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Abstract: Molecular biology and bioinformatics are fields that alter knowledge and abilities for gathering, managing, 

storing, analyzing, interpreting, and disseminating biological data. In order to get insight into the design and testing of 

life sciences, it is necessary to make use of high-performance computers, cutting-edge software tools, and unique 

algorithmic approaches for data analysis, interpretation, and prognostication. The computing challenges of processing 

biological sequences are used in this research to describe a significant technique for producing DNA sequence 

alignments. One of these challenges is to put forward computational models that aid in speeding up the computation 

of the substitution matrix of the needleman-wunsch algorithm. Another difficulty is the implementation of a parallel 

program for two threads to find the values of the matrix concurrently in order to achieve high efficiency and find the 

best sequence alignment in less time. This paper introduces a novel approach to constructing the substitution matrix 

of the Needleman-Winch algorithm. This approach enhances the overall performance of the algorithm by adjusting the 

values of the penalties imposed for the gap, mismatch, and match in addition to computing the matrix using two parallel 

threads depending on the progress made in the devices, especially with regard to the capabilities and performance of 

the GPU. Numerous tests have been run using different data sets and different lengths of sequence. A comparison was 

made between the amount of time needed to implement the Needleman method and the amount of time needed to 

implement the suggested model using the same data in order to evaluate the performance of the proposed model. 

Processing time and speedup for parallel performance are experimentally calculated. The recommended model has 

high scalability in terms of workload and machine capacity, according to the performance evaluation and scalability 

assessments. The proposed approach reduced the execution time ratio by 47% to 90%, and this improvement rate rises 

as the length of the reference and query sequences does. 
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1. Introduction 

An interdisciplinary field called bioinformatics 

combines science and programming to provide 

methods and algorithms for interpreting and 

understanding biological data. It developed out of the 

need for guidelines for the massive amounts of data 

that atomic physics generated, and it is today crucial 

to the fields of genetics and bioinformatics [1] .In the 

field of bioinformatics, biology-related topics are 

addressed using mathematical, computer science, and 

engineering approaches [2] .This may be 

accomplished by using a variety of strategies to frame 

and model the relevant biological problems as 

computational problems and create algorithms to 

address them precisely and effectively [3]. 

One of the topics that receives the most attention 

in bioinformatics is sequence alignment. It is 

involved with identifying patterns (similarities) 

inside a sequence or between sequences. This issue 

covers a broad range of techniques for locating 

sections of biological sequences that have a lot of 

similarities, such as those in DNA, RNA, and protein 

[4]. Several methods, including a heuristic method 

and a dynamic programming method, were 

developed for sequence alignment at the cost of 
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precision [5]. The Needleman-Wunsch (NW) method 

for the global alignment and the Smith-Waterman 

(SW) algorithm for the local alignment are two well-

known dynamic programming-based pairwise 

sequence alignment techniques [6]. Given a pair of 

sequences, both methods determine the best 

alignment, and the calculation time is inversely 

related to the length of the two sequences [7]. 

In this paper, we will concentrate on finding a 

method to align the DNA pair's sequence that 

addresses the issue of time consumption when using 

the Needleman-Wunch algorithm. We will do this by 

adjusting the severity of the algorithm's penalties in 

addition to using parallel programming that makes 

use of GPUs to process data while calculating the 

substitution matrix.The paper's first half covered the 

fundamental ideas of marital pairwise sequence 

alignment and its many forms, while the second 

section discussed some earlier research on the subject. 

The third portion discussed the suggested approach 

for creating the Needleman-Wunch algorithms, and 

the fourth section provided a comparison with earlier 

research. The outcomes of our suggested 

methodology were presented in the paper's last part. 

2. DNA sequence alignment  

DNA is the genetic material that enables the 

transmission of genetic information from one 

generation to the next. As organisms evolve through 

time, their DNA diverges from that of their ancestors. 

As a result, one of the most important criteria in 

biological research is the analysis of DNA sequences 

of living creatures [8]. DNA sequence alignment is a 

technique for determining the precise nucleotide 

order in a nucleic acid molecule [9]. It is commonly 

employed in bioinformatics to ascertain the 

molecular sequence of an unknown DNA sequence 

that has been conserved via natural selection 

throughout evolution [10]. 

A major problem in bioinformatics is the need for 

sequence alignment to find biological molecules that 

are similar, such as proteins, DNA, or RNA. It 

promotes the formation of numerous biological 

molecular connections. Sequence alignment may be 

categorized into two main groups [11]. Pair-wise 

sequence alignment (PSA), which finds the 

maximum degree of similarity between two 

biological sequences, enables one to evaluate the 

degree of similarities and the possibility of homology. 

