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Abstract: This paper presents multi-objective congestion management of transmission 

lines using time-of-use (TOU) based demand response (DR) program and static var 

compensator (SVC). Congestion of transmission lines is managed, while system parameters 

such as generation fuel cost and active power losses are reduced, in addition to enhancement 

of bus voltages. The SVC was modeled as a reactive power injector, while the TOU-based 

DR was modelled using the price elasticity of demand for responsive loads. Particle swarm 

optimization was used for the optimal placement and sizing of the SVCs, considering the 

rolled-out DR program in MATLAB/MATPOWER. The DR program was first tested 

separately on the IEEE-30 bus test system to show its effects on the afore-mentioned system 

parameters. Subsequently, the DR program was combined with the SVC, and again tested on 

the IEEE-30 bus test system. The results showed  a significant improvement of 1.414% on the 

voltage profile, 44.65% reduction on the generation fuel cost, and much significant 71.13% 

reduction on the system losses with the proposed method, compared with the Base Case 

Scenario (the Peak Period) where there was congestion. This shows the effectiveness of the 

proposed hybridized DR-SVC method in congestion management of transmission lines.  

 

 

 

1. INTRODUCTION 

 

 Traditionally, electric grids were designed to operate as a vertical structure consisting 

of generation, transmission, and distribution, supported with controls and devices to maintain 

reliability, stability, and efficiency. Generation companies enjoyed monopoly by operating 

the whole vertical structure. Now, the increase in demand in the electric power systems has 

necessitated the restructuring of the power system, even as more generators are required, 
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resulting in a market-based competition by creating an open market environment which 

allows the power supply to function competitively, as well as allowing consumers to choose 

their own suppliers of electric energy [1].   

The restructuring has moved the electric grid from a highly regulated, vertical 

structure to a fully unbundled structure referred to as power sector deregulation. The principal 

aim of deregulation is to create the avenue for more generation from independent power 

producers (IPPs), enhance the existing efficiency, reliability, and security, as well as reduce 

the cost of producing and using energy by introducing competition in the power industry [2].  

Increased demand for energy in a deregulated power system has also resulted in an 

increase in the number of power producers, whilst consumers have the liberty to choose their 

own generating companies. Ordinarily, increase in demand with its associated increase in 

generation should result in an increase in the number of transmission lines. However, as a 

result of environmental concerns, right-of-way issues, and increased cost of construction of 

lines, amongst others, there is an increasing recognition of an absolute necessity to utilize the 

existing transmission systems’ assets to the maximum extent as possible. But increasing 

energy demand creates constraints in the power transmission system, as more generators are 

added, and the existing lines are forced to carry power beyond their limits [3], [4]. This 

situation has resulted in congestion of the existing transmission lines and leads to violations 

of transmission constraints, leading to an increase in transmission losses and generation fuel 

cost. This is inimical to the transmission system and optimal power flow, and as a result, this 

congestion must be managed [3].  

A number of measures have been adopted to address the issue of transmission 

congestion. Each of these methods has different effects on the generation fuel cost, system 

losses and the voltage profile. Some of these methods include demand response (DR), 

generator rescheduling, load shedding, distributed generations, nodal pricing schemes, 

operation of transformer taps, operation of Flexible Alternating Current Transmission System 

(FACTS) devices and so forth [5], [6], [7].  

Singh and Kumar [8], modelled the Time-Of-Use (TOU) and the Emergency Demand 

Response Program (EDRP) using the responsive load model and price elasticity of demand 

in congestion management. The models of both DR programs were tested on the IEEE 24-

bus reliability test system using MATLAB. The incentives considered for the EDRP were 10 

$/MWh, 25 $/MWh, and 35 $/MWh. This work, however, does not consider the uncertainty 

nature of the load and the customers. The uncertainty nature of the DR responsive load, a 

demerit of the DRPs, has to do with the fact that customers can choose whether or not to 

participate in the DRP when used as the sole congestion management tool, leading to a 

jeopardy of the program at times (an effect of this uncertainty). 

