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Abstract: Many industrial and commercial sectors have concentrated on sustainable practises to mitigate global 

warming. Integrating renewable energy (RE) into electrical systems reduces greenhouse gas (GHG) emissions from 

traditional power plants and improves low-voltage (LV)-based radial distribution networks (RDNs). LV-RDNs' high 

r/x ratio branches prevent high RE penetrations. They have substantial distribution losses and low voltage profiles. 

Hence, maximising photovoltaic (PV) power penetration in LV-RDNs reduces energy sector GHG emissions, 

distribution losses, and voltage profile. Regardless of PV penetration, changing the feeder configuration improves 

performance because PV power generation is intermittent. This paper offers a hybrid dandelion optimizer (HDO) 

using loss sensitivity factors (LSFs) for hourly optimal network reconfiguration (HONR) to maximise PV 

penetration and reduce GHG emissions, losses, and voltage profile. Simulation findings on IEEE 33-bus LV-RDN 

showed the superiority of the suggested methodology and motivated real-time adaption by improving performance. 

Three case studies are simulated: only PV unit allocation, simultaneous PV unit allocation, and variable loading 

profiles and PV penetration. In comparison to literature, the proposed HDO-based ONR increased PV penetration 

from 49.91% to 82.02%, reduced GHG emissions during peak loading conditions from 8.0221e+6 lb/h to 1.4786e+6 

lb/h, and reduced distribution energy losses from 1837.07 kW/day from 2669.812 kW/day.  

Keywords: Loss sensitivity factors, photovoltaic power penetration, Low-voltage radial distribution networks, 

Dandelion optimizer, Network reconfiguration. 

 

 

1. Introduction 

Global warming is one of the primary issues 

across the world, and thus many industries and 

business sectors have been focused on different 

sustainable practises for mitigating its consequences 

[1]. Integration of renewable energy (RE) is one of 

these promising methodologies in the electrical 

sector, not only for reducing greenhouse gas (GHG) 

emissions from conventional power plants but also 

for improving the performance of low-voltage (LV)-

based radial distribution networks (RDNs) [2]. 

However, LV-RDNs cannot host high RE 

penetrations due to their configuration and high r/x 

ratio branches. In addition, they suffer from high 

distribution losses and low voltage profiles [3]. Thus, 

maximising photovoltaic (PV) power penetration in 

LV-RDNs can not only reduce GHG emissions in 

the energy sector but also reduce distribution losses 

and improve the voltage profile in LV-RDNs. Since 

PV power is intermittent in nature, it is necessary to 

simultaneously alter the network configuration of 

the feeder to improve overall performance, 

irrespective of PV penetration levels [4]. 

Many researchers are focused on the optimal 

allocation of RE-based distribution generation (DG) 

in LV-RDNs, considering GHG reduction, loss 

reduction, voltage profile improvement, and voltage 

stability margin enhancement. Initially, many 

analytical approaches have been introduced for 

solving the RE-based DG allocation problem in 
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RDNs [5]. These methods produce accurate and fast 

results. Such methods work for simple systems with 

few state variables. However, analytical methods are 

computationally inefficient for big, complicated 

systems. In this regard, meta-heuristic approaches 

(MHAs) have recently attracted many researchers [6, 

7]. MHAs, which are capable of obtaining effective, 

precise, and ideal answers, are referred to as 

intelligent procedures. The most recent and 

charming meta-heuristic search approaches use the 

hypothesis that technology evolved from artificial 

intelligence. Also, these techniques are the most 

advantageous for resolving challenging issues in a 

variety of fields. [8]. 

In [9], an improved multi-objective elephant 

herding optimisation (IMOEHO) is proposed for 

optimal location and sizes of multiple DGs 

considering multi-objective optimisation with loss, 

voltage profile, and VSI. In [10], the RE-based DG 

allocation problem has been solved using the water 

cycle algorithm (WCA) for the reduction of GHG 

emissions, distribution losses, and voltage deviation, 

as well as maximising the voltage stability index 

(VSI). In [11], an improved decomposition-based 

evolutionary algorithm (I-DBEA) is developed for 

optimally integrating DGs considering multi-

objective optimisation with loss, voltage profile, and 

VSI. In [12], a hybrid oppositional sine-cosine 

muted differential evolution algorithm (O-

SCMDEA) is developed for solving the DG 

allocation problem for optimising multi-objective 

functions using loss, voltage profile, and VSI. In 

[13], a Pareto-based multi-objective sine-cosine 

algorithm (MOSCA) and the strength pareto 

evolutionary algorithm 2 (SPEA2) are proposed for 

optimising loss, VSI, and energy loss costs while 

solving the DG allocation problem. 

From these works, it can be seen that the optimal 

allocation of RE-based DGs can improve the 

performance of LV-RDNs significantly. However, 

these works are not focused on the maximisation of 

RE penetration by utilising optimal network 

reconfiguration (ONR) simultaneously. In the 

literature, many researchers have worked on 

simultaneous approaches focusing on these benefits 

explicitly, but the improved RE penetration level can 

be seen implicitly. 

