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Abstract: Copy-move forgery detection (CMFD) is a well-known digital image forgery technique that is used in 

detecting forgery regions of images. The copy-move forgery in images occurs when a specific section of an image is 

attached to a new component of the same image to replicate the forged image parts as an original. The forgery appears 

to be realistic because even after being forged in the objective region, the image acquires all the basic qualities of the 

original image. Some post-processing functions, such as scaling or rotation invariant, noise handling, hybrid image 

manipulation, etc., limit the capability of CMFD models. To overcome these limitations, the features are extracted 

from the Hybrid feature extraction using modified speeded up robust feature (M-SURF) with accelerated KAZE (A-

KAZE) feature description and detection algorithm. The main advantages of the SURF descriptor are: the SURF 

features are resistant to several post-processing attacks and use Laplacian of gaussian to differentiate background and 

foreground features clearly. The A-KAZE descriptor is robust in detecting scale-invariant of forged regions and poorly 

localized key points of objects. A-KAZE constructs the invariant scaling levels using nonlinear diffusion filtering. It 

smooths the image while preserving the edges and decreasing speckle noise. As a result, it captures the precise location 

of features during the feature extraction process. Following the feature extraction, the matched features are compared, 

and removed false matches by applying random sample consensus (RANSAC) technique. The performance evaluation 

of the proposed Hybrid MSURF with A-KAZE CMFD method is validated on MICC-F220, MICC-F2000, CoMoFoD 

datasets and surpasses the existing CMFD methods. The proposed CMFD achieved better results compared to existing 

methods such as when CMFD based on DHE-SURF features along with mDBSCAN clustering and CMFD based on 

SURF, BRISK features along with DBSCAN clustering measured in terms of Precision of 99.93%, Accuracy of 

99.46%, F1-score of 98.21%, true positive rate (TPR) of 99.93%, and false positive rate (FPR) of 4.67%. 

Keywords: Copy-move forgery detection, Feature descriptor and detector, Hybrid features, Modified speeded up 

robust feature, Random sample consensus. 

 

 

1. Introduction 

With recent advancements in image processing, 

people can easily modify and tamper images by using 

image editing software tools such as Corel Paint Shop, 

PhotoScape, GNU Image Manipulation Program 

(GMIP), and Photo plus, etc. In the era of 

digitalization, one of the significant communication 

tools is images that are used all over the world among 

people. Forgery images have become common in the 

media and day-to-day life over the past few years. 

The negative consequences of these forgery images 

have sparked widespread concern.  

The most prevalent type of image forgery is 

called copy move forgery of images in which one or 

more image regions are copied and attached to other 

regions of the same image.  [1, 2]. The forgery 

regions can be identified by exposing the selected 

forged image to rotations, translation, adding noise, 

illumination change, and so on, making obtained 

image extremely difficult to identify. High-quality 

forged images are difficult to recognize with the bare 
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eye, so an appropriate method must be employed to 

distinguish the forged regions [3]. The image 

authentication methods are categorized into active 

and passive, in which digital watermarking and 

digital signatures fall into the first category and copy-

move forgery falls into the second category. The 

drawback of the digital watermarking method is; it 

depends on the specially created information 

watermark to authenticate an image. Similarly, the 

disadvantage of digital signatures is, it depends on 

digital signatures to authenticate an image. The copy 

move forgery operations are categorized into two 

types namely: block-based methods and key based 

methods. In block-based method, the input image is 

divided into a fixed size of overlapped circular or 

square shaped blocks. In the key point based 

approach, the execution time of the block based 

method is addressed, which is usually of long 

durations. Key points represent points of interest in 

an image and do not change even if the image has 

undergone geometric transformations such as 

rotation, scaling, and so on [4, 5].  

The CMFD framework commonly consists of 

five stages known as preprocessing, feature 

extraction, matching stage, false match removal, and 

refining stage. Preprocessing is an optional process in 

which the Red, Green, and Blue (RGB) color images 

are converted into grayscale images like Green (Y), 

Blue (Cb), and Red (Cr) (YCbCr) or hue saturation 

value (HSV) to minimize the input images’ 

dimensionality. The main process in CMFD is feature 

extraction, where the extracted features must be 

invariant to scaling, and rotation, as well as robust in 

handling post-processing attacks such as blurring, 

compression, and noise addition [6]. SURF, scale 

invariant feature transform (SIFT) and Histogram of 

Oriented Gradients (HOG) are three commonly used 

feature descriptors in extracting images’ key points 

of interest with different scales and rotations. SURF 

is the most commonly used fastest feature extraction 

technique compared to SIFT and HOG used in 

CMFD, where the image features are arranged to 

identify common portions to minimize computational 

unpredictability and enhance false recognition 

accuracy. SURF feature extraction involves two 

operations namely SURF detection and SURF 

description [7]. The idea of extracting SURF features 

is to divide the image into blocks and perform a 

matching process between each block. The third stage 

in CMFD is Matching features where the features-

wise classification is performed to label an image. 