In order to ascertain the evolutionary link between the 

query sequences, a technique known as multiple 

sequence alignment (MSA) focuses on aligning three 

or more biological sequences [12]. 

DNA is the genetic material that enables the 

transmission of genetic information from one 

generation to the next. As organisms evolve through 

time, their DNA diverges from that of their ancestors. 

As a result, one of the most important criteria in 

biological research is the analysis of DNA sequences 

of living creatures [8]. DNA sequence alignment is a 

technique for determining the precise nucleotide 

order in a nucleic acid molecule [9]. It is commonly 

employed in bioinformatics to ascertain the 

molecular sequence of an unknown DNA sequence 

that has been conserved via natural selection 

throughout evolution [10]. 

A major problem in bioinformatics is the need for 

sequence alignment to find biological molecules that 

are similar, such as proteins, DNA, or RNA. It 

promotes the formation of numerous biological 

molecular connections. Sequence alignment may be 

categorized into two main groups [11]. Pair-wise 

sequence alignment (PSA), which finds the 

maximum degree of similarity between two 

biological sequences, enables one to evaluate the 

degree of similarities and the possibility of homology. 

In order to ascertain the evolutionary link between the 

query sequences, a technique known as multiple 

sequence alignment (MSA) focuses on aligning three 

or more biological sequences [12]. 

2.1 Pairwise sequence alignment 

Finding the best piecewise local or global 

alignments of DNA (nucleic acid) or protein (amino 

acid) sequences is the goal of pairwise sequence 

alignment algorithms. The goal of sequence 

alignment is to place as many similar residues as 

possible in the same locations [13]. When two 

sequences are aligned globally, all of the characters 

in both sequences take part in the alignment. The 

main use of global alignments is the discovery of 

closely related sequences [14]. Local sequence 

alignment is a method of aligning sequence areas 

based on the density of matches [15]. 

The identification of identical residue sequences 

or patterns of identical residues that exist in the 

sequences in the same order is part of the 

computational process to compare two or more 

sequences, and these groups are depicted by writing 

sequences as follows: 

 
A C C A A C T - - G A 

A - C A A C T G G G T 

           

 

In order to ensure that columns include identical 

symbols from the involved sequences wherever 

feasible, the sequences are filled with gaps.  
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2.2 Multiple sequence alignment 

Multiple sequence alignment is primarily 

concerned with identifying biological relationships 

between various sequences, such as nucleotide or 

amino acid sequences, in order to research their 

underlying fundamental properties or activities. In 

other words, the matched sequences may have greater 

biological links if they have more similarities 

between them [16]. We can also anticipate the 

functionalities or properties of aligned sequences as 

follows: 
 

- C G C T  - 

G C G  - T  - 

 - C  - C G T 

 

Due to the complexity and inflexibility of directly 

processing the sequences with their biologically 

relevant length, computational tools are utilized to 

construct and analyse the MSAs. 

3. Needleman-Wunsch algorithm 
 

The algorithm that uses the idea of dynamic 

programming for sequence alignment is the 

Needleman-Wunsch algorithm. Phosphates, sugars, 

and nitrogenous bases are the three components that 

make up DNA, as is common knowledge. The DNA's 

nitrogenous bases, which are represented as the 

nucleotides adenine, cytosine, guanine, and thymine, 

constitute its information-containing region. 

Therefore, in bioinformatics, these nitrogenous bases 

were represented as A, C, G, and T [17]. 

The length of nitrogenous bases can occasionally 

range up to 18000 characters, making it impractical 

to establish relationships in DNA, proteins, and 

amino acids using observable correlation. As a result, 

the Needleman-Wunsch method has been frequently 

employed to do so. Numerous dynamic programming 

algorithms exist that provide results that are globally 

optimal (e.g., Needleman-Wunsch, Smith-Waterman). 