Also, Luo et al. [9] worked on minimizing this uncertainty nature associated with the 

DR responsive load in congestion management. The authors proposed a Consensus-based 

Nodal Pricing Mechanism for Automated Demand Response by using automated DR devices. 
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These automated DR devices are smart breakers and telemetry devices which trip off to cut 

the load on which they are placed when their preset times are reached. This method minimizes 

the uncertainty and its effect to some extent, because customers who decide to participate in 

the Automated DR program will not be able to leave the program along the way, as these 

timed-preset automatic tripping devices will be installed on their loads. However, customers 

can still decide from the beginning not to participate in the program and will have no 

automated device installed on their load. Secondly, the application is expensive, as these 

automated devices are costly. Thirdly, the application involves a two-way communication 

infrastructure in the grid, and so not all grids will be capable of implementing this approach.   

A relatively more inclusive and less expensive remedy to minimize this uncertainty and its 

effect, is the proposed combination of the DRP approach with another congestion 

management tool, say SVC FACTS device, to obtain a hybridized congestion management 

approach. With the application of the SVC, the voltage profile will still be enhanced, even if 

the customers decide no more to participate in the DRP or abandon the program along the 

way, thereby eliminating or reducing the effect of the uncertainty. 

Nandini et al. [10] and Yousefi et al. [11] worked on congestion management using 

both demand response and FACTS devices. Their works considered the uncertainty nature of 

the responsive load by adding FACTS devices. The demerits are that these works failed to 

consider cross-elasticity (flexible load model) in the price elasticity of demand model. The 

non-inclusion of the flexible load (cross-elasticity) model in the DR responsive load 

modelling means that only fixed loads (like lights, television sets, etc.) were considered in 

the DR responsive load modelling. But this should not be the case, because the customer’s 

load of a real-world power grid (real-world load) is a combination of both fixed loads (lights, 

TV sets etc.) and flexible loads (like heating, ventilation and air conditioning (HVAC) 

equipment, electric vehicle, etc.). Hence the non-inclusion of the flexible load model makes 

that modelling of the customer’s load incomplete, and it does not represent the load of a real-

world power grid. Therefore, in this paper, the flexible load model (cross-elasticity) has been 

factored in the modelling of a real-world DR responsive load, and its effects in congestion 

management analyzed. Additionally, when only the demand was optimized (single-objective 

function approach), without considering voltage and fuel cost, it resulted in voltage constraint 

issues at Bus 29. Hence two or more parameters must be optimized at the same time (the 

multi-objective functionality approach).  

This paper therefore considers congestion management using a multi-objective 

approach, where some key grid parameters are optimized simultaneously, producing         

effects and results far better than the single-objective function approach. A combined 

application of demand response program (DRP) and static var compensator (SVC) FACTS 

devices was adopted, and the resulting effects on the generation fuel cost and system losses, 

as well as voltage profile of the system analyzed. The TOU demand response program was 

modeled based on price elasticity of demand (PED) for responsive loads including the flexible 
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load model, and used in conjunction with the SVC modelled as a reactive power injector 

operating as a variable susceptance. The effects of this hybridized DRP-SVC approach were 

explored on the IEEE 30-bus test system using the particle swarm optimization (PSO) tool to 

optimally size and place the SVC using the MATLAB/MATPOWER simulation environment.  

 

 

2. THEORITICAL CONSIDERATIONS 

 

2.1. Transmission congestion and its effects 

 

 Transmission congestion refers to situations when transmission constraints limit 

transmission flows or throughput below levels desired by market participants or government 

policy in order to comply with reliability rules. Transmission congestion occurs as a result of 

transmission constraints – a lack of transmission line capacity to deliver electricity without 

exceeding thermal, voltage and stability limits designed to ensure reliability [12]. Congestion 

arises when there is a desire to increase throughput across a transmission path, but such higher 

utilization is thwarted by one or more constraints. Congestion management in transmission 

system refers to any strategy or group of strategies focused on avoiding, reducing, or 

eliminating congestion in the transmission system as well as its consequences on the 

transmission grid. It is a process of performing the task of prioritizing the transactions and 

making such a schedule which solves the problem of overloading the network [13]. 