The matching process between the block of interest 

and its complementary images generates features in 

the form of a distance vector. For this vector, a 

correlation matrix is constructed, and singular value 

decomposition is utilized to extract the final set of 

features for classification [8]. Many researchers have 

focused on feature extraction tools combined with 

SURF. For example, SURF based exponent-fusion 

moments (EFM), corner detector with Polar cosine 

transform (PCT) descriptor, SURF based Polar 

complex exponential transform (PCET) descriptor. 

These algorithms have common limitations like a 

computational burden, which is primarily due to the 

matching of a large number of image blocks 

(approximately between 105 to 106) [9,10].  

Most of the existing CMFD methods used BRISK, 

HOG, SIFT and SURF feature extraction methods. 

The drawbacks of these feature extraction methods 

are: detecting a high number of false matches, less 

accuracy in detecting forged regions, and less 

robustness in handling high scaling, noise, and 

compression. Hybrid feature extraction can 

overcome these drawbacks with MSURF and A-

KAZE. 

The major contributions of the proposed work are 

listed below:  

 

• The false matches caused by copy-move forgery 

are minimized by implementing MSURF Hybrid 

feature extraction with A-KAZE feature 

descriptor and detection algorithm.  

• The objects catalog is created to cluster the 

images using the Connected Components 

Labelling (CCL) technique and further performs 

open and close morphological operations that 

help in feature extraction. The CCL technique is 

used in processing high-dimensional color 

images and also helps in finding interconnecting 

between images.  

• An affine transformation is used to handle both 

scaling and rotation simultaneously, and also a 

RANSAC algorithm is applied to extracted 

features in the feature-matching stage. The 

advantage of using the RANSAC algorithm is 

that its processing time is less even if the input 

data size is more. 

 

The rest of the manuscript is structured as 

follows: Section 2 summarizes the related works of 

existing CMFD methods. Section 3 describes the 

proposed CMFD method. Section 4 illustrates the 

results and performance evaluation of the proposed 

method and section 5 provides the conclusion. 

2. Literature review 

Muhammad Bilal, [11] proposed a CMFD 

method that uses dynamic histogram equalization 

(DHE) to adjust the input images’ contrast. The 
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performance of this method was evaluated on three 

specific standard datasets, such as MICC-F2000, 

MICC-F220, and CoMoFoD. For extracting 

manipulated image features, the SURF descriptor 

was used and matched with Euclidean distance. A 

clustering application was employed to the similar 

features with a novel method of modified density 

based clustering of applications with noise 

(mDBSCAN) which creates a binary mask and 

detects CMF regions. The experimental results have 

surpassed the existing CMFD methods in terms of 

precision and recall. The continuous phase of 

improvement and refinement caused more 

complexity in handling post-processing attacks 

which was the drawback of this method.  

Muhammad Bilal, [12] proposed a novel CMFD 

method which was robust in detecting various forged 

regions of images and overcoming post-processing 

attacks. The performance of the proposed CMFD was 

validated on some specific standard datasets like 

MICC-F220, MICC-F2000, and CoMoFoD. 

descriptors like Binary invariant scalable key-points 

(BRISK) and SURF were used for feature extraction 

in CMFD. The proposed CMFD method surpasses 

the state-of-the-art methods in terms of TPR and FPR. 

The experimental results have shown that more false 

matches were detected, which is a limitation of this 

method.  

Mohamed A. Elaskily, [13] proposed a deep 

learning based CNN for automatic CMFD. Standard 

datasets namely: MICC-F220, MICC-F2000, SATs-

130, and MICC-F600 were used in this research, 

which consist of original and forged. The 

performance evaluation of the proposed method was 

measured in terms of computational cost, accuracy, 

TPR and FPR. High scaling issues has resulted in 

poor quality of image, which is a limitation of this 

work. In the future, more challenging datasets may be 

used with the deep CNN approach, which can also 

detect other digital image forgeries. Yohanna 

Rodriguez-Ortega, [14] proposed two deep learning 

approaches to address generalization issues with 

appropriate hyperparameter selection from eight 

datasets, such as the copy move forgery dataset, 

MICC-F2000, MICC-F220, Coverage, CG-1050 v1, 

CG-1050 v2, CASIA v1, and CASIA v2. Custom 

design and transfer learning are the two approaches 

based on CNNs used in the detection of copy move 

forgery. A CNN to the fully connected (FC) network 

was considered as the first approach, and a VGG-16 

network was considered for image classification in 

the second approach. The second approach achieved 

the highest performance compared to the first one in 

terms of precision, recall, and F1 score. The 

robustness of this framework was low due to long 

execution approaches, which is alimitation of this 

work. In the future, domain transformation 

techniques like discrete-wavelet transform (DWT), 

discrete cosine transform (DCT), and discrete fourier 

transform (DFT) can be used by considering 

extending the training dataset. 