However, these techniques have a lengthy calculation 

time [18]. It is divided into two stages [19]: 

 

2 8    

1     

     

     

Figure. 1 Needleman-Wunsch substitution matrix 

0 
8 9 1  

  2 6  
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Figure. 2 Backtracking phase in Needleman-Wunsch 

algorithm 

 

1- Stage 1 Given input sequences x and y of 

lengths K and L, respectively, calculate the 

similarity score. In order to implement the 

Needleman-Wunsch method, a dynamic 

programming (DP) matrix F is kept up-to-date. The 

best score for aligning the first characters in x with 

the first j characters in y may be found in the (i, j) 

entry, the Eq. (1) is used to initialize and calculate 

the matrix: 
 

𝑅[𝑖, 𝑗] = 𝑀𝐴𝑋 {

𝑅[𝑖 − 1, 𝑗 − 1] + δ(xi, yi)

𝑅[𝑖 − 1, 𝑗] + δ(xi, −)

𝑅[𝑖, 𝑗 − 1] + δ(−, yi)

      (1) 

 

Each cell in the alignment matrix is dependent on 

its left, upper, and higher-left (diagonal) neighbours, 

as seen in Fig. 1. 
 

2- Stage 2: Find the ideal backtracking phase of 

the procedure begins at the final place of the matrix 

Rk,lafter the matrix has been generated and saved in 

quadratic storage space. The method returns to the 

starting cell R0,0 after selecting the cell whose 

elements were used during the prior phase of the 

process at each step. Every upward movement 

represents an insertion into sequence S1, and every 

leftward movement represents an insertion into 

sequence x or a deletion in sequence y. Either a 

match or a mismatch would be indicated by a 

diagonal movement as shown in figure 2: 

 

Algorithm 1 illustrates the Needleman-Wunsch 

pseudocode used in the alignment procedure: 

 

Algorithm. 1 Needleman-Wunsch algorithm 

K- the length of sequence 1 

L- the length of sequence 2 

R-K x Ldimensional dynamic substitution matrix 

δ(xi,-)-score from aligning xi with a gap  

δ(-,yj)-score from aligning yj with a gap  

δ(xi,yj)-score from aligning xi with yj 

1. R[0,0]=0 

2. For i=1 to K Do: 

• R[i,0]=r[i-1,0]+ δ(xi,-) 
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3. For j=1 to L Do: 

• R[0,j]=R[0,j-1]+ δ(-,yj) 

• For i=1 to L Do: 

 

• 𝑅[𝑖, 𝑗] = 𝑀𝐴𝑋 {

𝑅[𝑖 − 1, 𝑗 − 1] + δ(xi, yi)

𝑅[𝑖 − 1, 𝑗] + δ(xi, −)

𝑅[𝑖, 𝑗 − 1] + δ(−, yi)

 

 

4. Return R[K,L] 

 

Output: Score of Optimal alignment for aligning 
 K and L 

Time Complexity: O(KL) 

4. Literature survey 

In this part, we will present previous studies in 

order to comprehend the previous methods that is 

used in DNA pairwise sequence alignment. 

A unique sequence alignment method that uses a 

genetic algorithm (GA) to choose the optimal 

alignment score between two sequences—which 

might be DNA or protein sequences—was presented 

by Gautam Garai and Biswanath Chowdhury in 2015 

[20]. By breaking up a large space into smaller 

subspaces, the recommended genetic-based method, 

known as cascaded pairwise alignment with genetic 

algorithm (CPAGA), reduces the search space 

required. The sequence pair is broken up into several 

pieces before the alignment procedure starts. This 

type of reduction improves the search process's 

ability to find the best global or nearly global solution, 

even for longer sequences. 

BulkAligner, an approach to a graph-based in-

memory trinity decentralized system, was put out by 

Junsu Lee et al. in 2015 [21]. They partition each 

trimmed sequence into k-mer sequence fragments in 

order to get the data in graph form. They split the 

reference sequence into k subsamples (where k = the 

lengths of 134 sequence fragments). They transform 

the reference data sets into a graph representation 

data format akin to the de Bruijn graph in order to 

create a reference graph for every slave. 

In 2016, Sanchita Saha Ray et al.  [22] presented 

a pair-wise DNA sequence alignment method that is 

memory-efficient. To facilitate the quicker and more 

accurate identification of the ideal alignment, a novel 

concept of a pointing matrix is applied. The 

recommended technique finds the ideal global 

alignment by employing a dynamic programming 

paradigm. For lengthy DNA sequences, the method 

takes significantly less space than the Needleman-

Wunsch method. On a random sample of 100 fake 

samples, which created DNA sequence pairings in 10 

distinct circumstances, the complete technique was 

evaluated. The approach takes 34–42% less time to 

discover the optimal alignment than another method, 

although it took a little longer (9–11%) to create. 

