow table of the switch 

experiences a substantial surge, and an excess of 

messages may impede the safe connection between 

the controller and switches, potentially causing 

complete paralysis of the entire SDN. 

The consequences of a DDoS attack on an SDN 

network include the possibility of the attack quickly 

blocking communication channels and rapidly 

depleting controller resources, leading to a significant 

degradation in the quality of service. The depicted 

attack in SDN, as presented in Fig. 2, has the 

objective of inundating all resources of the targeted 

host with the intention of disrupting its normal 

operation. 

2.3 Grey wolf optimizer algorithm 

The algorithm is derived from the hunting 

behaviors of grey wolves, involving tactics such as 

encircling, hunting, and attacking their prey [11]. 

 

 

 
Figure. 2 Illustration of the scenario of DDoS within SDN 
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Grey wolves exhibit a clear social hierarchy 

within their packs, with the top-ranking wolves being 

referred to as alphas. In terms of hierarchy, Alpha is 

the first leader, Beta is the second, Delta ranked third, 

and the last position is Omega in the pool. Decision-

making within the pack, such as when to rise, where 

to rest, and when to embark on a hunt, is overseen by 

the alpha wolves. 

The decisions made by the Alpha must be adhered 

to by the rest of the wolves. The Beta wolf fulfills a 

supportive function by aiding the Alpha in deciding 

on actions and assuming leadership responsibilities in 

case the Alpha becomes unable to do so or passes 

away. While the Beta complies with the Alpha 

decisions, it issues orders to wolves of lower rank. 

Wolves classified as Delta, such as sentinels, scouts, 

elders, and caregivers, hold intermediate positions. 

Omegas occupy the lowest tier and are to be 

consumed last, following the established hierarchy. 

The wolves are social creatures that exhibit 

common behaviours, such as engaging in group 

hunting. Initially, they follow, chase, and approach 

their prey. Subsequently, the targeted prey is pursued, 

encircled, and subjected to harassment until it ceases 

movement. The final stage of the hunt involves the 

wolves launching an attack on their prey. 

The algorithm known as GWO replicates two 

social traits observed in wolf packs: social dominance 

and cooperative hunting. Within the framework, each 

wolf represents distinct tactics aimed at attaining 

ideal results. Alpha (α) is the optimal or most 

favorable response, beta (β) is the subsequent or 

second-best option, and delta (δ) is the third-ranked 

choice. The top three choices are the leading options 

and actively sought in the hunt, while all other 

alternatives are regarded as omega (ω) solutions. Eq. 

(1) represents the analytical encircling behavior 

modeling of the wolves. 

 

�⃗� (𝑡 + 1) = �⃗� 𝑝(𝑡) + �⃗� ⋅ �⃗�   (1) 

 

Where: �⃗� 𝑝 is the position of the prey, �⃗�  is the 

position of the grey wolf, �⃗�  is as stated in Eq. (2), t is 

the iteration number, �⃗�  and �⃗⃗�  are coefficient vectors 

as defined in Eqs. (3) and (4). 

 

�⃗� =∣ �⃗⃗� ⋅ �⃗� 𝑝(𝑡) − �⃗� (𝑡)   (2) 

 

�⃗� = 2𝑎 ⋅ 𝑟1⃗⃗⃗  − 𝑎     (3) 

 

�⃗⃗� = 2. 𝑟2⃗⃗  ⃗    (4) 

 

Throughout each iteration, the parameter a drops 

in a linear manner through the interval 2 to 0. Both r1 

and r2 are vectors of randomness that fall within the 

interval [0, 1]. Like grey wolves, alpha, beta, and 

delta have in-depth knowledge of where their prey is 

likely to be. After the best spots for the main search 

agents (alpha, beta, and delta) have been found, the 

placements of the other wolves are modified 

appropriately. According to the instructions given in 

Eq. (5), the placements of the wolves are updated as 

follows: 

 

�⃗� (𝑡 + 1) =
�⃗� 1+�⃗� 2+�⃗� 3

3
   (5) 

 

Here  𝑌1⃗⃗  ⃗ , 𝑌2
⃗⃗  ⃗, and 𝑌3

⃗⃗  ⃗ are defined in Eqs. (6)-(8). 