H. Kasban et aI [15] proposed an image forgery 

detection method which was tested on seven open 

access datasets such as CASIA-v1, CASIA-v2, 

MICC-F2000, MICC-F220, MICC-F600, and 

CoMoFoD. This method was proposed to present a 

robust detection method in image forgery by 

converting an RGB image into YCbCr space. This 

method used the Hilbert-huang transform (HHT) to 

extract chrominance red (Cr) component features and 

three classifiers support vector machine (SVM), K-

nearest neighbors (KNN), and artificial neuron 

networks (ANN). The accuracy of this image forgery 

detection method was measured in terms of the 

structural similarity index measure (SSIM). The 

proposed method was vulnerable to post-processing 

attacks, which was a limitation of this work, and this 

can be avoided further by optimizing the SSIM value 

with the attack parameters or verification parameters 

like cross-correlation.  

Aya Hegazi, [16] proposed an improved key point 

based CMFD, which was validated on two 

benchmark datasets, namely MICC-F220 and the 

image manipulation dataset. By evaluating the 

performance metrics of this method, it was concluded 

that the proposed detection method was resistant to 

post-processing attacks, geometric attacks, and 

multiple cloning. Limited dataset has resulted in the 

poor performance of the model, which is a limitation 

of this work. This method was effective in detecting 

image-forged regions with the fewest false matches 

and can even reduce to less number of false matches 

in the future, using Gaussian noise comparison 

techniques.  

Faten Maher Al_azrak, [17] proposed a robust 

CMFD method by combining key-based and block-

based detection techniques. A modified Fuzzy C-

means (FCM) algorithm was considered to extract 

image features from each block, and an emperor 

penguin optimization (EPO) was considered to 

improve the process of segmentation by optimizing 

the influential degree. The performance of this 

method was validated on the MICC-F600 dataset and 

obtained better performance in terms of F1-score, 

precision, and recall. The accuracy of this method in 

detecting forged regions is unknown which is a major 

drawback. The robustness of this approach can be 

improved in future by considering an optimized deep 

fully resolution convolutional neural network (CNN). 
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Figure. 1 Flowchart of improved proposed CMFD 

method 

 

To overcome the limitations of existing CMFD 

methods like handling post-processing attacks like 

excessive scaling, rotation, and adjusting brightness, 

the M-SURF with A-KAZE feature descriptor and 

detection algorithm is proposed. The proposed 

method is fast and robust in detecting tampered 

regions in the tampered images, handles pre-

processing attacks, and removes false matches using 

the RANSAC algorithm. 

3. Methodology 

The proposed CMFD method performs image 

segmentation using connected components labelling 

(CCL) and feature extraction using modified SURF 

with A-KAZE detection and descriptor algorithm. 

The tested image is first segmented into objects, and 

the objects catalog is created to extract features from 

each labeled region with modified SURF descriptors. 

In the end, the object catalog is created using these 

descriptors and a matching process takes place to 

compare similar attributes of the objects within the 

catalog. The proposed CMFD includes two stages in 

which the primary stage includes detecting original 

images and copy-move forgery in the images.  

The second stage includes verifying the original 

image’s integrity and checking whether CMF regions 

in the image exist. Fig. 1 illustrates the flowchart of 

identifying CMF regions from the original image and 

applying morphological operations along with image 

segmentation and feature extraction processes. The 

other processes like object catalog, object detection, 

and edge detection are described briefly below 

sections. 

3.1 Dataset description 

The standard datasets namely MICC-F220, 

MICC-F200 and CoMoFoD is considered for 

evaluating the proposed CMFD approach. The 

MICC-F220 incorporates a total of 220 images with 

722 × 480  to 800 × 600  pixel resolution. Out of 

220 images, 110 are the original images and the 

remaining 110 are forged images with 1.2% of the 

image portion being forged. The MICC-F2000 

consists of 2000 images. The CoMoFoD dataset 

consists of 200 tampered images with 512 ×  512 

pixels. The patched regions of rectangular or square 

shape are pasted randomly over the original image to 

create forged images from this dataset. Original 

image samples with a comparison of tampered 

regions from the MICC-F220 dataset are shown in 

Fig. 2. 

3.2 Object detection 

Object detection is a process of three stages 

namely: close morphological operation, edge 

detection, and image segmentation. For labeling 

image regions and detecting various object locations 

in the image, a CCL technique is applied to the 

images. CCL is a unique method used in a wide range 

of applications including pattern recognition, image 

analysis, computer vision, image understanding, and 

eliminating false alarms on masked images. CCL 

involves blob discovery and extraction as a method 

of image segmentation where regions with constant 

properties are represented by the blob. These regions 

indicate the presence of objects which is then used for 

detecting and tracking objects. The three object 

detection stages are described below: 

3.2.1. Close morphological operation (CMO) 

application 

The CMO application involves an essential 

morphological operation that closes small gaps and 

blinds tiny cracks in an object’s boundaries. The 

primary objective of this application is to analyze 

images based on their shape by using a set of 

nonlinear image processing techniques. These 

operations include edge detection, skeletonization, 

noise reduction, and other methods. The closing  
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(b) 

                                       
(c) 

                                       
(d) 

Figure. 2: (a) and (c) original images and (b) and (d) 

CMF images 

 

 

Figure. 3 Convolutional kernels of Sobel edge detector 

 

operation is carried out on a binary image and a 

structuring element of fixed size. By filling in tiny, 

thin gaps in an object’s boundaries and reducing tiny 

projections, the closing operation displays object 

outlines [18]. An object's foreground pixels tend to 

increase as its borders or contours are smooth. To 

make the borders of the regions more distinct, 

background holes or points are also minimized.  