When thermal, voltage or stability limits are violated in a transmission network, 

congestion is said to have occurred and available electricity supply is not delivered at low 

cost to the load which, and as a result, defeats the intention of deregulation [14]. Congestion 

in power system makes the system unsecure with hikes in power prices due to avoidable 

losses, as it jeopardizes optimal power flow (OPF) [15]. Additionally, congestion maximizes 

the cost objective function by increasing the cost of generation and marginal costs at the 

buses. This situation increases the amount that the consumer pays as the cost of energy [16]. 

In [13], the relevance of congestion management is discussed in detail by identifying 

congestion management as one of the key issues to maintain security and reliability of 

transmission networks. Furthermore, congestion management balances the system and solves 

financial issues arising from the inability of the network to deliver the demanded power. The 

finding in [5] further stipulates that, lack of attention to congestion in the system may lead to 

widespread blackouts, and the associated negative social and economic consequences. 

 

2.2. Demand response 

 

 According to the Federal Energy Regulatory Commission (FERC), demand response 

(DR) is defined as: “changes in electric energy usage by end-use customers from their normal 
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consumption patterns, in response to changes in the price of electricity over time, or incentive 

payments designed to induce lower electricity use at times of high wholesale market prices 

or when system reliability is likely to be jeopardized.” [17]. Demand response is a wide range 

of actions which can be taken at the customer side of the electricity meter, in response to 

particular conditions within the electricity system (such as peak period network congestion 

or high prices). Demand response program furthermore plays a vital role in a smart grid 

environment, as it is an economical and flexible attempt towards the maintenance of system 

security and reliability, and also creates opportunities for customers to also be players in the 

market [14]. As a result, DR programs demand a two-way communication in the grid. 

However, DR has a limited capability, as it totally depends on the effective participation of 

customers from time to time. The consumer may fail to reduce their load due to some external 

factors, and this sometimes jeopardizes the effectiveness of the program in the congestion 

management. This kind of situation is referred to as the uncertainty nature of the responsive 

load or the consumers. 

Demand response is able to change the amount and duration of electric energy usage, 

so that the best efficiency of consumption takes place in the peak interval [18]. Demand 

response programs are categorized as incentive-based (IB) or time-based (TB) programs. The 

IB programs are further divided into direct load control (DLC), interruptible/curtailable (I/C) 

service, demand bidding/buy back, emergency demand response program (EDRP), capacity 

market program (CMP) and ancillary service (A/S) markets. The TB programs, on the other 

hand, are further grouped as time-of-use (TOU), real time pricing (RTP) and critical peak 

pricing (CPP) programs [19], [20]. 

  

2.3. Economic model of responsive load 

 

 During the early years of deregulation of the power sector, consumers were 

fundamentally not participating effectively in the power markets [19]. As a result, consumers 

were isolated from any information of the markets, and did not enjoy the benefits either. This 

was basically as a result of the absence of knowledge, proper hardware, and infrastructure to 

aid the participation of the consumers in the power markets. The absence of consumer 

participation in the power markets resulted in price spikes, and also caused the transmission 

system to be congested [21]. 

The economic model of the responsive load is based on price elasticity of demand 

(PED). The demand for most commodities decreases as their prices increase. Price elasticity 

of demand or simply elasticity (Ε) is defined as the sensitivity of demand in respect of the 

price [22]. Mathematically, the elasticity 𝛦 is expressed as [8], [14] and [22]:  

 

 𝐸 =
𝜕𝑞

𝜕𝜌
 (1) 
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where, Ε is elasticity of demand, q is demand value in respect to a period (MW), and ρ is 

electricity price in respect to a period ($/MWh). 