 

𝑌1⃗⃗  ⃗ = 𝑌𝛼
⃗⃗⃗⃗ − 𝐵1

⃗⃗⃗⃗ ⋅ (𝐸𝛼
⃗⃗ ⃗⃗  )   (6) 

 

𝑌2
⃗⃗  ⃗ = 𝑌𝛽⃗⃗  ⃗ − 𝐵2

⃗⃗ ⃗⃗ ⋅ (𝐸𝛽
⃗⃗ ⃗⃗ )   (7) 

 

𝑌3
⃗⃗  ⃗ = 𝑌𝛿

⃗⃗  ⃗ − 𝐵3
⃗⃗ ⃗⃗ ⋅ (𝐸𝛿

⃗⃗ ⃗⃗ )   (8) 

 

Here  𝑌𝛼
⃗⃗⃗⃗  , 𝑌𝛽⃗⃗  ⃗, and 𝑌𝛿

⃗⃗  ⃗ represent the positions of the 

top three solutions. Additionally, 𝐵1
⃗⃗⃗⃗  , 𝐵2

⃗⃗ ⃗⃗ , and 𝐵3
⃗⃗⃗⃗  are 

defined in Eqs. (6)-(8) respectively while the vectors 

𝐸𝛼
⃗⃗ ⃗⃗  , 𝐸𝛽

⃗⃗ ⃗⃗ , 𝑎𝑛𝑑 𝐸𝛿
⃗⃗ ⃗⃗  are defined in Eqs. (9)-(11). 

 

𝐸𝛼
⃗⃗ ⃗⃗  = |𝐷1

⃗⃗ ⃗⃗ ⋅ 𝑌𝛼
⃗⃗⃗⃗ − �⃗� |     (9) 

 

𝐸𝛽
⃗⃗ ⃗⃗ = |𝐷2

⃗⃗ ⃗⃗  ⋅ 𝑌𝛽⃗⃗  ⃗ − �⃗� |   (10) 

 

𝐸𝛿
⃗⃗ ⃗⃗ = |𝐷3

⃗⃗ ⃗⃗  ⋅ 𝑌𝛿
⃗⃗  ⃗ − �⃗� |   (11) 

 

Where  𝐷1
⃗⃗ ⃗⃗  , 𝐷2

⃗⃗ ⃗⃗  , and 𝐷3
⃗⃗ ⃗⃗   are as defined by Eq. (4). 

The parameter a, which controls the balance of 

exploration and exploitation, is updated based on Eq. 

(12). 

 

𝑎 = 2 − 𝑡
2

 MaxIter 
   (12) 

 

Where 𝑡  the number of iterations and M is the 

maximum number of iterations. The pseudocode for 

the GWO algorithm is represented by Algorithm 1. 

 

Algorithm 1: Grey Wolf Optimizer 

Initialize the grey wolf population 𝑋𝑖 (i=1,2,…,n) 

Initialize 𝑎, 𝐴 and C 

Compute the fitness of each wolf 

Set 𝑋 𝛼  as the best wolf 

Set 𝑋 β as the second best wolf. 
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Set 𝑋 δ  as the third best wolf. 

while (t < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟) 

for each wolf do 

Update the current wolf position using Eq. (5) 

end 

Update a, A and C 

Compute the fitness of all search agents 

Update 𝑋 𝛼, 𝑋 βand 𝑋 δ  

𝑡 = 𝑡 + 1 

end while 

return �⃗⃗� 𝜶 

 

2.4 Particle swarm optimization algorithm 

The fundamental decision-making process of 

PSO was primarily influenced by the social 

behaviour observed in animals, including the 

collective movement of fish in schools and the 

coordinated flight of birds in flocks [15]. When birds 

are looking for meals, they exhibit either a behaviour 

of spreading out or traveling together before coming 

together at a certain spot where they can get 

sustenance. As birds navigate between different 

habitats in pursuit of nutrition, there is consistently a 

bird with a keen sense of smell, effectively aware of 

the specific position where food is available, and 

possessing accurate food resource information. 

Through continuous transmission of messages, 

particularly valuable ones throughout the search for 

food across different positions, the birds ultimately 

converge at the location at which aliments are 

available. 

This approach is based on the examination of 

animal conduct to compute global optimization 

functions or problems, wherein every individual 

inside the group is referred to as a particle. The PSO 

methodology entails modifying the geographical 

location of each member of the collective inside the 

global search region through the utilization of two 

mathematical formulas. The subsequent equations 

are: 

 

𝑣𝑖
𝑘+1& = 𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝑐2𝑟2(𝑔best − 𝑥𝑖
𝑘)

 (13) 

 

𝑥𝑖
𝑘+1& = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1  (14) 

 

Where: 

𝑣𝑖
𝑘+1: Updated velocity of particle i in the (k + 1) 

iteration  

𝑣𝑖
𝑘 : Current velocity of particle i in the k iteration 𝑐1, 

𝑐2 : Cognitive and social acceleration coefficients  

𝑟1, 𝑟2 : Random values between 0 and 1 

𝑝𝑖
𝑘 : Best-known position of particle i so far (personal 

best) 

𝑥𝑖
𝑘 : Current position of particle i in the k iteration 

𝑔best  : Best-known position in the entire swarm 

(global best) 

 

These equations are applied to each particle in the 

swarm during each iteration of the PSO algorithm. 