In [14], evolutionary programming (EP), particle 

swarm optimisation (PSO), the firefly algorithm 

(FA), and the gravitational search algorithm (GSA) 

are used for solving simultaneous DG allocation and 

ONR by aiming at loss reduction. The comparative 

study has shown FA superiority with its global 

indices. In [15], power loss and VSI are optimised 

using the adaptive shuffled frogs leaping algorithm 

(ASFLA) while determining the ONR and DGs 

locations and sizes simultaneously. In [16], the 

stochastic fractal search algorithm (SFSA) along 

with loss sensitivity factors are used for loss 

reduction by optimising the DGs and reconfiguring 

them simultaneously. In [17], the chaotic search 

group algorithm (CSGA) is proposed for optimising 

the distribution losses by solving the DG allocation 

and ONR problems simultaneously. Similarly, quasi-

oppositional chaotic neural network algorithm 

(QOCNNA) [18], symbiotic organism search (SOS) 

[19], non-dominated sorting stochastic fractal search 

(NSSFS) [20], quasi-oppositional chaotic symbiotic 

organism search (QOCSOS) [21], improved 

symbiotic organism search (ISOS) [22], and search 

group algorithm (SGA) [23] are such recent 

effective MHAs on simultaneous allocation of DGs 

and ONR problems by aiming multi-objectives. 

In the above-reviewed works, MHAs for 

allocating DGs and ONR at the same time have a 

number of problems. Many works are solved by 

applying directly the basic MHAs as they were 

introduced [10, 13–14, 16, 19, 23]. Some works are 

proposed improvements or modifications to the 

MHAs [9, 11, 12, 15, 17, 18, 20–22]. In this context, 

many basic MHAs may produce poor answers and 

get trapped at a local optimum due to either 

exploration or exploitation phases, particularly for 

large search spaces. Hence, according to the no-free-

launch (NFL) theorem [24, 25], there is no single 

MHA that can solve all types of optimisation 

problems. This is the basic motivation to introduce 

new and hybrid MHAs such as improved Coot 

optimisation (ICOOT) [26], hybrid rapidly-

exploring random tree star-PSO (RRT*PSO) [27], a-

star chaotic PSO (ACPSO) [28], hybrid firefly 

algorithm-modified chaotic particle swarm 

optimisation (HFAMCPSO) [29], and quarter orbit 

particle swarm optimisation (QOPSO) [30] for 

improving the convergence characteristics and 

accurate results. Particularly for the complex, multi-

objective, multi-variable, multi-constrained 

simultaneous ONR and DGs allocation problem, it is 

important to ensure global optimum for maintaining 

reliability and security in the electrical grid. 

On the other hand, these works completely 

ignore the variability of RE due to their 

intermittency. In this connection, this paper 

introduces hourly optimal network reconfiguration 

(HONR) for handling PV penetration effectively in 

LV-RDNs. Also, a new MHA, the dandelion 

optimizer (DO) [31], has been introduced by 

inspiring long-distance wind-powered flight with 

three stages of dandelion seed. Recently, in [32], DO 

is used effectively in electrical engineering for 
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solving automatic voltage regulation (AVR) and 

frequency control via automatic generation control 

(AGC) in multi-area power systems. In [33], the 

parameters involved in the mathematical modelling 

of proton exchange membrane fuel cells (PEMFCs) 

are optimally determined using DO.  

Self-adaption of parameters, good exploration 

and exploitation characteristics, and the ability to 

avoid local optimum traps have been the major 

abilities of DO that have been observed while 

solving complex multi-objective optimisation 

problems. By combining these factors, this paper 

adapts DO for solving the HDNR problem by 

aiming multiple benefits at LV-RDNs. In order to 

reduce the computational effort and convergence 

time, the search space for DO is predetermined by 

using loss sensitivity factors (LSFs). The proposed 

hybrid DO with LSFs (HDO) is aimed for maximum 

PV penetration, low GHG emissions, reduced losses, 

and an improved voltage profile. 

The paper continues: Section 2 covers 

theoretical notions and models. HONR multi-

objective optimisation is discussed in section 3. 

Section 4 presents the HDO with the LSFs' 

mathematical relations. Section 5 examines IEEE 

33-bus LV-RDN simulations for varied PV 

penetration levels and hourly load profiles. Section 6 

summarises this paper's main contribution and 

research findings. 

2. Theoretical concepts and modelling  

This section explains the mathematical 

modelling of PV penetration and hourly network 

loading profile are explained.   

2.1 Photovoltaic penetration 

In specific, annual energy served by PV systems 

in a distribution network is known as PV penetration 

[33]. In this work, PV penetration is defined with 

respect to hourly network load profile and hourly 

PV generation. 