 As is the case for the TOU program, there are three prices periods with different prices 

variations. Also, the demand is one or both of the following: 

 

1. Fixed loads – These are the loads that are not able to move or be shifted from one period 

to another. Examples are illuminating loads (lights), television sets, and so on. They could 

only be either ‘on’ or ‘off’, and so such loads have a sensitivity just in a single period, 

called self-elasticity [22] and it always has a negative value. 

2. Flexible loads - These are the loads that could be shifted or transferred from one period 

to the other, say, from the peak period to the off-peak or to the flat period. Examples are 

heating, ventilation and air-conditioning (HVAC) equipment, electric vehicles (EV) and 

so on. Such loads have sensitivity in multi periods and evaluation is done by cross-

elasticity [22]. This always denotes a positive value.  

 

 From (1), self-elasticities and cross-elasticities are suitably expressed according to [8], 

[14], [22] as: 

 𝛦𝑖𝑖 =
𝛥𝑞𝑖

𝛥𝜌𝑖
 ≤ 0  (2) 

 

 𝛦𝑖𝑗 =
𝛥𝑞𝑖

𝛥𝜌𝑗
 ≥  (3) 

 

where 𝛥𝑞𝑖 is the change in demand in i-th hour in a period, 𝛥𝜌𝑖 is the change in price in i-th 

hour in the same period and 𝛥𝜌𝑗  is the changes in price in j-th hour in another period. 𝛦𝑖𝑖 and 

𝛦𝑖𝑗 are respectively self- and cross- elasticities. Both 𝛦𝑖𝑖 and 𝛦𝑖𝑗 for a 24-hour TOU program 

divided into 24 slots of one hour are 24x24 matrix called price elasticity matrix of demand 

(PEMD) with 𝛦𝑖𝑖 having only its diagonal values being non-zero (all other values of the matrix 

are zero) [23], [24]. 

The adopted TOU program is modelled using PED to show its effects on the 

electricity/power markets demands and prices, and also to show how beneficial this is to 

customers when they follow the program.  This is done using both the single and multi periods 

models. Concerning the adopted model for the TOU program in this paper, the 24-hour day 

was divided into one-hour slots of twenty-four, i.e., 1, 2, 3, …, 24, and further grouped into 

three periods, namely; peak, flat and valley periods.  

The Valley Period has comparatively the lowest power (energy demand). In this 

period, congestion does not occur, and locational marginal prices (LMPs) are at their lowest. 

The utilities then set the energy prices at the lowest as a result of the afore-mentioned 

conditions [19], [25]. The Flat Period is the longest period by duration. A chunk of the power 
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(energy) demand in this period is a combination of industrial, commercial and residential. In 

most of the time, bulk customers install static capacitors and other FACTS devices to help 

boost their voltage and power factor. As a result, the energy demand during this period is not 

as high as the Peak Period, and not as low as the Valley Period with its matching tariff set by 

the utilities [19], [25]. The Peak Period is the period during which the energy demand is the 

highest. The demand in this period is mostly residential, when most of the consumers have 

closed from work, preparing for the next day activities, charging their battery-drained electric 

vehicles, operating their HVAC systems and so forth. However, some of the demand here 

could also be from the commercial and industrial customers who do shift operations. As a 

result, the lines become loaded, leading to congestion. The LMPs increase and utilities set 

their tariffs at the highest [19], [20], [25]. 

 

i. Single-Period Model (For Fixed Load. e.g., Lights, TV sets etc.) 

  

 Consider the following electricity market parameters for the customer: 

  d(i) = Customer’s demand in i-th hour (MWh). 

  ρ(i) = Electricity price in i-th hour ($/MWh). 

  C(i) = Customer’s income in i-th hour readily available to follow program ($). 