3.2.2. Edge detection  

Edge detection is accomplished in a three-stage 

process namely: noise reduction, enhancing edges, 

and edge localization. To detect edges, Sobel detector 

is used in this work by calculating gradient pixel 

intensity in the image. By analyzing the changes in 

image orientation from light to dark pixels, the 

detector determines whether the pixel represents 

edges or not. Previous steps along with edge 

detection are intended to make the image ready for 

the segmentation process and contour tracking using 

CCL.   

The Sobel detector measures the gradient 

intensity of an image using 3 × 3  convolutional 

kernels as shown in Fig. 3.  

 

The Magnitude of Gradient intensity of pixels in 

orientation x and y is given by Eq. (1). 

 

|𝐺| = √𝐺𝑥
2 + 𝐺𝑦

2                (1) 

 

Where, |𝐺|is the Gradient intensity magnitude, 

𝐺𝑥 is the gradient component in x direction, and 𝐺𝑦 is 

the gradient component in the y direction. 

Both gradient components can be measured 

individually as shown in Eq. (2), by applying these 

kernels to the input image. The approximate 

magnitude can be calculated using the below Eq. 

which is the fastest way of computing. 

 

|𝐺| = |𝐺𝑥| + |𝐺𝑦|     (2) 

 

The change in the angle of edge orientation 

ultimately leads to the spatial gradient and it is 

represented as shown in Eq. (3). 

 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐺𝑦

𝐺𝑥
⁄ )    (3) 

3.2.3. Image segmentation using contour tracking 

A CCL labelling technique is adopted for image 

segmentation which is an important task in the object 
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detection process. The integrated pixel regions are 

detected by performing scanning phenomena to the 

edge-detected binary pixel using CCL from top to 

bottom and left to right. Based on the intensity value, 

each pixel is labeled as either foreground or 

background. If a pixel is not in the background, it is 

considered to be an object, and it is allocated in the 

object table after performing a connectivity check. 

Object bounding boxes are displayed after allocating 

each pixel particular foreground object or 

background region.  

3.3 Hybrid feature extraction  

The modified SURF algorithm is employed to the 

gray level images in this step to obtain object features. 

For each candidate region, SURF descriptors are 

obtained. The SURF is a local feature detector and 

descriptor that is fast, robust, and dependable. In each 

region, the point of interest is detected first, and later 

a 64-dimensional vector of features for each 

interesting point is computed. Rotation, scaling, 

translation, and lighting changes do not affect SURF 

descriptors. Finally, an object catalog is built by 

linking the extracted objects to their SURF descriptor. 

A modified SURF with an A-KAZE descriptor is 

proposed in this work to extract hybrid features. 

Initially, the A-KAZE descriptor is used in Hybrid 

feature extraction and secondly, a modified SURF 

descriptor will be employed.  

3.3.1. Modified SURF descriptor 

A Modified SURF descriptor (MSURF) is used in 

building a feature descriptor by considering a 

rectangular grid of  24𝜎𝑖 × 24𝜎𝑖 size. The grid size is 

divided into 4 × 4  overlapping sub-regions of size 

9𝜎𝑖 × 9𝜎𝑖. For each key point, the derivatives of the 

first order, Lx and Ly are determined with a size of  

𝜎𝑖. A Gaussian Kernel is used to weigh the derivative 

responses, and each sub-region is added together to 

form a descriptor vector as shown in E Eq. (4).  

 

𝑣 = {∑ 𝐿𝑥 ,  |∑ 𝐿𝑥|, ∑ 𝐿𝑦,  |∑ 𝐿𝑦| }   (4) 

 

The feature detector detects features directly and 

if the feature locations are chosen incorrectly, 

considering the influence of speckle noise, the error 

will be propagated to the subsequent steps of image 

registration. This step has been allocated to the A-

KAZE and the descriptor, on the other hand, defines 

how the detector is interpreted. If this description is 

sensitive to the exact pixel values, the effect of noise 

is directly accepted. Therefore, choosing a good 

feature description is very important. The proposed 

MSURF descriptor achieves better feature extraction 

by handling noise with its weighted Gaussian kernel. 

3.3.2. A-KAZE feature detection and descriptor 

algorithm 

A) Feature detection: 

The accelerated version of KAZE is A-KAZE 

which significantly improves the feature extraction 

and description phases of KAZE. KAZE constructs a 

nonlinear scale space as opposed to applying 

Gaussian blurring, much like SIFT extraction. When 

A-KAZE is smoothened to an equal level of noise and 

detail, it also increases localization accuracy and 

uniqueness. A Hessian matrix is introduced in 

extracting A-KAZE features and it is mathematically 

represented as shown in Eq. (5) and its scaling factor 

is given in Eq. (6). Hessian matrix is a symmetric 

matrix that holds some key information about the 

function being optimized and its dimension is always 

equal to the number of variables in a function. For 

example, the Hessian matrix will be a 3 × 3 

dimension matrix, if the function consists of 3 

variables.  

