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Abstract: Cloud computing is a popular technology that allows customers to use computing resources remotely on a 

pay-as-you-go basis. Task scheduling is one of the significant problems in cloud computing backgrounds since tasks 

must be scheduled properly to reduce implementation time and cost while optimizing resource efficiency. In this 

research, an estimate of the distribution algorithm for the Krill Herd (EDA-KrillHerd) method for multi-objective 

scheduling tasks in cloud computing is developed and compared with the particle swarm optimization (PSO) and Krill 

Herd algorithms. Most of the existing methods do not use EDA to the large potential in solving task scheduling problem 

resulting in high completion time of tasks. The main objective of this work focuses on effectively using EDA combined 

with KrillHerd algorithm to reduce the task completion time within task scheduling algorithms. The findings indicate 

that the proposed EDA-Krill Herd algorithm excels in terms of time efficiency and faster convergence when it comes 

to task scheduling, in comparison to the existing methods. Furthermore, in the presence of both small and large-scale 

activities, the EDA-Krill herd algorithm has achieved greater efficiency on Makespan of 1000.74s, throughput of 

64.30%, and resources utilization of 99.90% respectively. 

Keywords: Cloud computing, EDA-krill herd, Makespan, Multi-verse optimizer, Task scheduling, Virtual machines. 

 

 

1. Introduction 

The exponential growth of internet information 

processing resulted in the development of cloud 

computing systems. Cloud computing is essential for 

providing technological services through the internet. 

It delivers a resource to users, such as processing 

power, and data storage without requiring direct 

active control [1]. The concept of cloud computing 

was first proposed by Google. In later developments, 

Amazon, Microsoft and the Apache Foundation 

increased their research of cloud computing, and 

academia has further studied the theory of cloud 

computing [2]. Cloud computing is the most recent 

technological development, providing for the 

processing of large amounts of data. Cloud 

computing is an effective technique for addressing 

the requirements of large data applications. [3]. The 

cloud environment is a difficult system with 

numerous shared resources and unpredictability, and 

it is affected by unexpected external events [4].  

Cloud computing consists of a variety of 

computing resources and data centers that receive a 

variety of tasks for execution every minute. The 

scheduling algorithm must select the optimal VM for 

the task depending on its specific requirements [5]. 

Cloud task scheduling is a non-deterministic 

exponential time-hard problem; finding an improved 

task scheduling solution in a multi-cloud context is 

challenging. [6]. In local scheduling tasks, a task 

scheduling ordering technique is employed initially 

to priority user tasks based on restrictions such as task 

flexibility and task life duration. [7]. Scheduling 

algorithms in cloud computing can have a direct 

impact on a system's resource utilization and 

operational costs. To increase the efficiency of cloud 

task executions, several metaheuristic algorithms and 

variants have been developed to optimize the 

scheduling [8]. A task scheduling method based on 

game theory is developed for large data in cloud 
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computing, and experiments demonstrate that the 

approach could enhance cloud computing energy 

management. [9]. However, scheduling a task is a 

critical issue in the cloud computing environment 

since it has a significant impact on system 

performance. It requires an upgraded, efficient 

algorithm to serve the work scheduling process [10]. 

The contribution of the work is as follows, 

 

• To improve the efficiency of task executions 

in a cloud computing system, the EDA-Krill 

herd algorithm was proposed for multi- 

objective task scheduling in cloud computing 

to solve the problem. 

• A new approach called EDA- Krill herd is 

proposed for efficient task scheduling by 

incorporating advanced optimization 

strategies to improve both convergence speed 

and accuracy. 

• The design and implementation of EDA-Krill 

herd and compare it with some existing 

approaches including EMVO, MVO, PSO, 

and Krill herd. The experimental results 

demonstrate that EDA- Krill herd algorithm 

can achieve better performance on Makespan, 

Throughput, and Resource utilization for 

scheduling the tasks. 

 

The rest of this paper is organized as follows. 

Section II described the related work. Section III 

described the proposed EDA-Krill herd approach and 

its implementation details in section IV. The 

conclusion of this research is given in section V. 