 

𝑃𝑉𝑝𝑒𝑛 = (∑
𝑃𝑝𝑣(ℎ)

𝑃𝑑(ℎ)

24
ℎ=1 ) × 100%     (1) 

 

𝑃𝑝𝑣(ℎ) = ∑ 𝑃𝑝𝑣,𝑘(ℎ)
𝑛𝑝𝑣
𝑘=1       (2) 

 

𝑃𝑑(ℎ) = 𝑃𝑙𝑜𝑠𝑠(ℎ) + ∑ 𝑃𝑙𝑑,𝑘(ℎ)
𝑛𝑏𝑢𝑠
𝑘=1    (3) 

 

According to the basic rules of how a PV system 

works, its output depends on the weather, 

 

𝑃𝑝𝑣(ℎ) = 𝑃𝑉𝑐 (
𝐺(ℎ)

𝐺(𝑟)
) {1 + 𝜗𝑝𝑣 ([𝑇𝑎(ℎ) + (

𝑇𝑁−20

0.8
)] −

𝑇(𝑟))} 𝛼𝑙𝑜𝑠𝑠𝛽𝑖𝑛                                                        (4) 

2.2 Modeling of network loading profile  

The network loading condition may not be 

always constant. By having PV system integration, 

the net effective loading at a bus and overall 

network loading profile is defined as, 

 

𝑃𝑙𝑑,𝑘(ℎ) = 𝛾(ℎ)𝑃𝑙𝑑,𝑘 − 𝑃𝑝𝑣,𝑘(ℎ), ∀𝑘 = 1: 𝑛𝑝𝑣   (5) 

 

For all other buses (i.e., except PV locations), 

the real and reactive power loadings are defined by, 

 

𝑃𝑙𝑑,𝑘(ℎ) = 𝛾(ℎ)𝑃̅𝑙𝑑,𝑘, ∀𝑘 = 1: 𝑛𝑏𝑢𝑠 & ≠ 1: 𝑛𝑝𝑣   (6) 

 

𝑄𝑙𝑑,𝑘(ℎ) = 𝛾(ℎ)𝑄̅𝑙𝑑,𝑘, ∀𝑘 = 1: 𝑛𝑏𝑢𝑠 & ≠ 1: 𝑛𝑝𝑣  (7) 

3. Problem formulation 

This section provides the proposed multi-

objective function with planning and operational 

constraints while maximizing PV penetration along 

with ONR problem.  

3.1 Multi-objective function 

Distribution loss reduction, minimization of 

GHG emission, and improvement in voltage profile 

is focused and mathematically given by: 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐼𝑘(𝑖𝑗)
2 𝑟𝑘(𝑖𝑗)

(𝑛𝑏𝑟+𝑛𝑡𝑙)
𝑘=1         (8) 

 

𝐴𝑉𝐷𝐼 =
1

𝑛𝑏𝑢𝑠
√∑ (1 − |𝑉𝑖|)2𝑛𝑏𝑢𝑠

𝑖=1                    (9) 

 

𝐺𝐻𝐺𝑒 = (𝑘𝑐 + 𝑘𝑛 + 𝑘𝑠)(∑ 𝑃𝑙𝑑,𝑘
𝑛𝑏𝑢𝑠
𝑛=1 + 𝑃𝑙𝑜𝑠𝑠)   (10) 

 

𝑀𝑂𝐹 = 𝑚𝑖𝑛(𝑃𝑙𝑜𝑠𝑠 + 𝐴𝑉𝐷𝐼 + 𝐺𝐻𝐺𝑒) +
1

𝑃𝑉𝑝𝑒𝑛
    (11) 

3.2 Planning and operational constraints 

In this paper, number of PV locations and their 

penetration levels are the major search variables. 

However, voltage magnitudes of all buses should be 

maintained with in specified limits, and the size of 

PV system should not be more than total real power 

demand of the network at any time. In addition, 

active and reactive power balance, network radial 

constraints are considered as defined by, 

 

𝑉𝑚𝑖𝑛 ≤ |𝑉𝑖| ≤ 𝑉𝑚𝑎𝑥, 𝑖 = 1: 𝑛𝑏                  (12) 
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𝐼𝑘(𝑖𝑗) ≤ 𝐼𝑘(𝑚𝑎𝑥), 𝑘 = 1: 𝑛𝑏𝑟 + 𝑛𝑡𝑙                  (13) 

 

𝑃𝑉𝑐  ≤ ∑ 𝑃𝑙𝑑,𝑘(ℎ)
𝑛𝑏𝑢𝑠
𝑘=1                                       (14) 

 

𝑃𝑝𝑣(ℎ) ≤ 𝑃𝑑(ℎ)                            (15) 

 

𝑃𝑔𝑟𝑖𝑑(ℎ) + 𝑃𝑝𝑣(ℎ) = 𝑃𝑑(ℎ) + 𝑃𝑙𝑜𝑠𝑠(ℎ)             (16) 

 

𝑄𝑔𝑟𝑖𝑑(ℎ) = 𝑄𝑑(ℎ) + 𝑄𝑙𝑜𝑠𝑠(ℎ)                          (17) 

 

𝑛𝑡𝑙 + 𝑛𝑏𝑟 = 𝑛𝑏𝑢𝑠 − 1                                      (18) 

 

|𝐴̅| ≠ 0                                                    (19) 

4. Solution methodology 

In this section, LSFs and DO based hybrid 

approach is explained for solving the optimal 

allocation of DGs problem, HONR problem either 

individually or simultaneously.  