Now, let us suppose that the customer changes their demand value from an initial value 

of d0(i) to a final value of d(i) due to the spot electricity price in the i-th hour (i) , then we can 

express the change in demand ∆d(i) as: 

 

       ∆𝑑(𝑖) = 𝑑(𝑖) − 𝑑𝑜(𝑖)                   (4) 

 

Hence, the customer’s balance M($) in the i-th hour for running the TOU program will 

be: 

 

𝑀(𝑑(𝑖)) = 𝐶(𝑑(𝑖)) − 𝛥𝑑(𝑖). 𝜌(𝑖)  ($)                   (5) 

 

𝑀(𝑑(𝑖)) = 𝐶(𝑑(𝑖)) − 𝜌(𝑖). [𝑑(𝑖) − 𝑑𝑜 (𝑖)]  ($)      (6) 

 

𝑀(𝑑(𝑖)) = 𝐶(𝑑(𝑖)) − 𝜌(𝑖)𝑑(𝑖) + 𝜌(𝑖) 𝑑𝑜 (𝑖)  ($)         (7) 

 

In order to maximize the customer’s benefit, the partial differential of M with respect 

to d(i), that is, (
𝜕𝑀(𝑑(𝑖))

𝜕𝑑(𝑖)
) should be zero.  

Hence: 

 

𝜕𝑀(𝑑(𝑖))

𝜕𝑑(𝑖)
 =

𝜕𝐶(𝑑(𝑖))

𝜕𝑑(𝑖)
 −  𝜌(𝑖) +

𝜕𝜌(𝑖)𝑑𝑜(𝑖)

𝜕𝑑(𝑖)
= 0                        (8) 
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Therefore, 

 
𝜕𝐶(𝑑(𝑖))

𝜕𝑑(𝑖)
=  𝜌(𝑖)                         (9) 

 

 According to [19], [26], and [27], the customer’s benefit, being a function of the 

customer’s income, which is more appropriate and most of the time used, is a quadratic 

function and can be expressed as: 

 

𝐶(𝑑(𝑖)) = 𝐶𝑜(𝑖) +  𝜌𝑜(𝑖). [𝑑(𝑖) − 𝑑𝑜(𝑖)]. {1 +
(𝑑(𝑖)−𝑑𝑜(𝑖)

2𝐸(𝑖).𝑑𝑜(𝑖)
}   (10) 

 

where Co(i) is the benefit when the demand is at its nominal or initial value of do(i), and ρo(i) 

is the initial spot electricity price when the demand is still at its nominal value. 

 

Taking the partial derivative of (10) results in; 

 

    
𝜕𝐶(𝑑(𝑖))

𝜕𝑑(𝑖)
= 𝜌𝑜(𝑖) +  𝜌𝑜(𝑖). {

(𝑑(𝑖)−𝑑𝑜(𝑖)

𝐸(𝑖).𝑑𝑜(𝑖)
}        (11) 

 

    
𝜕𝐶(𝑑(𝑖))

𝜕𝑑(𝑖)
= 𝜌𝑜(𝑖). {1 +

(𝑑(𝑖)−𝑑𝑜(𝑖)

𝐸(𝑖).𝑑𝑜(𝑖)
}        (12) 

 

Considering (9) and (12),  

 

    𝜌(𝑖) = 𝜌𝑜(𝑖). {1 +
(𝑑(𝑖)−𝑑𝑜(𝑖)

𝐸(𝑖).𝑑𝑜(𝑖)
}          (13) 

 

By rearranging; 

    𝜌(𝑖) − 𝜌𝑜(𝑖)  = 𝜌𝑜(𝑖).
𝑑(𝑖)−𝑑𝑜(𝑖)

𝐸(𝑖).𝑑𝑜(𝑖)
          (14) 

 

    𝑑(𝑖) − 𝑑𝑜(𝑖) = 𝐸(𝑖). 𝑑𝑜(𝑖) 
 𝜌(𝑖)−𝜌𝑜(𝑖)

𝜌𝑜(𝑖)
        (15) 

 

    𝑑𝑠(𝑖) = 𝑑𝑜(𝑖). {1 + 𝐸(𝑖).
 𝜌(𝑖)−𝜌𝑜(𝑖)

𝜌𝑜(𝑖)
}          (16) 

 

Therefore, by further rearranging (16), the customer’s consumption for the single-

period model will be as: 