2. Related works 

Kusuma and Dinimaharawati [11] proposed a 

new metaheuristic algorithm known as a fixed-step 

average and subtraction-based optimizer (FS-ASBO) 

which is an improved version of the average and 

subtraction-based optimizer (ASBO). This was 

developed to replace the randomized step size in the 

guided movement with the fixed step size, to add an 

exploration mechanism after the guided movement in 

every iteration when the new candidate fails to find a 

better solution. However, for the purpose of solving 

a combinatorial problem, this proposed algorithm 

still has to be modified.   

To address optimisation issues, Zeidabadi [12] 

created the mixed leader based optimizer (MLBO). 

The designed MLBO's goal was to combine the top 

population member with a random member to create 

a new member who would act as the algorithm's 

population's leader. The MLBO's optimisation results 

have demonstrated that the suggested algorithm is 

effective at handling a variety of optimisation issues. 

The future work of this research states that 

implementing MLBO on real time optimization 

issues can achieve in major contributions. 

Shukri [13] designed an enhanced version of the 

multi-verse optimizer (EMVO) to minimize the cost 

and execution time of tasks. The EMVO was utilized 

to plan work, manage issues, and allocate resources. 

In terms of reducing makespan time and enhancing 

resource usage, EMVO significantly improves both 

PSO and MVO algorithms. However, one of the most 

difficult difficulties in EMVO was scheduling a task, 

which requires tasks to be planned to reduce 

operation cost and time while improving resource 

usage. 

Rajakumari [14] proposed a dynamic weighted 

round- robin algorithm for improving task scheduling 

in cloud computing by solving the optimal task 

scheduling issues. Along with this, a hybrid particle 

swarm parallel ant colony optimization (HPSPACO) 

was also proposed to solve the task execution delay 

problem in deficit weighted round robin (DWRR) 

based task scheduling. In order to optimise work 

scheduling, the suggested fuzzy hybrid particle 

swarm parallel ant colony optimisation 

(FHPSPACO) on cloud computing reduced 

execution and waiting times, boosts system 

throughput, and maximises resource usage. However, 

the complexity and imprecise data handling are the 

limitations of this work. 

Jamal and Muqeem [15] introduced a novel 

adaptive strategy that combines the best-worst multi-

criteria decision-making (MCDM) with the 

compromise ranking method (VIKOR). This paper 

provided a method for mapping user requests to 

virtual machines (VMs), where many competing 

factors were taken into account in a cloud scheduling 

strategy. The limitations such as complex calculation 

of population, varying criteria will result in improper 

decision.  

Doumari [16] implemented a novel ring toss 

game-based (RTGBO) for population-based 

optimisation. The purpose of RTGBO is to imitate 

player conduct and game rules in the construction of 

the implemented algorithm. However, for some 

optimisation situations, the RTGBO algorithm not be 

appropriate, hence, when solving issues with 

numerous variables or constraints, it not performs 

well.  

Zeidabadi and Dehghani [17] presented puzzle 

optimization algorithm (POA) to solve the issues of 

various optimization and to represent the puzzle-

solving process mathematically as an optimizer. The 

key benefit and characteristic of the POA is, it does 

not required parameter setting as POA has no  
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Figure. 1 The architecture of cloud computing for scheduling tasks 

 

parameters of control. However, the POA has a loss 

of control, lack of flexibility, and misuse of authority. 

Low precision, complexity, complex calculation 

of population, loss of control, lack of flexibility, and 

misuse of authority are the drawbacks of the existing 

methods. To overcome these methods an EDA-

KrillHerd is proposed in this research. 

3. Proposed method for Eda- Krill Herd 

Algorithm 

To improve the performance of time-consuming 

issues in the existing methods, the EDA-krill herd 

algorithm is proposed. The EDA- krill herd algorithm 

was used to decrease the Makespan, throughput, and 

resources utilization time, which was discussed in the 

experimental results. Users submit tasks to the cloud 

system, and the cloud system includes three modules: 

task manager, resource manager and scheduler. 