4.1 Dandelion optimizer 

This section describes the dandelion optimizer 

(DO)'s operators and mathematical model. In the 

DO, there are just two varieties of dandelions: core 

(CD) and assistance (AD), and they seed differently. 

Mutation seeding avoids local optimum. Ultimately, 

dandelions are chosen to reproduce. To summarise, 

the DO includes normal sowing, mutation sowing, 

and a selection strategy. 

Normal sowing: Because the CD grows on 

adequate land, the DA states that it can generate 

more seeds than the assistant. Sowing produces 

seeds dependent on the dandelion population's 

fitness scores. Assuming 𝑠𝑛,𝑚𝑎𝑥  and 𝑠𝑛,𝑚𝑖𝑛  are as 

the maximum and minimum number of seeds, 

respectively, the number of seeds 𝑠𝑛   for each 

dandelion 𝑑𝑖 is given by, 

 

𝑠𝑛 = {
𝑠𝑛,𝑚𝑎𝑥 [

𝑓𝑚𝑎𝑥−𝑓(𝑑𝑖)+𝜖

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛+𝜖
] 𝑠𝑛 > 𝑠𝑛,𝑚𝑖𝑛

𝑠𝑛,𝑚𝑖𝑛                           𝑠𝑛 ≤ 𝑠𝑛,𝑚𝑖𝑛

          (20) 

 

where 𝜖  is the machine epsilon to avoid a 

denominator of zero, 𝑓𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑓(𝑑𝑖)}  and 

𝑓𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑓(𝑑𝑖)}, respectively. 

From (20), for the minimization problem, the 

dandelion with a lower fitness value will sow more 

seeds, while the one with a large fitness value will 

sow less but not less than the minimum.  

The CD is the fittest dandelion in DA and it is 

given by: 

 

𝐷𝐶𝐷 = 𝑚𝑖𝑛{𝑓(𝑑𝑖)}                (21) 

The radius of the ADs and the CDs are 

calculated differently. Except for CD, the sowing 

radius of ADs is calculated by: 

 

𝑟𝑎𝑑(𝑘) = 

{
𝑢𝑙𝑖𝑚 − 𝑙lim                                                    𝑘 = 1

𝜑𝑟𝑎𝑑(𝑘−1) + (‖𝐷𝐶𝐷‖∞ − ‖𝑑𝑖‖∞) 𝑒𝑙𝑠𝑒
 (22) 

 

where 𝑢𝑙𝑖𝑚  and 𝑙𝑙𝑖𝑚  are the upper and lower 

limits, respectively; 𝑘 is the iteration number.    

Eq. (22) initialises the planting radius of the ADs 

to the diameter of the search space. After that, we 

use the infinite norm to determine how far the 

current helper dandelion is from the CD. Based on 

the above, we included the AD's sowing radius from 

the previous generation and a weight factor𝜑 , to 

dynamically adjust the previous generation's effect 

on the present sowing radius in order to reduce 

convergence and improve the efficiency of global 

search. The weight factor 𝜑 is given by,  

 

𝜑 = 1 −
𝑓𝑒(𝑘)

𝑓𝑒(𝑚𝑎𝑥)
                (23) 

 

where 𝑓𝑒(𝑘) is function evaluations at iteration k 

and 𝑓𝑒(𝑚𝑎𝑥)  is total function evaluations. The 

sowing radius of the previous generation had less 

and less influence on the present sowing radius 

when 𝜑 decreased from large to small. 

But, for the CD, there is an additional method of 

calculating the sowing radius that is constructed as 

follows and is changed depending on the CD in the 

previous generation. 

 

𝑟𝑐𝑑(𝑘) = {

𝑢𝑙𝑖𝑚 − 𝑙lim      𝑘 = 1
𝑟𝑎𝑑(𝑘−1) × 𝑟𝑘

𝑟𝑎𝑑(𝑘−1) × 𝑒𝑘

𝑔 = 1
𝑔 ≠ 1

                        (24) 

 

where 𝑟𝑎𝑑(𝑘)  is the sowing radius of CDs The 

𝑟𝑎𝑑  for the CD is also set to the diameter of the 

search space at the start of the procedure. 𝑟𝑘 and 𝑒𝑘 

are the withering and growth factors, respectively, 

while 𝑔 represents the growth trend, as determined 

by: 

 

𝑔 =
𝑓(𝑐𝑑)𝑘+𝜖

𝑓(𝑐𝑑)𝑘−1+𝜖
                 (25) 

 

The location is not suitable for sowing when 

𝑔 = 1, as the DO does not provide a better solution. 