Algorithm 2 presents the pseudocode that 

demonstrates the PSO algorithm. 

 

Algorithm 2: Particle Swarm Optimization 

Algorithm 

Initialize number of particles, 𝑐1 , 𝑐2 , ω, and 

Umin,Umax  

 Initialize particle with random power values that are  

 within allowed range;  

 Evaluate particles; 

while maximum iterations has not been reached do 

foreach particle do 

     Calculate fitness value; 

     if the fitness value is better than the best  

     fitness        value 𝑃𝑖  in history then 

 Set current value as the new 𝑃𝑖 

 end 

  foreach particle do 

      Choose the particle with the best fitness value 

   of all the particles as the 𝑔best ; 
       if the current 𝑃best  is better than 𝑃best then 

                 Set current 𝑃𝑖 as new 𝑔best ; 

 end 

 foreach particle do 

          Calculate particle velocity; 

      Update particle position; 

 end 

end 

While maximum iterations has not been reached; 

Set 𝑔best at the final solution PSO 

 

3. Existing studies on DDoS detection in SDN 

Extensive debates have emerged on the security 

issues linked to SDN. The literature in [16] indicates 

that in recent years, numerous researchers have 

integrated various artificial intelligence algorithms to 

provide a hybrid strategy for identifying and 

mitigating SDN DDoS attacks. However, just a 

limited number of modern Hybrid techniques are 

addressed in this discussion. 

Several hybrid machine learning systems, such as 

the one discussed in reference [17], have included 

random forest (RF) and support vector machine 

(SVM) classification algorithms for efficiently 
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identifying regular and DDoS attacks on traffic 

across networks. Their approach underwent testing 

and evaluation using a realistic Software-Defined 

Networking (SDN) dataset, resulting in a high 

accuracy rate of 98.8% and a minimal number of false 

alarms. The disadvantage of that approach lies in its 

singular emphasis on mitigating severe attacks 

known as DDoS. Its efficacy stems on its capacity to 

precisely anticipate such attacks, mostly because of 

the abundance of heavily modified network traffic. 

In [18], the utilization of naıve Bayes (NV), k-

nearest neighbours algorithm (K-NN), RF, and SVM, 

along with decision tree (DT) algorithms, was 

explored. The assessment, conducted on the NSL-

KDD dataset, revealed notable performance, with DT 

achieving a high accuracy of 99.97%, while SVM 

exhibited a considerably lower accuracy of 60.19%. 

It is essential to note that the model proposed in this 

study underwent testing and training using artificial 

datasets that do not accurately capture the distinctive 

features of SDN networks. 

The study referenced in [19] utilized machine 

learning methods, including SVM, DT, K-NN, and 

ANN, to categorize SDN flow and differentiate 

between regular traffic and DDoS attacks. The results 

revealed that among the classification algorithms, DT 

exhibited the highest level of accuracy rate at 99.75%, 

while SVM had the lowest accuracy at 81.48%. It is 

important to highlight that the methodology is 

specifically tailored to address high-rate DDoS 

attacks, which are easily identifiable because of the 

significant volume of network traffic they generate. 

In [20], a hybrid method was introduced, by 

integrating a convolutional neural network (CNN) 

and a transformer that consists of an encoding and a 

decoding algorithm, for attack detection. The results 

of this proposed approach, conducted on the 

CICDDoS2019 dataset, demonstrated superior 

performance compared to alternative methods. 

Despite its success, the approach exhibited elevated 

frequencies of incorrect positive results, and poor 

accuracy, highlighting the need for improvement in 

these areas. 

In [21], a set of machine learning algorithms, 

including KNN, SVM, and RF, together with deep 

learning techniques such as MLP, CNN, GRU, and 

LSTM, were employed to achieve a 95% accuracy in 

detecting DDoS assaults at the application layer. 

In [22], a novel hybrid design for the software-

defined networking (SDN) controller was introduced 

combining a one class SVM and an autoencoder for 

identifying DDoS assaults. The model attained a 

mean accuracy of 99.35%. However, it imposes 

superfluous burden and overhead in addition has been 

trained on a synthetic dataset, which may not 

accurately reflect the SDN network’s reality. 

In [23], the technique has been proposed for 

detecting and addressing DDoS and port-scanning 

threats on the SDN application layer using fuzzy 

logic, Shannon entropy, and LSTM algorithms. The 

technique was tested in two scenarios using the 

CICDDoS 2019 dataset. The method showed 

excellent performance in the first scenario but could 

potentially overload the SDN controller during DDoS 

attacks. 

A detection method was proposed in [24], which 

employed a Deep Neural Network (DNN) and SVM 

to accurately identify anomaly-based DDoS threats. 