Cloud computing delivers tasks to the taskbar and 

processed them to collect the data. It handles all 

virtual machines constantly and collects information 

for computing speed. The scheduler starts working 

after acquiring information on tasks provided by the 

task administrator for faster processing of virtual 

machines. According to this research, the EDA-krill 

herd plays a crucial role in the scheduling of virtual 

machine tasks. The structure of cloud computing for 

scheduling tasks was illustrated in Fig. 1. 

3.1 Mathematical technique 

The proposed approach for mathematically 

expressing the scheduling of n tasks across m virtual 

machines involves accounting for their differing 

computation rates. The multi-objective optimization 

problem addresses many objectives at the same time 

to identify load balancing and task completion time. 

The computational time for the suggested 

methodology was shown mathematically in the Eqs. 

(1-3). 

 
∑ ∑ 𝑥𝑖,𝑗,𝑟 = 1,𝑛

𝑟=1
𝑚
𝑗=1             𝑖 = 1,2, … 𝑛           (1) 

 
∑ 𝑥𝑖,𝑗,𝑟 ≤ 1𝑛

𝑖=1  ,           𝑗 = 1,2, … 𝑚; ∀𝑟                (2) 

 
∑ 𝑥𝑖1,𝑗 𝑟+1 − ∑ 𝑥𝑖2,𝑗 𝑟  ≤ 0𝑛

𝑖2=1  𝑛
𝑖1=1 ,  

  𝑗 = 1,2, … 𝑚; ∀𝑟   (3) 

 

where Eq. (1) ensures the tasks that are scheduled 

on VMs and only once; Eq. (2) ensures that each VMs 

performs only one task at the same time; and Eq. (3) 

indicates the work on a certain VMs has been 

performed in a specific sequence. 

3.2 Task model for completion time 

From the input mathematical model to task model 

VMs and task size computation speed are identified, 

the ETC matrices can be considered at Eq. (4). 

 

𝐸𝑇𝐶 (𝑡𝑖 , 𝑟𝑗) =  
𝑇𝑆𝑖

𝑉𝑆𝑗
   (1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 )      (4) 

 

Where, (𝑡𝑖 , 𝑟𝑗)  indicates i required time to 
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complete the tasks in virtual machine running time j. 

The completion time of the virtual machine to 

aggregate the running times for all tasks given to it. 

Each virtual machine's completion time can be 

determined as Eq. (5). 

 

𝑡𝑖𝑚𝑒 𝑗 =  ∑ 𝐸𝑇𝐶 (𝑡𝑖 , 𝑟𝑗) 𝑘
𝑟=1                        (5) 

 

where k represents the task numbers allocated to 

virtual machine j. 

It describes that the entire runtime of total VMs 

in completion time was similar to cloud computing. 

The entire time for task completion was considered 

using Eq. (6). 

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑇𝑖𝑚𝑒 =  

max{𝑡𝑖𝑚𝑒1, 𝑡𝑖𝑚𝑒2 … . 𝑡𝑖𝑚𝑒𝑚}      (6) 

3.3 Model for load balancing 

From the input task model to load balancing was 

to increase the degree of load balancing of the system 

is defined as Eq. (7). 

 

𝐷𝐵𝐿 =  
∑ 𝑡𝑖𝑚𝑒 𝑗

𝑚
𝑗=1

𝑀 ×𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑇𝑖𝑚𝑒
                          (7) 

 

DBL denotes the load balancing degree. When it 

comes to the execution of each VMs, has 

approximately equal total processing times, 

indicating the load for better balanced. As a result, the 

DBL was regulated the load with greater load 

balancing capacity.  

3.3.1. Fitness function 

From the load balancing to the fitness function, 

the EDA-Krill herd algorithm's population indicates 

a viable clarification to the challenge. The fitness 

function was utilized to assess solution quality, it is 

essential for avoiding an optimum and attaining the 

ideal solution. It may create various fitness functions 

based on the needs of the user. This paper considers 

load balancing degree and total task completion, the 

fitness function was determined in Eqs. (8) and (9). 