As a result, we must restrict the sowing radius, and 

the withering factor 𝑟𝑘 is developed to take this into 

account. Naturally, 𝑟𝑘 cannot be too small; its value 

should be between [0.9, 1). The growth factor 𝑒𝑘 is 
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suggested as a result; of course, e cannot be too 

large; the value should be in the range of [1, 1.1]. 

On the other hand, when 𝑔 ≠ 1, the algorithm finds 

a better solution than the previous generation, the 

location is suitable for sowing, and the sowing 

radius should be increased, which can speed up the 

convergence rate. 

Mutation sowing: Sowing in a different way, 

called "mutation sowing," is proposed for the CD as 

a way to avoid falling into the local optima trap and 

keep the diversity of the population. It is said to be: 

 

𝐷𝐶𝐷
′ = 𝐷𝐶𝐷 × [1 − 𝐿𝑒𝑣𝑦()]               (26) 

 

where 𝐿𝑒𝑣𝑦() is the Levy distribution based 

random number calculated by a parameter 1.5.  

Selection strategy: In the DA, it is required that 

the optimal location from the last iteration is always 

kept for the next one. So that there is still a lot of 

variety, the remaining places are chosen using a 

disruptive selection operator. Here's how to figure 

out the selection probability 𝑝𝑖 for location 𝐷𝑖:  

 

 𝑝𝑖 = 𝐹𝑖 (∑ 𝐹𝑛
𝑛𝑠𝑑
𝑛=1 )⁄                             (27) 

 

𝐹𝑖 = |𝐹𝑖 − 𝐹𝑎𝑣𝑔|                            (28) 

 

where  𝐹𝑖  and 𝐹𝑎𝑣𝑔 are the fitness of MOF and 

mean fitness of all population’s fitness in iteration k, 

respectively, 𝑛𝑠𝑑 is the total number of seeds.  

This method's selection probabilities can provide 

good and bad seeds greater opportunities to be 

picked for the following iteration while eliminating 

middling fitness values. This strategy preserves 

population variety and improves global searches. 

4.2 Loss sensitivity factors  

Loss sensitivity factors (LSFs) can be used to 

identify potential candidate locations to influence 

the distribution losses. By knowing such candidate 

locations, the computational effectors in finding 

optimal locations can be reduced significantly and 

thus, it is possible to attain global optima by 

excluding local minima trap in optimization process. 

Mathematically, LSFs can be defined by, 

 

𝐿𝑆𝐹𝑖 =
𝜕𝑃𝑙𝑜𝑠𝑠

𝜕𝑃̃𝑑,𝑖
= (2 × 𝑃𝑒𝑓𝑓,𝑘 × 𝑟𝑘(𝑖𝑗)) |𝑉𝑖|2⁄        (29) 

 

The locations which are having high LSFs are 

more suitable for PV penetrations in the network. 

From Eq. (1), the total PV penetration level in a day 

𝑃𝑉𝑝𝑒𝑛  can be maximized by simultaneously 

increasing 𝑃𝑝𝑣(ℎ)  and decreasing  𝑃𝑙𝑜𝑠𝑠(ℎ) . 

According to Eq. (4), by maximizing the PV 

capacity, maximum PV penetration can be attainable. 

Thus, optimal allocation of PV-based DGs allocation 

problem is solved first using proposed HDO along 

with LSFs considering peak loading conditions. 

Later, ONR is solved for reducing the distribution 

losses. In this way, this hybrid approach can ensure 

maximum PV penetration without violating the 

operational constants of LV-RDNs effectively. 

5. Simulation results 

Simulations are performed on the IEEE 33-bus, 

which has 33 buses, 32 branches, and 5 tie-lines. 

The line data and bus date of the network are taken 

from [34]. It has a total real and reactive power 

loading of 3715 kW and 2300 kVAr, respectively. 

The LSFs for this loading condition were evaluated. 

By performing load flow, it is observed that the 

total distribution losses are 202.677 kW and 135.141 

kVAr, respectively. The lowest voltage is registered 

at bus-18 as 0.9131 p.u. and the AVDI is evaluated 

as 0.0104, respectively. The total GHG emission is 

estimated at 8.0221e+6 lb/h.  To figure out how well 

the proposed HDO works with computers, three 

kinds of case studies are done. Case (1) is solved for 

only the optimal allocation of PV units considering 

multiple objectives as defined in Eq. (11) with the 

constraints from Eqs. (12)–(17). In Case (2), 

simultaneous allocation of PV units and ONR is 

solved considering the MOF defined in Eq. (11) and 

all constraints defined in Eqs. (12)–(19) are 

applicable. All these three case studies are compared 

with the literature and describe the results obtained 

by HDO.  