 

𝐿𝐻𝑒𝑠𝑠𝑖𝑎𝑛
𝑖 = 𝜎𝑖,𝑛𝑜𝑟𝑚

2 (𝐿𝑥𝑥
𝑖 𝐿𝑦𝑦

𝑖 − 𝐿𝑥𝑦
𝑖 𝐿𝑥𝑦

𝑖 )  (5) 

 

𝜎𝑖,𝑛𝑜𝑟𝑚
2 =

𝜎𝑖

2𝑜𝑖     (6) 

 

Where, 𝜎𝑖,𝑛𝑜𝑟𝑚
2 =normalized scale factor is given 

by Eq. (5), 𝐿𝑥𝑥
𝑖 =horizontal derivatives, 𝐿𝑦𝑦

𝑖 =vertical 

derivatives and 𝐿𝑥𝑦
𝑖 = second-order cross derivatives. 

The extreme points of this matrix are detected in 

the 3 × 3 × 3 neighborhood between both the 3 × 3 

rectangle windows and the current scale. If the 

identified point value and its Hessian value are more 

than the pre-threshold TA-KAZE, it is considered a 

key point. To ensure that A-KAZE features are 

rotation invariant, the principal orientation can be 

discovered by searching a radius of 6𝜎𝑖 along with a 

sampling step 𝜎𝑖. This method uses the extreme point 

as the neighborhood’s centrality. The first-order 

differential values of all the nearby points will be 

applied with a Gaussian weighting in a circle centered 

on the interesting point. These weighted values are 

considered the image’s pixel response values. These 

total response values are added together with a sector 

region of 𝜋/3 in the sliding window. The orientation 

of the sector region with the highest value after 

completing the circle gives the primary orientation of 

the feature points. 

B) Feature descriptor 

The local difference Binary (LDB) is modified to 

describe features in the feature description phase. The 
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modified-local difference Binary (M-LDB) is used to 

ensure the rotation is invariant, the grids were 

subsampled in steps as a feature function instead of 

all pixel's mean value in each sub-division of the grid. 

A feature point-centered image patch is chosen and 

then divided into 𝑞 × 𝑞 grids of equal size to extract 

information from each grid that is representative. 

These pair of grids undergo binary test operation as 

shown in Eq. (7). 

 

𝜔̅(𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑖), 𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑗))= 

{
1, 𝑖𝑓 ((𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑖) −  𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑗)) > 0, 𝑖 ≠ 𝑗

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 (7) 

 

Where, 𝜔̅ is binary constant. 

𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑖)  is the function used in extracting 

information from grade unit i as shown in Eq. (8). 

 

𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑖) = {𝐹𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑖), 𝐹𝑑𝑥(𝑖), 𝐹𝑑𝑦(𝑖)},   (8) 

 

The gradient function 𝐹𝑑𝑥(𝑖) for grid unit, i in 

region x is represented as shown in Eq. (9) 

 

𝐹𝑑𝑥(𝑖) = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑥(𝑖)                     (9) 

 

The gradient function 𝐹𝑑𝑦(𝑖)  for grid unit i in 

region y is represented as shown in Eq. (10) 

 

𝐹𝑑𝑦(𝑖) = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑦(𝑖)             (10) 

 

Where, 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑥(𝑖) is the gradient of grid unit 

i in region x, and 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑦(𝑖) is the gradient of grid 

unit i in region y. 

𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑗)  is the function used in extracting 

information from grade unit j which is identified as 

shown in Eq. (11). 

 

𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑗) = {𝐹𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑗), 𝐹𝑑𝑥(𝑗), 𝐹𝑑𝑦(𝑗)},  (11) 

 

The gradient function 𝐹𝑑𝑥(𝑗)  for grid unit j in 

region x is represented as shown in Eq. (12) 

 

𝐹𝑑𝑥(𝑗) = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑥(𝑗)                (12) 

 

The gradient function 𝐹𝑑𝑦(𝑗)  for grid unit j in 

region y is represented as shown in Eq. (13) 

 

𝐹𝑑𝑦(𝑗) = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑦(𝑗)                   (13) 

 

The pixel values of both grid units i, j for the 

𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑖)  and 𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑗)  are represented as 

shown in Eq. (14). 

 

𝐹𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑖) = 𝐹𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑗) =
1

𝑚
∑ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑘)

𝑚

𝑘=1

 

 (14) 

 

Where, m is the number of total pixels in grid 

units i and j, 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑘) is the pixel value. 

3.4 Feature matching 

To match the corresponding extracted features, 

RANSAC algorithm is employed in the feature 

matching stage. The affine transformation is then 

applied to determine the homographic matrix 

parameters as described in the 3.4.1 section. Because 

the matched points are generally more, compared to 

the amount of matrix unknown parameters, then an 

overdetermined matrix is formed. Singular value 

decomposition (SVD) is used to solve this matrix, 

and the right singular matrix value is considered as 

the final homographic matrix coefficients. Affine 

transformation is only one of several feature-

matching techniques available, including projective 

transformation, sparse, and guided local features. In 

fact, as a linear transformation, affine mapping can 

handle translation, rotation, and scaling at the same 

time. 