 

𝐺𝑉𝑎𝑙𝑢𝑒 =  𝜔1 ∗ 
1

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑇𝑖𝑚𝑒
+  𝜔2 ∗ 𝐷𝐵𝐿    (8) 

 

𝜔1+ 𝜔2 = 1 (0 ≤  𝜔1 ,  𝜔2  ≤ 1)                 (9) 

 

where 𝜔1  and 𝜔2  are weight coefficients, 

according to different user requirements weight 

coefficients can be set. For example, considering the 

task completion for factor time, set 𝜔1 and 𝜔2. The 

balancing load was considered, set 0 to 1, and two 

factors are considered consecutively of sets 𝜔1 and 

𝜔2   correspondingly. The GValue was larger and 

better for the quality of the resolution [16]. 

3.4 EDA-Krill Herd hybrid algorithm  

To schedule tasks in a computing cloud, the 

suggested EDA-Krill Herd hybrid algorithm is 

assigned the responsibility of load balancing. During 

the experimental setup used to obtain results on a 

specific scale, all options were set to a fixed value of 

1/m for sampling purposes. Simultaneously, GValue 

recommends evaluating all options and selecting 

great ones. Second, employ the Krill herd to 

undertake mutation and crossover procedures on the 

selected great solutions, resulting in the generation of 

new resolutions. Finally, sort the outstanding 

resolutions from step 1 and resolutions from step 2 in 

descending order. The elite population is made up of 

the top p% of great answers. Finally, based on the 

updated probability and elite population model gives 

finite results to process the data. Run the algorithms 

in this manner while the halting condition is reached, 

and the output is the best result. The specific 

development of the EDA- Krill herd algorithm is 

mentioned as follows. 

3.4.1. EDA operations 

The data from the proposed method to EDA 

operations were classified into initialization, 

sampling method and fitness assessment described 

below. 

3.4.1.1. Initialization 

The distribution of solutions can be better 

understood and the characteristics of the problem can 

be more easily reflected through the use of a 

probability model. The possibility of   techniques 

constructed as shown in Eq. (10). 

 

𝑃(𝑔) = [  

        𝑝11(𝑔)            𝑝12(𝑔)         𝑝1𝑚(𝑔)  

    𝑝21(𝑔)            𝑝22(𝑔)         𝑝2𝑚(𝑔)

  𝑝𝑛1(𝑔)            𝑝𝑛2(𝑔)         𝑝𝑛𝑚(𝑔)
 

] 

(10) 

 

In the gth iteration, 𝑃(𝑔) describes the mapping 

connection among m machines and n tasks. To assure 

the unpredictability of the initial population, all 

probability values are fixed to 1/m at startup. 

3.4.1.2. Sampling method 

This coding method encodes the virtual machines 

occupied by each task, and the length of each 
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individual is equal to the number of tasks. Each 

position in the individual represents the task number, 

and the value in this position represents the virtual 

machine number assigned to the task. This individual 

represents the first task assigned to the first virtual 

machine, the second task assigned to the fourth 

virtual machine, and the third task assigned to the 

second virtual machine. 

3.4.1.3. Fitness assessment 

The allocation of tasks on virtual computers can 

be achieved in the previous phase, based on the 

coding output of each task. The individual's fitness 

value is then calculated, and the tasks are ordered in 

descending order based on their fitness value. 

3.5 Operations of Krill heard algorithm 

The data from the proposed method to operations 

of krill herd the concentration appears to be quite 

enormous and is often seen at a distance of 10-100 m. 

The outcome of these arithmetic techniques cannot 

take into account the migration of krill that developed 

as Antarctic krill. The fitness characteristic for krill 

movement is represented based on multiple distance 

measures, that include the smallest space between 

each krill and the minimum gap between the largest 

herd solidity and each krill. 

The decision of n-dimensional space is given by 

Eq. (11). 

 
𝑑𝑋𝑖

𝑑𝑡
=  𝑁𝑖 +  𝐹𝑖 +  𝐷𝑖                                     (11) 

 

where 𝑁𝑖  is a measure indicated by krill 

individuals, 𝐹𝑖  foraging activity, 𝐷𝑖  indiscriminate 

diffusion, i = 1 to nk number of krill individuals. 

The movement of each krill is represented by Eq. 

(12). 