5.1 Optimal allocation of photovoltaic units 

In this case, only PV units are optimised using 

the proposed methodology. At first, the best 

candidate locations are determined using LSFs. The 

top 20 locations are used for search space. The 

optimal locations determined by HDO are buses 14, 

24, and 29, and correspondingly, the sizes are 800 

kW, 1063 kW, and 1150 kW, respectively. Thus, the 

total PV capacity is 3013 kW, which is 81.1036 

percent of the total load. It is observed that the total 

distribution losses are decreased to 72.2587 kW and 

50.3921 kVAr, respectively. The lowest voltage is 

registered at bus-33 as 0.9686 p.u. and the AVDI is 

evaluated as 0.0044, respectively. The total GHG 

emission is estimated at 1.7639 E+6 lb/h. In 

comparison to the base case, the losses are reduced 

by 64.94% and GHG emissions are reduced by 

78.01%. 
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Table 1. Only PV units’ allocation 

Method Open Switches  PV (kW)/ bus #  Ploss (kW) Ploss (red) (%) PVPen (%) 

Base  33, 34, 35, 36, 37 - 202.677 - - 

QOCNNA [18]  33, 34, 35, 36, 37 705/ 14, 570.2/ 25, 953.8/ 30 75.424 62.79 60 

MOSCA [13] 33, 34, 35, 36, 37 609.8/ 33, 629.3/ 13, 1159.4/ 6 78.4 61.32 64.55 

ASFLA [15] 33, 34, 35, 36, 37 1209.4/ 12, 993.6/ 29, 545.7/ 24 66.87 67.01 73.99 

SOS [19] 33, 34, 35, 36, 37 
768.7/ 14, 1085.1/ 24, 1053.6/ 

30 
71.47 64.74 78.26 

SFA [16] 33, 34, 35, 36, 37 754/ 14, 1099.4/ 24, 1071.4/ 30 71.47 64.74 78.73 

QOCSOS [21] 33, 34, 35, 36, 37 754/ 14, 1099.4/ 24, 1071.4/ 30 71.457 64.74 78.73 

O-SCMDEA [12] 33, 34, 35, 36, 37 
1048.3/ 30, 805.2/ 13, 1093.6/ 

24 
72.778 64.09 79.33 

HDO 33, 34, 35, 36, 37 800/ 14, 1063/ 24, 1150/ 29 72.2587 64.94 81.1036 

IMOEHO [9] 33, 34, 35, 36, 37 1057/ 14, 1054/ 24, 1741/ 30 95.003 53.13 103.69 

IDBEA [11] 33, 34, 35, 36, 37 1098/ 13, 1097/ 24, 1715/ 30 94.851 53.21 105.33 

 

 

Table 2. Simultaneous ONR and PV units’ allocation   

Method Open Switches  PV (kW)/ bus #  Ploss (kW) Ploss (red) (%) PVPen (%) 

Base  33, 34, 35, 36, 37 - 202.677 - - 

FA [14] 7, 10, 28, 32, 34 556/ 31, 680/ 32, 618/ 33 73.4 63.8 49.91 

ASFLA [15] 14, 24, 26, 33, 35 609.3/ 13, 271.2/ 25, 893.5/ 31 49.51 75.57 47.75 

ISOS [22] 7, 9, 14, 28, 30 469/ 12,1020/ 25, 739/ 33 54.479 73.12 59.97 

CSGA [17] 7, 9, 14, 28, 30 469.7/ 12, 1021.3/ 25, 738/ 33 54.48 73.12 60 

QOCNNA [18]  7, 9, 14, 27, 30 482.2/ 12, 1015.3/ 25, 731.5/ 33 54.69 73.01 60 

SGA [23] 7, 9, 14, 26, 31 436.5/ 11, 1177.8/ 29, 614.7/ 18 56.14 72.30 60 

SFA [16] 7, 9, 14, 27, 30 775.3/ 22, 1285.8/ 25, 735.6/ 33 53.01 73.85 75.26 

QOCSOS [21] 10, 28, 31, 33, 34 870.8/ 7, 711.8/ 18, 1227.4/ 25 51.539 74.57 75.64 

SOS [19] 6, 11, 28, 31, 34 793.2/ 8, 669/ 18, 1402.9/ 25 52.88 73.91 77.12 

NSSFS [20] 11, 28, 31, 33, 34 958.3/ 17, 1278.5/ 25, 752.8/ 7 50.718 74.98 80.47 

HDO  10, 28, 31, 33, 34 799.64/ 7, 950/ 17, 1296.67/ 25 53.2144 73.74 82.0188 

 

 

The results of HDO are compared with the 

literature and given in Table 1. In comparison to the 

proposed HDO and O-SCMDEA [12], the loss 

reduction is higher in ASFLA [15], SPEA2 [13], 

SOS [19], SFA [16], and QOCSOS [21], but their 

PV penetration levels are low. On the other hand, the 

results of HDO are better than QOCNNA [18], 

MOSCA [13], ASFLA [15], SPEA2 [13], SOS [19], 

SFA [16], QOCSOS [21], and O-SCMDEA [12] not 

only in terms of PV penetration but also in terms of 

losses.  