3.4.1. Affine transformation: 

The attached forged regions are continuously 

exposed to scaling and rotation which are said to be 

distortions techniques, before moving from one 

region to another region within the same image. The 

distortion is represented as an affine transformation 

of image coordinates in the mathematical form. 𝑥 =
(𝑥, 𝑦)𝑇  and  𝑥̃ = (𝑥̃, 𝑦̃)𝑇  are represented as copied 

region coordinates and pasted region coordinates. 

The relation between these two coordinates is 

represented in Eq. (15). 

 

(
𝑥̃

𝑦̃
) = (

𝑡11 𝑡12

𝑡21 𝑡22
) (

𝑥

𝑦
) + (

𝑥0

𝑦0
) → (

𝑥̃
𝑦̃
1

) = 

(
𝑡11 𝑡12 𝑥0

𝑡21 𝑡22 𝑦0

0 0 1
) (

𝑥
𝑦
1

) → 𝑋̃ = 𝑇𝑋    (15) 

 

Where (𝑥0, 𝑦0)=shift vector, (x, y)=coordinates of 

the copied region, (𝑥̃, 𝑦̃)=coordinates of the pasted 

region, 𝑡11, 𝑡12, 𝑡21, 𝑎𝑛𝑑 𝑡22  are the affine 

transformation parameters. A commonly used 
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approach to calculate the affine transformation 

matrix T is RANSAC, which accomplishes high 

accuracy even when the input data contains many 

mismatched pairs. T requires minimum of three 

corresponding non-collinear coordinate pairs. After 

feature extraction, using the mismatched features, the 

below-listed steps are performed for N times. 

 

• The three non-collinear coordinates are 

considered randomly and based on these chosen 

point pairs, the T value is estimated by 

minimizing the objective function as shown in Eq. 

(16). 

 

𝐿(𝑇) = ∑ ‖𝑋𝑖̃ − 𝑇𝑋𝑖‖2
2𝑁

𝑖=1              (16) 

 

• Using this estimated matrix T, all the obtained 

matched point pairs are divided into outliers and 

inliers. If ‖𝑋̃ −𝑇𝑋𝑖‖2 ≤ 𝜀 , the matched point 

pairs {𝑥, 𝑥̃}  belongs to the inlier group. The 

iterations (N) and the evaluation error (𝜀) are set 

to a maximum of N=1000 and 𝜀 = 106.  

3.5 Objects catalog 

The forged regions are tested on the original 

images and are categorized into different objects in 

this catalog. The objects catalog is a type of profile 

that consists of different image attributes like height, 

pixel size etc. The objects are profiled based on their 

similar attributes and this process is carried out after 

hybrid SURF feature extraction following image 

segmentation.  A CCL approach is used for image 

segmentation, where the image is segmented to detect 

the objects and categorize them.  

3.6 Object matching 

Following the creation of the items’ catalogue, 

the copy-move forgery is found via a matching 

process. There are two stages to the matching process. 

All of the objects in the objects’ catalogue are 

compared to one another in the initial matching step 

to find comparable objects. All images labeled as 

original are subjected to the refine matching test to 

ensure image originality, with a second stage set 

aside to further refine the results. 

3.6.1. Matching stage 

The objects are compared to one another during 

the matching stage. These comparisons are carried 

out using a similarity threshold of 0.6 and the 

Euclidean distance among the extracted features that 

were matched. A copy-move forgery object table is 

formed when two or more similar items are 

discovered [19, 20]. All possible copied and relocated 

objects are listed in this table. These CMFD images 

are either real, or their resemblance is the result of 

their intersection zones. To find crossed items, the 

object table of copy-move forgery is searched. To see 

if there is an intersection between these items, the 

position ( 𝑥, 𝑦 ) of each object's four corners is 

compared to the four corners of other objects. These 

intersecting items are consequently taken from the 

table. 

If the table still has candidate items after the 

intersected objects have been removed, the image is 

recognized and labeled as a forged image, and the 

table's remaining objects are the forged areas. If not 

the image is designated as an original and undergoes 

the process of refining matching stage. 

3.6.2. Refine matching stage 

The images that have been put forth as being 

original are now put through a second matching 

process. This is a refining stage, in which the system 

performance is enhanced by applying an originality 

check to the images.  

The candidate original images are subjected to 

different close and open morphological treatments. 

The boundaries of objects are smoothed using both 

closed and open morphological techniques. By 

removing small and thin parts, open morphological 

operations tend to smooth the outlines of the objects 

[21]. Additionally, it eliminates the shadowed pixels 

along object borders. While near morphological 

operations tend to enhance and fill in the tiny, thin 

holes that exist along the margins of the objects, 

smoothing their features. The approach of using CCL 

is employed in identifying objects individually in 

both closed and opened images. The intersected and 

nearby items are then combined when the two 

segmented images are linked. By combining regions 

produced by the two morphological procedures, the 

suggested algorithm will add more spatial regions to 

the image. 