The model was tested using the KDD CUP dataset, 

yielding a rate of detection of 92.3%. The suggested 

technique underwent evaluation and training using an 

artificial dataset that failed to accurately reflect the 

characteristics of the network’s SDN system. 

In conclusion, hybrid-based approaches are 

predominantly crafted to address high-rate DDoS 

attacks, leading to heightened precision. Nonetheless, 

certain methods demonstrate lower precision in 

identifying or alleviating DDoS attacks within the 

SDN environment. The objective is to create cost-

effective, computationally straightforward solutions 

that avoid imposing excessive burdens on the 

network. 

Many researchers [25] have applied optimization 

techniques to address network intrusion problems, 

and in the proposed method, these techniques will be 

leveraged to tackle DDoS attacks. Metaheuristics, 

employed in tasks like facial, gene selection, disease 

diagnosis, intrusion detection systems, and emotion 

recognition, have effectively tackled diverse 

optimization challenges. In comparison to exact 

search mechanisms, metaheuristics demonstrate 

outstanding performance. Contrary to complete 

search algorithms, they do not necessitate exploring 

the entire space of searches in order to locate the best 

answer, offering benefits regarding computing 

complexity and resource efficiency. 

4. A hybrid particle swarm-automated 

modified grey wolf optimizer algorithm 

(PSOAMGWO) for detecting DDoS attacks in 

software defined networking (SDN) 

The presented method employs a hybrid PSO and 

GWO for the identification and prevention of 

malicious requests originating from the SDN 

controller. Leveraging collective intelligence 

principles and a GWO model, it discerns anomalous 

traffic patterns and detects DDoS attacks. The 

algorithm scrutinizes the input of the network traffic 
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to discern unique characteristics, flagging suspicious 

traffic and implementing proactive measures to 

safeguard the network. The adjustments are used to 

explore the application of PSO in GWO, resulting in 

the generation of variant strength, which provides an 

additional benefit for the mode. The Hybrid GWO- 

PSO algorithm utilizes a mathematical equation to 

determine the positions of the initial three agents in 

the space of search. The governance of the 

investigation and use of the GWO is overseen inside 

the designated area by the inertia of constant w. 

This work demonstrates the utilization of a low-

level co-evolutionary combined hybrid to merge the 

PSO and GWO algorithms. The hybrid is at a lower 

level as a result of combining functionalities from 

both categories. The phenomenon is considered co-

evolutionary due to the absence of sequential 

utilization of both variations. Alternatively, they 

operate simultaneously. By incorporating the 

exploration capabilities of GWO with the 

exploitation abilities of PSO, we strengthen the 

overall performance of the algorithm by using 

strengths from both GWO and PSO. 

The PSOAMGWO algorithm updates the 

positions of the initial three agents in the space of 

search using the mathematical Eqs. (15)-(17) 

specified in algorithm 3. Rather than using traditional 

mathematical calculations, the controls the balance 

between exploring and exploiting the search area of 

the Grey Wolf by employing an inertia constant. The 

revised set of equations that apply is as follows: 

 

𝐸𝛼
⃗⃗ ⃗⃗  = |𝐷1

⃗⃗ ⃗⃗ ⋅ 𝑌𝛼
⃗⃗⃗⃗ − 𝑤 × �⃗� |      (15) 

 

𝐸𝛽
⃗⃗ ⃗⃗ = |𝐷2

⃗⃗ ⃗⃗  ⋅ 𝑌𝛽⃗⃗  ⃗ − 𝑤 × �⃗� |       (16) 

 

𝐸𝛿
⃗⃗ ⃗⃗ = |𝐷3

⃗⃗ ⃗⃗  ⋅ 𝑌𝛿
⃗⃗  ⃗ − 𝑤 × �⃗� |      (17) 

 

The proposed approach for integrating PSO and 

GWO variations involves the formulation of new 

equations for velocity and updates as in Eqs. (18)-

(19): 

 

𝑣𝑖
𝑘+1& = 𝑤 × (𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑖
𝑘 − 𝑥𝑖

𝑘) + 𝑐2𝑟2(𝑥2 −

𝑥𝑖
𝑘)+𝑐3𝑟3(𝑥3 − 𝑥𝑖

𝑘))               (18) 

 

𝑥𝑖
𝑘+1& = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1       (19) 

 

4.1 Design of PSOAMGWO 

To develop the proposed policy as part of our 

proposed hybrid optimization process, we define an 

objective function, also known as a fitness function. 

This objective function, denoted as Z in Eq. (20) 

below, is designed to capture the essence of the 

optimization task. Specifically, it minimizes the sum 

of Re 𝑞𝑖
𝑚 for all n components, where Reqi represents 

a certain characteristic of the system and m is a 

tunable parameter. 