On the other hand, the PV total capacity is 

oversized for the network load or failed to satisfy 

the constraint defined in Eq. (14) in IMOEHO [9] 

and IDBEA [10], which resulted in higher PV 

penetration of 103.69 % and 105.33 %, respectively. 

5.2 Simultaneous allocation of PV units and 

optimal network reconfiguration 

In this case study, the network performance is 

optimised by simultaneously allocating PV units and 

ONR resources. The best PV sizes at buses 7, 17, 

and 25 are 799.64 kW, 950 kW, and 1296.67 kW, 

respectively. The optimal braches and tie-lines 

opened under ONR are 10, 28, 31, 33, and 34, 

respectively. It is observed that the total distribution 

losses reduced to 53.2144 kW and 41.5498 kVAr, 

respectively. The lowest voltage is registered at bus-

31 as 0.9777 p.u. and the AVDI is evaluated as 

0.0022, respectively. The total GHG emission is 

estimated at 1.4786e+6 lb/h. In comparison to the 

base case, the losses are reduced by 64.94% and the 

GHG emissions are reduced by 81.57%. 

The ONR obtained by the proposed HDO is 

higher PV penetration in comparison to FA [14], 

ASFLA [15], ISOS [22], CSGA [17], QOCNNA 

[18], SGA [23], SFA [16], QOCSOS [21], SOS [19], 

and NSSFS [20], but losses are compromised due to 

the simultaneous priority for reduction in GHG 

emissions and higher PV penetration. 

The comparisons of the voltage profiles for three 

cases are given in Fig. 1. In comparison to base case, 

and PV, the simultaneous approach results for more 

smooth voltage profile in the network. The 

convergence characteristics of HDO while solving 

PV allocation and simultaneous PV allocation and 

ONR problems are given in Fig. 2. 
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Table 3. Network performance under variable PV penetration with HONR 

Hr PVpen (%) 
Before  After  

Ploss (kW) AVDI  GHG×106 (lb/hr) Ploss (kW) AVDI  GHG×106 (lb/hr) 

1 0 120.209 0.0080 6.202 88.765 0.0059 6.1381 

2 0 106.082 0.0075 5.831 78.482 0.0055 5.7747 

3 0 101.591 0.0073 5.708 75.206 0.0054 5.6539 

4 0 97.206 0.0072 5.585 72.005 0.0053 5.5332 

5 0 94.627 0.0071 5.511 70.120 0.0052 5.4609 

6 0 88.756 0.0069 5.339 65.826 0.0051 5.2924 

7 3.51 77.884 0.0064 4.935 57.205 0.0047 4.8924 

8 28.42 54.765 0.0048 3.315 35.332 0.0034 3.2749 

9 50.92 61.016 0.0041 2.301 34.508 0.0026 2.2466 

10 66.38 64.231 0.0032 1.122 34.125 0.0017 1.0606 

11 76.19 75.630 0.0031 0.710 39.929 0.0014 0.6372 

12 81.10 83.205 0.0031 0.574 43.921 0.0014 0.4931 

13 79.91 84.014 0.0033 0.790 44.291 0.0015 0.7091 

14 73.83 83.622 0.0038 1.463 44.398 0.0021 1.3826 

15 62.52 75.793 0.0042 2.109 41.460 0.0025 2.0382 

16 46.49 79.337 0.0053 3.351 47.446 0.0035 3.2856 

17 23.91 100.999 0.0070 5.053 68.666 0.0050 4.9871 

18 0 140.593 0.0086 6.701 103.551 0.0064 6.6248 

19 0 148.155 0.0089 6.876 109.020 0.0065 6.7957 

20 0 192.341 0.0101 7.818 140.826 0.0074 7.7129 

21 0 202.677 0.0104 8.022 148.230 0.0076 7.9106 

22 0 192.341 0.0101 7.818 140.826 0.0074 7.7129 

23 0 187.289 0.0100 7.717 137.202 0.0074 7.6141 

24 0 157.450 0.0091 7.085 115.732 0.0067 6.9997 

Total  2669.812 0.0066 111.936 1837.07 0.0047 110.231 

 

 

 
Figure.1 Voltage profile for different scenarios 

 

 
Figure.2 Convergence characteristics of HDO 

 
Figure.3 Hourly network loading profile and PV power 

5.3 Hourly optimal network reconfiguration 

The works described in [9–23] have considered 

peak loading conditions and determined maximum 

PV penetration levels. However, in real-time, the 

peak loading conditions may take place around 7 

p.m. to 10 p.m., but the maximum PV generation 

may take place during midday, i.e., around 11 a.m. 

to 2 p.m. Thus, the results discussed in Case (1) and 

Case (2) may not be satisfactory for a real-time 

scenario. In flip to all these literature works, Case 

(3) presents the HONR for maximising overall 

network performance under variable loading 
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conditions and PV penetration levels [35], as given 

in Fig. 3.  