In 2018 saw the development of two strategies by 

Sara Q. Abedulridha and Eman S. Al-Shamery [23] 

to address the pairwise sequence alignment issue. The 

goal of the first strategy is to divide the DNA tape into 

portions that match and don't match by splitting it into 

pieces and using adaptive interleaving windows. A 

multi-zone genetic algorithm (MZGA) is proposed as 

an enhanced method in the second strategy. On the 

basis of cut-points and gap location, a novel crossing 

approach is proposed. A dataset of DNA with lengths 

ranging from 66 to 26037 bases was used to evaluate 

the approach. The proposed method produced the 

best alignment score for the DNA sequences. 

Amr Ezz El-Din Rashed et al. [24] in 2021 

utilized two widely used DNA sequence matching 

techniques using an effective software and hardware 

digital fusion. The recommended approach focuses 

on parallelizing each of these fundamental algorithms 

while adhering to predetermined limitations. Under 

certain limitations, it relies on the well-known 

alignment and parallelization algorithms for DNA 

sequences. In comparison to the present state-of-the-

art technology, the recommended MATLAB solution 

for local and global alignment yields significantly 

superior elapsed time and GCUPS. 

A cache-efficient parallel method to solve the 

sequence alignment and gap penalty problems for 

shared-memory devices was presented by Shubham 

et al. in 2022 [25]. This article describes a successful 

divide-and-conquer strategy. Higher parallelism and 

data localization are asymptotically present. It may be 

possible to increase cache complexity for some 

dynamic programming problems by using a matrix 

splitting technique rather than a simple 2-way split of 

the dynamic programming table across all aspects. 

5. Methodology 

In order to reduce the Needleman-Wunsch  

 
  A C A A C T G G G T 

 0           

A            

C            

C            

A            

A            

C            

T            

G            

A            

Figure. 3 Substitution matrix initialization 
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algorithm's execution time, a technique to align the 

pairwise sequence is described in this paper. It 

involves: 

 

1- Initialization of substitution matrix 

2- Managing the score in substitution matrix 

(match, mismatch, and gap penalty). 

3- Creation of two threads to compute the 

substitution matrix in parallel using GPU. 

4- Determining the optimal alignment 

5.1 Managing substitution matrix parameters  

A tabular box known as a score matrix is used to 

keep track of score outcomes. The Needleman-

Wunsch algorithm's score matrix goes through an 

initialization phase and computes cell boxes in the 

end. It includes the following steps : 

 

1. Initialization: To align the original matrix gap, a 

sequence matrix with M + 1 columns and N + 1 

rows is made, where M is the length of the 

reference sequence and N is the length of query 

sequence. Letters from the reference sequence fill 

in the horizontal axis of the matrix that was formed, 

and similarly, characters from the query sequence 

filled in the vertical axis and the intersection of the 

first row and the first column of the initialization 

matrix is given the value P(0, 0) to 0 prior to the 

scoring starting from the top left corner to the 

bottom right corner of the matrix (i.e., the initial 

gap) as shown in Fig. 3. 

2. Determine the match, mismatch, and gap penalty 

scores: The score for matches and mismatches, as 

well as the penalty value for gaps, are decided at 

this stage. It is now possible to select penalties that 

reduce the Needleman-Wunsch algorithm's 

computing operations. When using the Needleman 

and Winch algorithm, four computing processes 

are carried out to determine the value of each cell 

in the substitution matrix. These operations are: 

 

a. The value of the cell in the diagonal, to which a 

matching or mismatching score is added 

(according to the matching of the rule in the 

reference sequence and the query sequence). 

b. The value of the cell at the top is added to the 

value of the gap penalty. 

c. The value of the cell at the left is added to the 

value of the gap penalty. 

d. Find the maximum value of the above three 

steps to be added to the specified cell. 

 

In our proposed method the maximum value 

among the three variables was chosen first (the  
 

 

 

 

 

 

 

 

Figure. 4 Computation of the value of each cell in the 

substitution matrix 

 

diagonal, the top, and the left). The processes b and 

c specified in paragraph 2 will not be performed if 

the maximum value corresponds to the value in the 

diagonal. Because the gap value is set to zero, and 

sum time the three arithmetic operations (a, b, and 

c) will be cancelled when the maximum value 

represents the upper value or left value so this will 

speed up the substitution matrix calculation as 

shown in Fig. 4. 

3. Compute the substitution matrix in parallel: The 

score matrix filling step of the Needleman-Wunsch 

method is most the time-consuming and 

parallelizable step. The presence of dependencies 

between matrix elements each element relies on the 

top, left, and element diagonally between them 

presents a considerable barrier to parallelization. 