 

𝑚𝑖𝑛 𝑍 = ∑  𝑛
𝑖=1 Re𝑞𝑖

𝑚       (20) 

             Subject to: 

                        Req 𝑞𝛾 = 𝜏, 𝜏 ∈ [20,50] 
𝜎𝑡 = 𝜇, 𝜇 ∈ [0.01,1] 

 

The objective function Z is defined as the sum of 

Re 𝑞𝑖
𝑚  for all n components. The term Re 𝑞𝑖

𝑚 

represents a characteristic of the system for the i-th 

component raised to the power m. Therefore: 

• n is the total number of components in the 

system that are considered for optimization. 

The summation runs from i = 1 to n, 

indicating that we have n components, each 

with its own characteristic represented by 

Re 𝑞𝑖
𝑚 . 

• m is a tunable parameter used to control the 

exponent in the expression Re 𝑞𝑖
𝑚  . The 

optimization process involves finding the 

optimal value for m that minimizes the 

objective function Z. It is a parameter that 

can be adjusted to influence how the 

characteristics of the components (Reqi) 
contribute to the overall objective. 

The variable 𝑅𝑒𝑞𝑚  represents the specific 

malicious requests that are being targeted for 

minimization. Z is the objective function that is 

associated with two primary constraints: 

• Several sets of requests  Req𝛾  are directed 

towards a common resource 

(service/application).  

• A time frame 𝜎𝑡  has been established with a 

specific duration measured in seconds, 

during which requests are received. 

4.2 The fundamental components of 

PSOAMGWO 

In order, to solve the given objective function, it 

is imperative to combine the Hybrid Particle Swarm 

Optimization Algorithm with the Grey Wolf 

Optimization Algorithm, while also incorporating a 

Resource-Constrained management method. The 

latter classifies the received queries by utilizing the 

threshold [λ +] as the upper limit, wherein each query 

is categorized according to the three most optimal 

solutions of GWO. To achieve the objective function, 
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the locations of the three highest-ranking search 

agents, referred to as alpha (α), beta (β), and delta (δ), 

are adjusted inside the search area using the equations 

outlined in Eq. (18) of the hybrid PSOAMGWO. 

Therefore, this threshold [λ+] is established by 

computing the fitness function, which may be used to 

classify into three separate categories: 

• The Alpha class refers to the initial optimal 

solution linked to the subsequent 𝑅𝑒𝑞𝑚 that 

will be eliminated if the condition  𝜔 ≤ 𝜆− is 

met.  

• The Beta class signifies the next most 

optimal answer. If the requirement𝜔 ∈ [𝜆−, 

𝜆+] is met, the 𝑅𝑒𝑞𝑚 will be eliminated.  

• The Delta category represents the third most 

favorable choice. If the rule 𝜔 ≥ 𝜆+ is 

achieved, the request will be denied, similar 

to the previous categories. 

The equation 𝜔 =
𝐵𝑤

𝐶
 defines the variable 𝜔  as 

the ratio of the observed bandwidth 𝐵𝑤  to the 

capacity 𝐶 of the cable in terms of bits per second. 

The upper and lower bounds, denoted by 𝜆+ and 𝜆− 

respectively, are initialized based on the constraint 𝜎𝑡. 

The time range is separated into three intervals: 

[20 − 𝜆−], [𝜆− − 𝜆+] and [𝜆+ − 50]. 

4.3 Implementation of PSOAMGWO 

Algorithm 3 outlines the procedure for 

implementing the Hybrid Particle Swarm Automated 

Modified Grey Wolf Optimizer Algorithm 

(PSOAMGWO). The PSOAMGWO algorithm aims 

to minimize the fitness function, which represents the 

sum of the requests, to identify the most optimal 

solution. 

Upon the receipt of requests, each will be 

carefully examined to confirm its authenticity and 

eliminate any possible malicious purpose before 

being sent out. In other words, if it does not meet 

predetermined standards of range and duration, then 

it is going to be promptly obstructed and withheld 

from reaching the controller. 

The novel PSOAMGWO is summarized in the 

algorithm 3 provided below: 

 

Algorithm 3: Proposed Hybrid PSO Automated 

Modified Grey Wolf Optimizer (PSOAMGWO) 

Initialize the GWO population (solution): Yi (Y = 

20) 

Initialize a, �⃗� , �⃗⃗� , 𝜆+, 𝜆−, w; // w = 0.5 + rand() / 2 

and t = 0 

Calculate the fitness of each solution using Eq. (20) 

𝑌𝑖
⃗⃗         (e.g., i=1...20); 

     𝑌𝛼
⃗⃗⃗⃗   the first malicious request; 

     𝑌𝛽⃗⃗  ⃗  the second malicious request ; 

 𝑌𝛿
⃗⃗  ⃗  the third malicious request; 