Considering the best PV locations and sizes in 

the network as obtained in Case (2), their generation 

levels are adjusted in accordance with the hourly 

variation factor. Also, the hourly loading condition 

at each bus is adjusted to the variation factors. The 

network performance HONR is given in Table 3 for 

before and after scenarios. Before ONR, all the tie-

lines are open, and the PV penetration and loads are 

adjusted as per Eqs. (5)–(7). The variation in real 

and reactive power losses, the minimum voltage 

profile, the AVDI, and GHG emission are tabulated 

in Table 3. 

By having optimal reconfiguration, the total 

energy losses are reduced to 1837.07 kW from 

2669.812 kW. The AVDI is reduced to 0.0047 from 

0.0066, and GHG emissions are reduced to 

110.231106 lb/day from 111.936 lb/day. Since the 

GHG emission is mainly dependent on PV 

penetration, which is unchanged in both cases, the 

variation in GHG emission is almost negligible. 

However, there is a significant reduction in energy 

loss of 31.19%. This scenario indicates the need for 

HONR for variable loading conditions in modern 

electrical grids. 

6. Conclusion 

This research presents a unique hybrid method 

for simultaneously addressing the optimum 

allocation of PV units and the optimal network 

reconfiguration using loss sensitivity factors (LSFs) 

and the dandelion optimizer (DO) (ONR). The 

multi-objective function is designed to maximise PV 

penetration while reducing losses, improving 

voltage profiles, reducing GHG emissions, and 

maintaining network operating conditions. Using an 

IEEE 33-bus network, simulations are run for three 

different case studies and compared to the literature. 

The proposed methodology reduces the overall 

energy losses from 2669.812 kW to 1837.07 kW. 

The AVDI is decreased from 0.0066 to 0.0047, and 

the daily GHG emissions are decreased from 

111.936 to 110.231×106 lb/hr. The variance in GHG 

emissions is essentially nonexistent because it is 

mostly dependent on PV penetration, which is 

unchanged in both scenarios. The energy loss has 

been significantly reduced by 31.19 %, though. This 

situation highlights the requirement for HONR in 

modern electrical grids under changeable loading 

situations. 
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Notations  

𝑃𝑝𝑣(ℎ) Hourly PV generation 

𝑃𝑑(ℎ) Hourly network load 

𝑃𝑝𝑣,𝑘(ℎ) Hourly PV generation at bus-k 

𝑃𝑙𝑑,𝑘(ℎ) Hourly network load at bus-k 

𝑃𝑙𝑜𝑠𝑠(ℎ) Hourly distribution losses 

𝑛𝑝𝑣 Number of PV systems 

𝑛𝑏𝑢𝑠 Number of buses 

ℎ Hour number 

𝑃𝑉𝑐  Capacity of PV system 

𝐺(ℎ) Hourly radiance on PV module 

𝐺(𝑟) Reference radiance  

𝑇𝑎(ℎ) Ambient temperature at hour-h 

NOCT Nominal operating cell temperature 

𝑇(𝑟) Reference temperature  

𝛼𝑙𝑜𝑠𝑠 Correction factor for different losses  

𝛽𝑖𝑛 Inverter efficiency 

𝛾(ℎ) Hourly load scaling factor at hour-h  

𝑄𝑙𝑑,𝑘(ℎ)  Reactive power load at hour-h 

𝑃̅𝑙𝑑,𝑘 Peak real power loading of bus-k 

𝑄̅𝑙𝑑,𝑘 Peak reactive power loading of bus-k 

𝑃𝑙𝑜𝑠𝑠 Distribution losses 

𝐴𝑉𝐷𝐼 Average voltage deviation index 

𝐺𝐻𝐺𝑒  GHG emission [10] 

𝑃𝑔𝑟𝑖𝑑(ℎ) Real power import at hour-h 

𝑄𝑔𝑟𝑖𝑑(ℎ) Reactive power import at hour-h 

𝑄𝑙𝑜𝑠𝑠(ℎ) Reactive power loss at hour h 

|𝐴̅| Det of element-node incident matrix 

𝐼𝑘(𝑖𝑗) Current flow in branch-k  

𝑛𝑏𝑟 Number of braches/lines 

𝑛𝑡𝑙 number of tie-lines 

𝑘𝑐 Coefficient of CO2 emission 

𝑘𝑛 Coefficient of NOx emission 

𝑘𝑠 Coefficient of SO2 emission 

𝑀𝑂𝐹 Multi-objective function 

𝐿𝑆𝐹𝑖 Loss sensitivity factor of bus-i, 

𝑃𝑒𝑓𝑓,𝑘 Effective loading of bus-k after integrating 

PV systems in the network, 

𝑟𝑘(𝑖𝑗) Resistance of branch k, 

|𝑉𝑖| Voltage magnitude of bus-i 
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