Following the extraction of SURF descriptors 

from the identified objects, a new objects catalogue 

is created. All of the items in the new catalogue reach 

the matching stage, and the related items are arranged 

in a copy-move object table. The tested image is 

classified as original if the table is empty. Otherwise, 

if there are any crossovers among the identified 

objects in the table, those objects are again 

investigated and will be eliminated from the table. 

The image is unquestionably original if the copy-

move objects table is empty; otherwise, the detected 

objects table is once more examined to see if there is 
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any object intersection. If an intersection exits, those 

objects are removed from the table and the copy-

move forgery table is once again examined. If the 

table is empty, the image is said to be original, 

otherwise, it is designated as forgery, with the fraud 

regions remaining in the table.   

4. Results 

The evaluation of the proposed CMFD method in 

terms of performance metrics like precision, accuracy, 

F1-score, TPR, and FPR are illustrated in this section. 

The implementation is done on a system with Intel 

core i7, a 64 bits’ processor, and 8 GB RAM, and 

operates with the software tool MATLAB R2018a.  

Precision is the most important performance 

measure that calculates the similarity measure of the 

obtained values and is calculated using Eq. (17)  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100              (17) 

 

Accuracy is the ratio of prediction of true 

observations to the total observations as shown in Eq. 

(18) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 × 100           (18) 

 

F1-score is determined as the harmonic mean 

value of methods’ recall and precision as shown in Eq. 

(19) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100            (19) 

 

TPR is the possibility of predicting accurate 

positive class as shown in Eq. (20) 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100             (20) 

 

FPR is the possibility of predicting incorrect 

positive classes which is calculated mathematically 

as shown in Eq. (21) 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
× 100             (21) 

 

Where,  𝑇𝑃 , 𝐹𝑃 , 𝑇𝑁,  and 𝐹𝑁  represent True 

Positives, False Positives, True Negatives, and False 

Negatives. 

4.1 Quantitative evaluation 

The proposed CMFD method uses modified 

SURF with A-KAZE feature descriptor on the  

 

 
 

Figure. 4 Performance metrics analysis of various 

CMFD methods 

 

MICC-F220, MICC-F2000, and CoMoFoD datasets. 

Various feature extraction was used in the existing 

research, out of which some of the feature extractors 

like SURF (speeded up robust feature), A-KAZE 

(accelerated KAZE), SIFT, and BRISK (Binary 

robust invariant scale key points) are compared in this 

section with the proposed Hybrid MSURF and A-

KAZE feature extractor. Table 1 represents the 

effectiveness of these techniques in terms of accuracy, 

precision, and F1-score. The proposed feature 

extraction achieves better results compared to the 

other feature extraction techniques. The SURF 

feature extractor achieved an accuracy of 96.30%, 

precision of 95.64%, and F1-score of 94.35%. A-

KAZE achieved an accuracy of 97.91%, precision of 

96.45%, and F1-score of 97.56%. SIFT achieved an 

accuracy of 98.23%, precision of 97.76% and F1-

score of 96.39%. BRISK achieved an accuracy of 

98.76%, precision of 97.45% and F1-score of 96.21%. 

The graphical representation of table 1 parameters is 

shown in Fig. 4. 

The comparison of TPR and FPR of existing 

feature extraction methods are compared with the 

proposed feature extraction method on the MICC-

F220 data and represented in Table 2. The graphical 

representation of these results is shown in Fig. 5. The 

proposed method MSURF and A-KAZE shows better 

results with TPR of 99.93%, and FPR of 4.67%. 

Whereas, the existing method SURF shows TPR of 

82.73%, FPR of 10.71%, and A-KAZE shows TPR 

of 87.16%, and FPR of 9.96%. Other approaches like 

SIFT achieved TPR of 92.05%, and FPR of 7.71% 

and BRISK achieved TPR of 97.94%, and FPR of 

6.02%.  
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Table 1. Comparison of different feature extraction algorithms on MICC-F220 dataset 

Method Dataset Accuracy (%) Precision (%) F1-score (%) 

SURF  MICC-

F220 

96.30 95.64 94.35 

A-KAZE   97.91 96.45 97.56 

SIFT 98.23 97.76 96.39 

BRISK 98.76 97.45 96.21 

MSURF+A-KAZE  99.46 99.93 98.21 

 

Table 2. Comparative analysis of prediction outcomes with existing methods on MICC-F220 dataset 

Method Dataset TPR (%) FPR (%) 

SURF MICC-F220 82.73 10.71 

A-KAZE 87.16 9.96 

SIFT 92.05 7.71 

BRISK 97.94 6.02 

MSURF+A-KAZE  99.93 4.67 

 