This means that threads that traverse the whole 

matrix cannot be initiated. To make sure that each 

thread calculates an element only after the elements 

on which it depends have previously been 

calculated, a rigidly specified order of operation 

must be observed. As a result, the following 

technique is employed: 

 

a. Threads number: It is known in advance how 

many threads the program will execute. They are 

assumed to be two. 

Diagonal Up 

Left 
New 

element 

  A C A A C T G G G T 

 0 0 0 0 0 0 0 0 0 0 0 

A 0 2 2 2 2 2 2 2 2 2 2 

C 0 2 4 4 4 4 4 4 4 4 4 

C 0 2 4 5 5 6 6 6 6 6 6 

A 0 2 4 6 7 7 7 7 7 7 7 

A 0 2 4 6 8 8 8 8 8 8 8 

C 0 2 4 6 8 10 10 10 10 10 10 

T 0 2 4 6 8 10 12 12 12 12 12 

G 0 2 4 6 8 10 12 14 14 14 14 

A 0 2 4 6 8 10 12 14 15 15 15 

This value computed by taking 

the maximumof (Diognal, Up, 

Left) only. 

C != T 

Max= Left value(4) 

This value computed as 

follows: 

T = T  

Diogonal(10)+2=12 

The maximum and Only one 

operation doingto compute it. 

This value computed as follows: 

C != A 

Diogonal(4)+1=5 

The maximum and Only one 

operation Doing to compute it. 
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  A C A A C T G G G T 

            

A            

C            

C            

A            

A            

C            

T            

G            

A            

Figure. 5 Thread in substitution matrix 

 
  A C A A C T G G G T 

 0           

A            

C            

C            

A            

A            

C            

T            

G            

A            

Figure. 6 Parallel computation of substitution matrix cell 
 

  A C A A C T G G G T 

 0 0 0 0 0 0 0 0 0 0 0 

A 0 2 2 2 2 2 2 2 2 2 2 

C 0 2 4 4 4 4 4 4 4 4 4 

C 0 2 4 5 5 6 6 6 6 6 6 

A 0 2 4 6 7 7 7 7 7 7 7 

A 0 2 4 6 8 8 8 8 8 8 8 

C 0 2 4 6 8 10 10 10 10 10 10 

T 0 2 4 6 8 10 12 12 12 12 12 

G 0 2 4 6 8 10 12 14 14 14 14 

A 0 2 4 6 8 10 12 14 15 15 15 

Figure. 7 Tracing back to determine optimal alignment 

path 

 

b. Initializations: The matrix's initializations are 

carried out concurrently since its members are 

independent of one another as shown in Fig. 5. 

c. Matrix division: The matrix is divided into two 

sections by symmetry, and each section has a 

parallel thread processing each element at once. 

In the substitution matrix, one of the two threads 

moves horizontally (along the rows), and the 

other moves vertically (along the columns), as 

shown in Fig. 6. 

4. Determining the optimal alignment: The deduction 

of the optimal alignment from the substitution 

matrix is done by traceback. The traceback path has 

three potential moves: 

a. Diagonal: two sequences of letters are aligned. 

b. Left: A gap is added to the left sequence. 

c. Up: A gap is added to the top sequence. 

Figure 7 depicts a tracing back operation to 

determine the optimal path of the reference and 

query sequencing. 

The optimal alignment will be as follows: 

 
A C C A A C T - - G A 

A - C A A C T G G G T 
 

5.2 Algorithms for proposed method  

The primary algorithm for generating the 

substitution matrix is listed below, along with the 

fundamental procedures to determine each matrix 

element: 

 

Algorithm. 2 Main algorithm of proposed method 

R- Reference Sequence 

Q- Query Sequence 

M- Reference Length 

N- Query Length 

S-dynamic substitution matrix M x N 

1.δ(xi,-)=0        //score from aligning xi with a gap  

2.δ(-,yj)=0//score from aligning yj with a gap  

 

3.𝛿(𝑥𝑖, 𝑦𝑗) =

{
𝑠𝑐𝑜𝑟𝑒 𝑓𝑟𝑜𝑚 𝑎𝑙𝑖𝑔𝑛𝑖𝑛𝑔 𝑥𝑖 𝑤𝑖𝑡ℎ 𝑦𝑗 =  2     
𝑠𝑐𝑜𝑟𝑒 𝑓𝑟𝑜𝑚 𝑎𝑙𝑖𝑔𝑛𝑖𝑛𝑔 𝑥𝑖 𝑤𝑖𝑡ℎ 𝑦𝑗 =  1 

… (2) 

 

4.S[0,0]=0 

5.Do Thread1 and Thread2 in parallel//Horizontal 

Thread &Vertical Thread 

6.Backtracking 

7.Return R[M,N] 

Output: Score of Optimal alignment for aligning M 

and N 

 

We will now explain the steps we used to develop 

each thread independently. The first thread divides 

the replacement matrix diagonally by working on the 

rows and progressively decreasing in each row. While 

the second thread operates similarly to the first, but 

on columns instead of rows: 

The actions that are carried out by the horizontal 

thread to determine the first half of the substitution 

matrix are included in Algorithm 3. 