 

𝑁𝑖
𝑛𝑒𝑤 =  

[𝑁𝑚𝑎𝑥  ∑ [
𝑘𝑖− 𝑘𝑗

𝑘𝑤𝑜𝑟𝑠𝑡− 𝑘𝑏𝑒𝑠𝑡
]𝑁𝑁

𝑗=1 [
𝑋𝑗− 𝑋𝑖

𝑋𝑗− 𝑋𝑖+𝜀
] {2 (𝑟𝑎𝑛𝑑 +

 
1

𝐼𝑚𝑎𝑥
) 

1

𝑘1,𝑏𝑒𝑠𝑡 𝑋1,𝑏𝑒𝑠𝑡
}] + 𝜔𝑛𝑁𝑖

𝑜𝑙𝑑   (12) 

 

where, 𝑘𝑖 is the value of fitness, ith krill creature 

(i=1 to nk), 𝑘𝑗 value of fitness for acquaintance (𝑗 =

1 𝑡𝑜 𝑁𝑁), 𝑘𝑤𝑜𝑟𝑠𝑡 , 𝑘𝑏𝑒𝑠𝑡 best case and the worst case 

of each krill, 𝑋 exact location, 𝜀  positive minimum 

number, 𝑁𝑚𝑎𝑥  large induced speed in 𝑚𝑠−1 , I 

describe iteration calculation, 𝐼𝑚𝑎𝑥  denotes utmost 

iteration calculation, 𝑘1,𝑏𝑒𝑠𝑡  rate of finest fitness of 

ith krill, 𝑋1,𝑏𝑒𝑠𝑡  position of 𝑋1,𝑏𝑒𝑠𝑡  of i th krill, 𝜔𝑛 

indicates an inertial weight  range of (0,1),  𝑁𝑖
𝑜𝑙𝑑  

denotes final inertial weight from 0 to 1. 

The equation for distance sense is described in Eq. 

(13). 

 

𝑑𝑠,𝑖 =  
1

5𝑁
  ∑ || 𝑋𝑖 −  𝑋𝑗||𝑁

𝑗=1                  (13) 

 

The calculation between the krill folks and 

formulated distance is obtained. If this gap is less, 

then they are assumed to be neighbors where 𝑁 

represents the movement induced by each krill, 𝑉𝑓 

foraging speed, 𝑚𝑠−1, 𝜔𝑓 weight inertia in the range 

(0, 1), 𝑓𝑖
𝑜𝑙𝑑 motion of last foraging. 

3.6 Updating method 

From the input krill herd algorithm to updating 

method, the possibility techniques were updated 

using the population-based incremental learning 

(PBIL) and elite population method was shown in 

Eqs. (14-15). 

 

𝑝𝑖𝑗(𝑔 + 1) = (1 − 𝜆 ) 𝑝𝑖𝑗(𝑔) +  𝜆 
1

𝐸
  ∑ 𝐼𝑖𝑗

𝑘  (𝑔) 𝐸
𝐾=1

    (14) 

𝐼𝑖𝑗
𝑘  (𝑔) =  

{
1,   𝑖𝑓 𝑇𝑖 𝑜𝑛 𝑉𝑗 𝑖𝑛 𝑡ℎ𝑒 𝑘 − 𝑡ℎ 𝑖𝑛𝑣𝑖𝑑𝑢𝑎𝑙

0 ,        𝑒𝑙𝑠𝑒                                                          
    (15) 

 

where  𝑝𝑖𝑗  (𝑔) describes the probability of task 𝑖  

allocated to virtual machine 𝑗, 𝜆 ∈  (0, 1) describes 

the rate learning, E describes the size of population 

elite (𝐸 =  𝑃𝑆 ×  𝑝%) , and 𝐼𝑖𝑗
𝑘  (𝑔)  describes the 

pointer function was similar to the kth elite population 

of individual tasks. 

4. Experimental results and implementation 

The suggested method is given to the 

experimental results, it contains experimental setup, 

performances, comparative analysis, and graphical 

representations and the outcomes of the suggested 

techniques were described and discussed below. 