Table 3. Comparative analysis of existing CMFD methods on MICC-F220 dataset 

Method Dataset Precision (%) F1-score (%) 

mDBSCAN [11] MICC-F220 98.35 97.13 

DBSCAN [12] 95.64 95.96 

MSURF + A-KAZE 99.93 98.21 

 
Table 4. Comparative analysis of existing CMFD methods on MICC-F2000 dataset 

Method Dataset Precision (%) F1-score (%) 

mDBSCAN [11] MICC-F2000 96.83 96.03 

DBSCAN [12] 99.90 94.33 

MSURF + A-KAZE 99.93 98.21 

 

Table 5. Comparative analysis of existing CMFD methods on CoMoFoD dataset 

Method Dataset Precision (%) F1-score (%) 

mDBSCAN [11] MICC-F2000 98.35 93.36 

DBSCAN [12] 95.98 93.54 

MSURF + A-KAZE 99.93 98.21 

 

 
Figure. 5 Performance metrics analysis for prediction 

outcomes 

4.2 Comparative analysis 

The comparison of existing CMFD methods with 

the proposed CMFD method on the MICC-F220 data 

are represented in Table 3. The graphical 

representation of these results is shown in Fig. 6. The 

proposed CMFD method shows better results with 

the precision of 99.45% and F1-score of 98.21%. The 

evaluation of proposed method on MICC-F2000 is 

compared with existing methods in Table 4. The 

graphical representation of these results are given in 

Fig. 7. And also, the performance evaluation of the 

proposed on CoMoFoD dataset is compared with the 

existing methods in Table 5. These results are 

graphically represented in Fig. 8.  

The proposed CMFD method over comes the 

limitation of existing CMFD method based on DHE-

SURF features along with mDBSCAN clustering [11] and 

CMFD method based on SURF, BRISK features along 

with DBSCAN clustering [12]. In reference 11, the 

continuous phase of improvement and refinement 

caused more complexity in handling post-processing 

attacks which was the drawback of this method. In 

reference 12, the experimental results have shown 

that more false matches were detected, which is a 

limitation of this method. To overcome the 

continuous refinement and to obtain les false matches, 

a Modified Hybrid SURF is proposed with A-KAZE 

feature descriptor and detector which achieved high 

performance and less computing.  
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Table 6. Analysis of prediction outcomes with existing methods on MICC-F220 dataset 

Method Dataset TPR (%) FPR (%) 

mDBSCAN clustering [11] MICC-F220 98.26 6.03 

DBSCAN clustering [12] 98.05 7. 31 

MSURF +A-KAZE 99.93 4.67 

 
Figure. 6 Performance metrics analysis of various CMFD 

methods on MICC-F220 dataset 

 

Figure. 7 Performance metrics analysis of various CMFD 

methods on MICC-F2000 dataset 

 

Figure. 8 Performance metrics analysis of various CMFD 

methods on CoMoFoD dataset 

 

The comparison of TPR and FPR of existing 

CMF methods are compared with the proposed 

CMFD method on the MICC-F220 data and 

represented in Table 6. The graphical representation 

of these results are shown in Fig. 9. The proposed 

method achieves better results with TPR of 99.93%, 

and FPR of 4.67%. Whereas, the existing method 

referecnce 11 shows 98.26% shows TPR of 98.26%,  

 

 
Figure. 9 Performance metrics analysis for prediction 

outcomes 

 

and FPR of 6.03% and reference 12 shows TPR of 

98.05% and FPR of 7.31%.  

5. Conclusion 

A novel hybrid feature extraction using MSURF 

features with an A-KAZE descriptor and detector 

algorithm is implemented in the proposed CMFD 

method. The required points in the smoothened 

regions are acquired by adjusting the lowest threshold 

values rather than A-KAZE and SURF’s default 

values. This method can detect tampered regions 

within a forged image, even in smooth regions. The 

performance evaluation of the proposed CMFD 

method is validated on MICC-F220 and surpasses the 

existing DNN method of CMFD. The proposed 

method achieved the highest values in terms of 

Precision of 99.93%, F1-score 95.96%, TPR of 

99.93%, and FPR of 4.67%. The proposed method is 

validated only on MICC-F220 dataset which consists 

of 110 tampered images and 110 original images. 

Another dataset like MICC-F2000 consists of more 

tampered and original images, which can be used for 

future research to check the effectiveness of the 

proposed CMFD method for large-size dataset. 
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Notation list  

Parameters Notation 

𝐺𝑥 and 𝐺𝑦 Gradient intensity of pixels in 

orientation x and y 

𝐿𝑥 and 𝐿𝑦 First order derivatives of 

greyscale image L 

𝐹𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑖) function for extracting 

information from grade unit i 

𝐹𝑑𝑥(𝑖) The gradient function for 

grid unit i in region x 

𝐹𝑑𝑥(𝑗) The gradient function for 

grid unit j in region x 

m number of total pixels in grid 

units i and j 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑘) pixel value. 
(𝑥0, 𝑦0) shift vector 

(x, y) coordinates of the copied region 

(𝑥̃, 𝑦̃) coordinates of the pasted region 

𝑡11, 𝑡12, 𝑡21, 𝑎𝑛𝑑 𝑡22 affine transformation 

parameters. 

T Estimated matrix 

𝜀 Evaluation error 

N Maximum iterations 
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