 

Algorithm. 3 Algorithm of horizontal thread 

R- Reference Sequence 

Q- Query Sequence 

M- Reference Length 

N- Query Length 

Thread 1 

Thread 2 
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S-dynamic substitution matrix M x N 

 

1. K= -1 

2. For i=1 to M Do: 

• K=K+1 

• For j=1 to N-K Do: 

o If R[i-1] = Q[j+k-1]  Do 

• S[i,j+k]=S[i-1,j+k-1]+δ(xi,yj)  //δ(xi,yj)=2  

if  R[i-1] = Q[j+k-1] 

 
//δ(xi,yj)=1 
if  R[i-1] = Q[j+k-1] 

o Else 

 

• 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥 {

𝑆[𝑖 − 1, 𝑗 + 𝑘 − 1]
𝑆[𝑖 − 1, 𝑗 + 𝑘]
𝑆[𝑖, 𝑗 + 𝑘 − 1]

 

 

• if  S[i-1,j+k-1] >=Maximum Do 

▪ S[i,[j+k] = Maximum +1 

• Else 

▪ S[i,j+k] = Maximum// Because 

δ(xi,yj)=0 

 

3. Return R[M,N] 

 

Output: Score of Optimal alignment for aligning M  

and N 

 

The actions carried out by the vertical thread to 

determine the first partition of the substitution matrix 

is included in Algorithm 4. 

 

Algorithm. 4 Algorithm of vertical thread 

R- Reference Sequence 

Q- Query Sequence 

M- Reference Length 

N- Query Length 

S-dynamic substitution matrix M x N dimension 

1. K= -1 

2. For i=1 to N Do: 

• K=K+1 

• For j=1 to M-K Do: 

o If R[i+k-1] = Q[j-1]  Do 

• S[i+k,j] = S[i+k-1,j-1]+ δ(xi,yj)  // 

δ(xi,yj)=2 

 if  R[i+k-1] = Q[j-1] 

// δ(xi,yj)=1 if  
R[i+k-1] = Q[j-1] 

o Else 

 

• 𝑀𝐴𝑋 = {

𝑆[𝑖 + 𝑘 − 1, 𝑗 − 1]
𝑆[𝑖 + 𝑘 − 1, 𝑗]

𝑆[𝑖 + 𝑘, 𝑗 − 1])
 

 

• if  S[i+k-1,j-1]>=Max  Do 

▪ S[i+k,j] = Max+1 

 

• Else 

▪ S[i+k,j] = Max // Because δ(xi,yj)=0 

 

3. Return R[M,N] 

 

Output: Score of Optimal alignment for aligning M  

and N 

 

The phase of backtracking follows effectively 

finishing the substitution matrix computation in its 

entirety in order to extract the best alignment from the 

substitution matrix after computing all of the values 

of it. The bottom right cell, which was the last to be 

completed with the score, serves as the starting point 

for the traceback and the traceback value recorded in 

the cell determines how one advances. There are 

three alternative directions to move: up, left, or 

diagonally (toward the top-left corner of the matrix). 

In order to determine the whole path, which is the 

optimal path, this procedure is continued until the 

point (0,0) is reached (the best alignment). 

6. Results 

In order to evaluate the suggested pairwise 

sequence alignment approach, the suggested parallel 

dynamic programming-based sequence alignment 

algorithm approach is simulated on 10 data sets from 

the national centre for biotechnology information 

(NCBI), available at https://www.ncbi.nlm.nih.gov. 