While (t < max number of iterations) do 

      For each agent do  

If (number of requests = 𝜏 and time window 

= 𝜇  ) then Update the velocity and the 

position of the current agent using Eqs. (15)-

(17) 

If the sum of 𝑅𝑒𝑞𝛾  in the Alpha class 

greater than the sum of 𝑅𝑒𝑞𝛾 in the other 

two classes then  

Block the next request 

Else 

Forward the request 

       end  

Update  a, �⃗� , �⃗⃗� , and w 

Calculate the fitness value of each candidate 

solution (malicious requests) 

Update 𝑌𝛼
⃗⃗⃗⃗ , 𝑌𝛽⃗⃗  ⃗ and 𝑌𝛿

⃗⃗  ⃗   

t= t+1 

End while 

Return 𝑌𝛼
⃗⃗⃗⃗  

5. Experimental configuration and 

discussion of results 

This section describes the experimental 

environment we used and presents the results 

obtained from evaluating the proposed approach. 

5.1 Experimental configuration 

The simulation was conducted using a Matlab 

R2020a platform. The research experiments were 

performed on a laptop, namely the HP Pavilion X360, 

operating on the operating system Windows 10. The 

device has 8GB of DDR4 RAM, a 10th-generation 

Core i7 CPU, and a 512 GB SSD. 

For this particular implementation, we have 

established 35 as the population size. The iteration 

limit has been set to 500. The values of c1 and c2 are 

both 0.5, while c3 is set to 0.5. The formula for 

determining the value of w is 0.5 + rand()/2. The 

parameters that are set are utilized to assess the 

efficacy of hybrid and other metaheuristics. 

5.2 Results discussion 

5.2.1 Comparison of PSOAMGWO with AMGWOA, 

Particle Swarm(PSO) and conventional GWO 

In order to evaluate the effectiveness of our 

technique, we performed a comparative analysis 

between AMGWOA [12], PSO [9], and the standard  
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Figure. 3 Comparing the Convergence Curves for 

AMGWOA, GWO, PSO, and PSOAMGWO 

 

 
Table 1. Analysis of the comparison values for the four 

algorithms: AMGWOA, GWO, PSO, AND PSOAMGWO 

Algorithm 
Best 

Solution 

Running 

time(secon

ds) 

Time 

Difference 

AMGWOA 696 0.008 12.5% 
GWO 873 0.238 96.7% 
PSO 814 0.079 89.9% 

PSOAMG

WO 
663 0.009  

 

 

GWO [8]. To ensure an equitable assessment, all 

three methods were subjected to identical parameter 

configurations, including the population size and 

number of iterations as specified in the Experimental 

Configuration section. The algorithms’ performances 

are evaluated based on metrics such as running times 

and the best solution of the objective function values. 

Table 1 presents an analysis of the comparison 

values for the four algorithms: AMGWOA, GWO, 

PSO, and PSOAMGWO. 

Table 1 demonstrates that our suggested 

PSOAMGWO outperforms traditional GWO, 

AMGWOA, and PSO in terms of the value of the 

objective function represented by Eq. (20), achieving 

the lowest score. This phenomenon is a direct result 

of the synergistic integration of the robustness of both 

PSO and GWO algorithms. Regarding the duration of 

execution, AMGWOA demonstrates a substantial 

reduction in execution time, with a decrease of 96.7% 

compared to the GWO algorithm and 89.9% 

compared to PSO. 

The PSOAMGWO algorithm exhibits superior 

performance compared to GWO and PSO in terms of 

both running time and the quality of optimal 

"Minimum" values it generates, surpassing even 

AMGWOA. AMGWOA outperforms PSOAMGWO 

in terms of time by a margin of 12.5%, while the 

difference is not highly significant. 
The PSOAMGWO algorithm significantly enhances 

the accuracy of the PSO and GWO algorithms 

relative to both the quality of the results and the 

computational efforts required. 

Fig. 3 displays the average value of a test function 

graphed against the iteration count for the 

AMGWOA, the standard GWO, PSOAMGWO, and 

PSO algorithms. The plot illustrates that the 

PSOAMGWO algorithm exhibits significantly faster 

convergence compared to GWO, PSO, and 

AMGWOA. The enhanced efficacy of the integrated 

PSO and (GWO) Optimization algorithms can be 

explained by their capacity to exploit and explore. 

5.2.2 Comparative analysis of DDoS detection graphs 

utilizing our proposed methodology versus AMGWOA 

The two figures below Figs. 4 and 5 depict the 

outcomes of a comparison analysis that evaluated the 

effectiveness of the conventional detection approach, 

AMGWOA, and our novel approach PSOAMGWO, 

in identifying fraudulent requests. The x-axis 

represents the quantity of requests, while the y-axis 

represents the anticipated arrival time of these 

requests. 