4.1 Experiment setup 

The suggested techniques were implemented 

using Cloudsim version 3.0.3 and the outcomes were 

run on a PC with the features such as OS: Windows 

10, RAM: 16 GB, Memory: 1TB, Software: 

NetBeans IDE 8.2 Java 1.8 

Table 1 showed the characteristics of the algorithms. 

The main objective of the suggested algorithm is to 

discover the optimal sequence of tasks, where all 

tasks are allocated to VMs and completion time is 

reduced by utilizing the makespan time. 
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Table 1. Experimental environment parameters 
Type Parameters Value 

VM Processor speed Memory 

Bandwidth 

Image size 

PesNumber 

VMM 

1000 

512 MB 

1000 

10000 

1 

Xen 

Host MIPS 

Storage 

VMM Monitor 

Memory 

Bandwidth 

1000 

1000000 

Xen 

25600 MB 

50000 

Data Center Arch 

Operating system 

VMM 

Time_zone 

Cost 

Cost Per Memory 

Cost Per Storage 

Cost Per Bandwidth 

X86 

Linux 

Xen 

10.0 

3.0 

0.05 

0.1 

0.1 

KrillHerd Size population 50 

Selection for mechanism Roulette wheel 

Cross over for krillHerd 0.9 

Mutation for Krill Herd 0.2 

 

 

 
Figure. 2 Makespan time results for VMs=50 

 

4.2 Experimental results 

The experimental results showed that results are 

compared with existing method such as enhanced 

multi-verse optimizer (EMVO) algorithm as 

described below. 

4.2.1. Quantitative analysis 

The makespan time findings for the datasets are 

represented in Fig. 2 for the EMVO. As compared to 

previous results, the suggested EDA-Krill herd 

method achieves a superior make span of 927.02 

seconds (s). As a result, the first assumption is that 

increasing the number of VMs to 50 can minimize the 

makespan time. In terms of efficiency, it can be 

shown that the suggested approach has achieved 

better performances when compared to existing 

techniques. 

Fig. 3 shows the throughput results for this 

experiment, which reflect the efficiency of the 

algorithm in processing tasks proportional to the 

number of active VMs=50. As compared to previous 

findings, the suggested EDA-Krill herd method 

achieved a throughput of 68.80%. These findings 

show that the EDA-KrillHerd fared the best in both  
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Figure. 3 Throughput results for VM=50 

 

 
Figure. 4 Resources Utilization results for VMs=50 

 

local and global searches for the optimal solution in 

terms of minimum makespan time and maximal 

throughput. 

The number of utilization resources in the 

element is to be calculated in this experiment. The 

resources indicated by the VMs were utilized, which 

has VMs=50 for all datasets. MIPS ranged from 100 

to 1000 for the VMs used. The average resource use 

for all datasets is shown in Fig. 4. As compared to 

previous findings, the suggested EDA-Krill herd 

algorithm performed well in terms of resource usage, 

with a range of 99.16. 

This experiment was utilized to reduce the 

makespan time results, since this reduced execution 

and waiting time for a better scheduling technique. 

Fig. 5 shows the makespan time findings for the three 

techniques on regular-size datasets. By increasing the 

number of tasks, the makespan time was reduced to 

1006.7 (s). It can also be observed that the EDA-

KrillHerd method performed well when compared to 

EMVO methods in all datasets for a given number of 

VMs. 

The throughput value is the second criterion for 

evaluation because more throughput equates to 

greater efficiency. The purpose of the tasks on better 

throughput VMs. Throughput time findings for 

regular-size datasets utilizing a varying number of 

VMs were shown in Fig. 6. The throughput time was 

reduced by increasing the number of tasks to 64.30 

(%). 