The test was carried out on an 11th Gen Intel(R) Core 

(TM) i7-11800H @ 2.30GHz system. Each dataset 

consists of two non-identical sequences, one 

representing the reference sequence and the other 

representing the query sequence. The Needleman-

Wunsch algorithm was first enhanced by adopting 

score 2 for the nucleotides that match in the two 

sequences (Reference and Query) and score 1 for the 

mismatched nucleotides, in addition to the 

algorithm's most crucial step, which is the adoption 

of score 0 as a penalty for the gap. It helped reduce 

the algorithm's arithmetic operations. By comparing 

the execution time of the proposed method with the 

execution time of the Needleman and Wunsch 

algorithm, it was found that the algorithm made a 

considerable contribution to reducing the processing 

time. Table 1 shows the difference in time when 

executing the 10 datasets of different lengths: 

The execution time of Needleman-Wunsch 

algorithm is minimized between 21% and 23%, 

according to the first assessment of 10 datasets. After  
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Table 1. Comparison between the suggested method and 

Needleman-Wunsch in time consuming 

Dat

ase

t 

Refer

ence 

Lengt

h 

Quer

y 

Lengt

h 

Time 

consum

ed in 

NW 

algorith

m(seco

nd) 

First 

improve

ment in 

Time 

consumed 

in 

proposed 

method 

(second( 

Tim

e 

com

pari

son 

ratio 

1 19070 19051 440.161 336.880 23% 

2 17883 17867 376.459 293.863 22% 

3 5705 5700 38.198 29.897 22% 

4 2502 2502 7.354 5.742 22% 

5 1820 1820 3.951 3.031 23% 

6 13327 13510 213.275 168.358 21% 

7 3564 3564 15.340 11.810 23% 

8 1572 1572 2.910 2.265 22% 

9 8669 8669 89.277 69.656 22% 

10 1478 1465 2.51140 1.951 

 

22% 

 

 
Table 2. Comparison between the improvement in 

suggested method and Needleman-Wunsch in time 

consuming 
Dat

aset 

Refer

ence 

Lengt

h 

Quer

y 

Lengt

h 

Time 

consume

d in NW 

algorith

m 

(second) 

Second 

improv

ement 

in Time 

consum

ed in 

propose

d 

method 

(second

) 

Time 

comp

ariso

n 

ratio 

1 19070 19051 440.161 45.862 90% 

2 17883 17867 376.4591 41.408 89% 

3 5705 5700 38.198 4.981 87% 

4 2502 2502 7.354 1.817 75% 

5 1820 1820 3.951 1.449 63% 

6 13327 13510 213.275 24.982 88% 

7 3564 3564 15.340 2.633 83% 

8 1572 1572 2.910 1.371 53% 

9 8669 8669 89.277 10.094 89% 

10 1478 1465 2.511 1.332 47% 

 

 

that, we considered how to further decrease the 

execution time and we discovered that by splitting the 

substitution matrix into two parts and running each 

partition of the matrix on a separate thread, one of 

which works horizontally (on rows) and the other 

vertically (on columns), in parallel, we could get 

faster execution times. On the same 10 datasets that  
 

 

 

 

 

 
Figure. 8 Comparison between the suggested method and 

Needleman-Wunsch in time consuming 
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we utilized in the prior stage, we tested this notion 

and found the execution time has been improved by 

processing on the NVIDIA GeForce RTX 3060 

Laptop GPU platform with a CORE i7 2.30GHz CPU 

to enhance the performance of the suggested method. 

The time difference between using Needleman's 

method and the first and second algorithmic 

advancements is displayed in Table 2. 

Through the comparison we conducted in Table 2 

on the various datasets with lengths, we discovered 

that the percentage of time improvement for our 

proposed method grows noticeably as the lengths of 

the sequences increase, with the percentage ranging 

between 47% and 90% as shown in Fig. 8 which 

illustrates the advancement over time. 

7. Comparative study  

The approaches from previous studies that were 

examined in section 4 of this research have been 

compared to the suggested technique. Following is a 

summary of the comparison: 

The "local minimum" problem, which results 

from the greedy nature of the algorithm, is discovered 

to be the basic drawback of this technique when 

comparing the suggested model with the model 

described in reference [20, 23]. Because further 

sequences are added to the alignment, any errors 

produced in any intermediate alignments cannot be 

fixed. Furthermore, it is not possible to determine if 

one alignment is better than another or whether the 

best alignment for a given case has been determined 

using an objective function. In contrast to the model 

that we presented, which finds the pair alignment in 

such a way that there are no errors in the final product 

of the process, the model that we proposed has an 

optimal solution in the final product. 

The study's authors in paper [21] used graph 

theory and the trinity, which states that graphs 

employ several indications and might be challenging 

to manage. It can cause serious memory 

complications. While the model that we have 

provided does not cause memory problems during the 

construction of the substitution matrix that is used to 

create pairwise alignments, there are still some 

advantages to using this model. 