The results depicted in both Figs. 4 and 5 

demonstrate the classification of cumulative requests 

in the Controller before optimization, after applying 

AMGWOA, and following PSOAMGWO 

Optimization. Analysis of these figures reveals that 

the DDoS detection capability of the proposed 

PSOAMGWO method surpasses existing methods, 

leading to a significant reduction in the total amount 

of requests within the time window µ ∈ [0.01, 1]. Fig. 

4 displays a request count of 600, whereas Fig. 5 

exhibits an increase in requests to 1200. These 

statistics demonstrate when the amount of requests 

gets higher, our PSOAMGWO approach becomes 

more efficient under the same setting. 

Before classification,  i t  is  important  to 

acknowledge that the volume of requests arriving is 

significant and beyond the allotted time for 

process ing .  However ,  a f te r  implement ing 

AMGWOA optimization, it is demonstrated that 

regardless of the number of requests, their total is 

minimized. Furthermore, the application of  
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Figure. 4 A graph depicting the number of 600 

requests over time 

 

 

 
Figure. 5 A graph depicting the number of 1200 

requests over time 
 

 

 
Figure. 6 Normal requests versus time after 

PSOAMGWO 

 

PSOAMGWO leads to a further decrease in the 

volume of requests when compared with AMGWOA. 

Regular requests are defined as those that meet 

the required parameters in the constraints, where τ ∈ 

[20, 50] and µ ∈ [0.01, 1] 

The data depicted in Fig. 6 illustrate the typical 

requests following the application of PSOAMGWO. 

It is evident that these requests do not exceed the 

defined range of [20, 50] and adhere to the specified 

time interval of µ ∈ [0.01, 1], unlike the malicious 

inquiries. It is evident that the queries are reduced to 

less than 0.4 seconds after optimizing PSOAMGWO. 

Requests occurring beyond this range and time frame 

become invisible, as the algorithm automatically 

blocks and discards them. 

In summary, the performance of the proposed 

PSOAMGWO method, which integrates the 

strengths of GWO and PSO, is superior to the 

Standard GWO, PSO, and AMGWOA optimizer in 

its ability to prevent illegitimate requests and 
demonstrates encouraging outcomes in properly 

balancing the exploration and exploitation of 

optimization threats. 

5.2.3 Algorithms accuracy analysis 

In the context of accuracy classification, it is 

imperative to assess the efficacy of the algorithms 

based on their performance across different sample 

sizes. Table 2 presents a comprehensive comparison 

of the accuracy achieved by the Automated Modified 

Grey Wolf Optimizer Algorithm (AMGWOA), Grey 

Wolf Optimizer (GWO), Particle Swarm 

Optimization (PSO), and our proposed Hybrid 

Particle Swarm Optimization and Automated 

Modified Grey Wolf Optimizer Algorithm 

(PSOAMGWO) for sample sizes of 600 and 1200 

requests. 
Among the algorithms, AMGWOA exhibits a 

commendable accuracy of 93.3% for a sample size of 

600 requests, showcasing its robust performance in 

identifying unauthorized requests. As the sample size 

increases to 1200 requests, AMGWOA continues to 

outperform the GWO and PSO algorithms, achieving 

an accuracy of 96.66%. 

 

 
Table 2. Algorithms Accuracy Analysis 

Algorithms 

Accuracy 

Sample 

size=600 

Accuracy 

Sample 

size=1200 

AMGWOA 93.3% 96.66% 

GWO 73.33% 83.33% 

PSO 86.67% 90.3% 

PSOAMGWO 96.6% 100% 
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Figure. 7 Algorithms Accuracy Classification 
 

 

Comparatively, the standard Grey Wolf 

Optimizer demonstrates lower accuracy levels, 

achieving 73.33% and 83.33% for sample sizes of 

600 and 1200 requests, respectively. Particle Swarm 

Optimization shows improved accuracy, reaching 

86.67% and 90.3% for the corresponding sample 

sizes. 

Remarkably, our proposed PSOAMGWO 

algorithm emerges as the most effective in detecting 

unauthorized requests. With an accuracy of 96.6% for 

a sample size of 600 requests and a perfect accuracy 

of 100% for 1200 requests, PSOAMGWO surpasses 

all other algorithms. This underscores the synergistic 

benefits of combining Particle Swarm Optimization 

and Automated Modified Grey Wolf Optimization, 

resulting in a highly efficient algorithm for rapid and 

accurate detection of malicious activities within 

Software-Defined Networks. 

The superior performance of PSOAMGWO 

indicates its potential for practical implementation in 

enhancing security measures, providing reduced 

detection time, and optimizing resource utilization in 

SDN environments. The information is presented in 

Fig. 7. 