Fig. 7 shows that algorithms gave nearly identical 

results. This means that the number of tasks is equal 

to the three algorithms that were performed in equal 

values, with minor changes. By increasing the  
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Figure. 5 Results of VMs for Makespan time 

 

 
Figure. 6 Throughput time results of VMs 

 

 
Figure. 7 Resources utilization time results of VMs 

 

number of tasks, the resource time was reduced and 

99.90 (%) was achieved. 
4.2.2. Comparative analysis 

In this section, the proposed method is compared  
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Table 2. Makespan outcomes of time for datasets using 

variable number of tasks 

Number 

of tasks 

Makespan (s) 

FHPSPACO 

[14] 

MCDM 

[15] 

EDA-

KrillHerd 

(Proposed) 

10 20.00 50.00 18.45 

20 22.45 54.00 20.34 

30 25.00 59.00 22.46 

40 27.56 80.00 25.36 

50 30.00 100.00 27.52 

 

 

Table 3. Throughput outcomes of time for datasets using 

variable number of tasks 

Number 

of tasks 

Throughput (%) 

FHPSPACO [14] EDA-KrillHerd 

(Proposed) 

10 7.00 6.25 

20 10.00 8.45 

30 12.00 10.52 

40 15.00 13.30 

50 30.00 27.73 

 

 

Table 4. Resource utilization outcomes of time for 

datasets using variable number of tasks 

Number 

of tasks 

Resource utilization (%) 

FHPSPACO 

[14] 

MCDM 

[15] 

EDA-

KrillHerd 

(Proposed) 

10 93.00 72.00 96.00 

20 90.00 76.00 94.00 

30 87.00 66.00 91.00 

40 84.00 68.00 88.00 

50 80.00 88.00 85.00 

 

to two existing techniques such as FHPSPACO [14] 

and MCDM [15] as given in Table 2. The obtain 

results shows that the proposed method archives 

better makespan by varying number of tasks from 10 

to 50 compared to references [14, 15].  

The FHPSPACO [14] method uses objective 

function related to resource availability and task 

parameters only, it doesn't consider objective cost 

and energy with respect to datacentre and also it uses 

a simple optimization algorithm of ACO which has 

lesser convergence over epochs in comparison to 

existing optimization techniques. The MCDM [15] 

method considers parameters defined manually 

which has conflicts over dynamic allocation of task 

scheduling strategy with respect to practical 

simulation scenarios to balance the load effectively. 

These limitations are overcome by the propose 

method by considering, cost and energy factors along 

with the appropriate task allocation in practical 

scenarios.  

Table 5. Nomenclature 

Terms Representation 

n Number of tasks 

m Number of virtual machines 

𝑥𝑖,𝑗,𝑟 represents that task 𝑖 is the 𝑟-th task 

processed on virtual machine 𝑗 

𝐸𝑇𝐶𝑛×𝑚 the matrix of size 𝑛 × 𝑚, represents the 

running time of all the tasks on each 

virtual machine.  

𝑇𝑆𝑖  The size of task 𝑖 
𝑉𝑆𝑗 The computing speed of virtual machine 𝑗 

𝑘 Total number of tasks assigned to virtual 

machine 𝑗 

 

 

The throughput of the proposed method is 

compared to FHPSPACO [14] as shown in Table 3. 

The proposed method achieves better throughput 

compared to ref [14]. 

The resource utilization of the proposed method 

is compared to FHPSPACO [14] and MCDM [15] as 

shown in Table 4. The proposed method uses highest 

resources than the other task scheduling methods. 

5. Conclusion 

In this research, an EDA-Krill Herd method for 

multi-objective scheduling tasks in cloud computing 

was developed. The EDA-Krill Herd was then used 

to map some tasks into the required number of VMs 

to decrease makespan time, enhance throughput, and 

increase resource usage. The EDA-Krill Herd was 

utilized to schedule work, handle issues, and allocate 

resources and used to improve task scheduling in the 

cloud. The performance of the EDA-Krill Herd 

method was compared to the FHPSPACO and 

MCDM scheduling algorithms. The results 

demonstrate that the EDA-Krill Herd mapped 

workloads successfully with no extra overheads. As 

compared to existing techniques, EDA-Krill shows 

better performance and has a shorter computational 

time in Makespan of 1000.74s, throughput of 64.30%, 

and resource utilization of 99.90% respectively. In 

the future, task scheduling in cloud computing must 

concentrate on better scheduling techniques based on 

multi-objective functions and add some more 

parameters to improve the performance of the cloud 

scheduling system. The representation of terms 

which are used in the mathematical models are given 

in Table 5.  
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