The authors in [22] developed a pair-wise DNA 

sequence alignment method that is memory-efficient. 

Using 100 random fake samples, which created DNA 

sequence pairings in ten distinct circumstances, the 

complete technique was evaluated. The optimal 

alignment is obtained after a prolonged running 

period, while the primary benefit of the proposed 

work is that it significantly reduces the amount of 

time spent to determine the optimal alignment. 

Table 3. Comparative analysis of the proposed procedure 

and the preliminary research 

Reference Maximum DNA 

Sequence Length 

Accuracy 

[20] 1771 98.99% 

[21] 120 96% 

[22] 1024 - 

[23] 2157 96% 

[24] 4411 98.3% 

 

 

The researchers described a lookup table-based 

approach for matching the paired DNA sequences in 

the reference [24]. By reading this paper, we can 

observe that the researchers emphasized the necessity 

for reference and query sequences to be of 

comparable length. The need for these two sequences 

limits the applicability of this approach to diverse 

sequences. On the other hand, the proposed model is 

capable of finding the alignment of reference and 

query sequences even when the lengths of the 

sequences are different from one another. 

The divide-and-conquer strategy was employed 

by the researchers in reference [25] to determine the 

alignment of DNA sequences. This method's 

drawback is that the algorithm produces a sub-

optimal alignment. In contrast to the model that we 

put forth, which results in the optimal sequence 

alignment. 

From the aforementioned and by consulting 

earlier literature that is concerned with determining 

the pairwise alignment of DNA sequences, it was 

discovered that the approach proposed by us is 

capable of providing an optimal sequence alignment 

in a shorter amount of time and for various lengths of 

sequences. Table 3 outlines the maximum length that 

was used for DNA data as well as the accuracy level 

reached by the suggested methodology in comparison 

to earlier research. 

8. Conclusion 

The computerized biological sequence alignment 

program is facing previously unheard-of difficulties 

as a result of the exponential expansion of biological 

sequence data. As the foundation for sequence 

analysis, sequence alignment limits the application 

and precision of future analysis. In this study, we 

offer a novel approach for constructing sequence 

alignments of DNA sequences that relies on 

Needleman-Wunsch's technique for computing 

substitution matrices and controls the penalties for 

each condition, including match, mismatch, and gap 

conditions. The Needleman-Wunsch algorithm relies 

on four fundamental operations to calculate the 

substitution matrix, which is represented by gathering 
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the value of the score of similarity or dissimilarity, 

the value in the diagonal of the element to be 

calculated, and two arithmetic operations that include 

the process of adding the gap penalty value with the 

upper and left values, The fourth operation's function 

is to determine the largest value of the outcomes of 

the first three operations, which is the value to be 

computed. This was discovered when the extent of 

the effect of the penalty values on the speed of the 

algorithm was first investigated. Here, it became 

apparent to us that if we first calculate the maximum 

value of the diagonal, upper, and left values of the 

value to be calculated, and only then calculate the 

value of the gap penalty to zero, it will allow us to 

reduce the mathematical operations into two 

operations (finding the maximum value, which 

represents the value of the diagonal, and adding it to 

the score of congruence or mismatch, which is 2 in 

the case of a match and 1 in the case of a mismatch), 

the procedures are sometimes reduce to just one 

(finding the maximum value)where the maximum 

value corresponds to one of the two (upper or left) of 

the value to be determined. On 10 datasets from the 

NCBI website, we applied the suggested procedure, 

and we discovered that there is a time difference 

between (21% and 23%), this was Needleman's 

algorithm's initial improvement. Following that, we 

considered how to advance our technology, and we 

came to the conclusion that it is possible to divide the 

substitution matrix into two halves diagonally, with 

each half's values being calculated by a single thread 

and in parallel, depending on the development in the 

devices, including the performance and capabilities 

of the GPU, which helped to reduce the computation 

time for the dataset Ten by (47% and 90%) by 

performing multiple operations at the same time. We 

compared the proposed approach to earlier studies 

and discovered that, in contrast to the majority of 

these methods, which mandate equal lengths for both 

sequences, our approach is able to deal with the 

alignment of pairwise sequences with different 

lengths of DNA sequences (reference and query) in 

less time. From here, it becomes apparent that our 

technique, as opposed to Needleman-Wunsch 

algorithm and other previously employed approaches, 

can provide an optimal pairwise sequence alignment 

in a short amount of time. 
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