5.2.4 Comparative analysis 

Table 3 compares the results produced with our 

approach versus existing methodologies. Our 

proposed method was compared to previous works to 

evaluate its effectiveness. The proposed 

PSOAMGWO obtained a better accuracy of 100% 

when compared to existing methods in the literature 

survey such as [17-24]. Based on the comparison of 

approaches detecting the same type of attacks 

(DDoS) in SDN, our suggested IDS outperforms all 

current IDSs.  Fig. 8 below shows a comparison of 

performance measurements. 

Table 3. Comparative analysis between our new approach 

and existing method 

Authors 
Methodologie

s 
Dataset 

Accurac

y (%) 

[17] RF, and SVM 

Created  SDN 

traffic Dataset 

into CSV file 

98.8 

[18] 
NV , KNN, 

RF, SVM, DT 

NSLKDD 

dataset 
99.97 

[19] 

SVM, DT, K-

NN, and 

ANN 

Created  SDN 

traffic Dataset 

into CSV file 

99.75 

[20] CNN 
CICDDoS201

9 
97.94 

[21] 

KNN, SVM, 

and RF, MLP, 

CNN, GRU, 

and LSTM 

CICIDS20127 

dataset 
95 

[22] SAE-1SVM 
CICIDS20127 

dataset 
99.35 

[23] 

fuzzy logic, 

Shannon 

entropy, and 

LSTM 

CICDDoS 

2019 dataset 
99.98 

[24] 
DNN and 

SVM 

KDD CUP 

dataset 
92.3% 

Propose

d 

Method 

PSOAMGW

O 
- 100 

 

 
Figure. 8 Comparison with state-of-the-art IDSs 

6. Conclusion 

This paper presents the integration of the GWO 

(Grey Wolf Optimizer) with PSO (Particle Swarm 

Optimization) algorithms to effectively counteract 

Distributed Denial of Service (DDoS) attacks on 

Software-Defined Networking (SDN) systems. The 

majority of the strategies previously mentioned in 

Section 3 focus on the identification and mitigation 

0.00%

50.00%

100.00%

P
er

ce
n

ta
ge

Algorithms

Classification Accuracy(%)

600 1200

98.8 99.97 99.75 97.94 95 99.35 99.98 92.3 100P
ER

C
EN

TA
G

E

METHODOLOGIES

ACCURACY ANALYSIS 
(%)

[17] [18] [19]

[20] [21] [22]

[23] [24] PSOAMGWO
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of assaults that have already taken place. These 

methods necessitate a significant quantity of data 

storage, which might pose difficulties for devices 

with restricted memory capacity. Additionally, they 

expose the controller to significant dangers, as certain 

attacks can have instant consequences on the system 

before being detected. Our method effectively 

reduced the number of flows without requiring 

excessive storage or processing capacity to 

distinguish between fraudulent and legitimate 

requests. 

The experiments we conducted illustrate the 

comparatively low time and space requirements of 

our technique.  The minimization of the objective 

function graph for illegitimate requests in Fig. 3 

demonstrates the results of our experiments, which 

support the efficacy of our strategy. This optimization 

is carried out while respecting the criteria specified 

for normal requests, which must be assigned in the 

allocated timing of µ in [0.01, 1] and lie within the 

range of the range [20, 50].  For future studies, we 

recommend employing a variety of hybrid 

metaheuristic algorithms to implement our 

architecture, followed by a thorough evaluation and 

comparison of the obtained results. 

 

Notation List: 
Parameter Description 

𝑎  Represents a vector initialized to 2 

�⃗�  Coefficient vector at the iteration t 

𝐵𝑤 Bandwidth 

𝐶 Represents the capacity of the system 

�⃗⃗�  Coefficient vector at the iteration t 

m 
Represents a tunable parameter used 

to control the exponent in the 

expression Re 𝑞𝑖
𝑚 

n 
Represents the number of 

Components 

𝑟1⃗⃗⃗   , 𝑟2⃗⃗  ⃗ Random values lies in the range [0,1] 

 Req𝛾  Sets of requests 

Reqi Represents the i-th request 

Re𝑞𝑖
𝑚 

Represents the characteristic of the 

system for the i-th component raised 

to the power m 

𝑅𝑒𝑞𝑚 
Represents the specific malicious 

requests that are being targeted for 

minimization 

𝑌𝑃
⃗⃗  ⃗  Position of the prey 

𝑌𝛼
⃗⃗⃗⃗  The first malicious request 

𝑌𝛽⃗⃗  ⃗ The second malicious request 

𝑌𝛿
⃗⃗  ⃗ The third malicious request 

𝜇 The time windows 

𝜎𝑡 
The time frame during which requests 

are received 

w Inertia 

𝜆+ Upper bound 

𝜆− Lower bound 
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