    𝑑𝑠(𝑖) = 𝑑𝑜(𝑖). {1 + 𝐸(𝑖).
 𝜌(𝑖)−𝜌𝑜(𝑖)

𝜌𝑜(𝑖)
}          (17) 

 

where E(i) is the self-elasticity of demand as described above. It can, however, be realized in 
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(17) that, if there is no prize change from one period to the other, and that the price of 

electricity remains constant throughout the day (24 hours). Then the term  𝜌(𝑖) − 𝜌𝑜(𝑖) will 

be equal to zero (𝜌(𝑖) − 𝜌𝑜(𝑖) = 0), rendering the elasticity E(i) zero, and as a result, d(i) 

will be equal to do(i). Thus, there will be no change in demand in respect to a change in price, 

as there will be no change in price, resulting in zero elasticity. 

 

ii. Multi-Period Model (For Flexible Load. e.g., HVAC, EV, etc.) 

 

 According to [19] and [28], the cross-elasticity between the demand in the i-th hour 

and the price in the j-th hour can be expressed as:  

 

𝛦(𝑖, 𝑗) =
𝜌𝑜(𝑗)

𝑑𝑜(𝑖)
 𝑥 

𝜕𝑑(𝑖)

𝜕𝜌(𝑗)
       (18) 

 

such that 𝛦(𝑖, 𝑗) ≤ 0 𝑖𝑓 𝑖 = 𝑗 and 𝛦(𝑖, 𝑗) ≥ 0 𝑖𝑓 𝑖 ≠ 𝑗. 

 

 From the basis that the demand’s response to price variations can be expressed as a 

linear function [28], and considering (18), let us suppose that 𝜕𝑑(𝑖) 𝜕𝜌(𝑗)⁄  is constant. This 

means that, for every change in electricity price in j-th hour in a particular period, there will 

be a corresponding change in demand in the i-th hour in another period with its associated 

cross-elasticity. Hence from (14); 

 

𝜌(𝑗) − 𝜌𝑜(𝑗)  = 𝜌𝑜(𝑗).
𝑑(𝑖)−𝑑𝑜(𝑖)

𝐸(𝑖,𝑗).𝑑𝑜(𝑖)
           (19) 

 

In cross-elasticity, every single demand in the i-th hour over the 24-hour day is 

influenced by all the prices variations in the j-th hour over the 24-hour day. Therefore; 

 

𝑑(𝑖) − 𝑑𝑜(𝑖) = ∑ 𝐸(𝑖, 𝑗). 𝑑𝑜(𝑖) {
 𝜌(𝑗)−𝜌𝑜(𝑗)

𝜌𝑜(𝑗)
}

24

𝑗=1
         (20) 

 𝑖 = 1, 2, 3, … … 24 and 𝑗 = 1, 2, 3, … … 24 

 

Hence, the customer’s demand function considering the multi-period model is: 

 

𝑑𝑚(𝑖) = 𝑑𝑜(𝑖) + ∑ 𝐸(𝑖, 𝑗). 𝑑𝑜(𝑖) {
 𝜌(𝑗)−𝜌𝑜(𝑗)

𝜌𝑜(𝑗)
}

24

𝑗=1
       (21) 

𝑖 = 1, 2, 3, … … 24 and 𝑗 = 1, 2, 3, … … 24  

 

iii. Final Demand Model (For both Fixed and Flexible Loads) 
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 According to [19], [26], [27], and [29], the final demand model will be a combination 

of the single period and multi-period demand, (17) and (21), respectively. As already 

mentioned, the day is grouped into three periods under the TOU program in this work. The 

advantage of the TOU program over the RTP program is that, the former offers simple 

computations compared to the latter where the day is divided into many slots, usually 24 one-

hour slots. This means that within the same period in a TOU program, irrespective of the 

duration of the period, the price remains the same. As a result, the customer’s Final Demand 

equation 𝑑𝑓(𝑖) is expressed as: 

 

𝑑𝑓(𝑖) = 𝑑𝑚(𝑖) .
𝑑𝑠(𝑖)

𝑑𝑜(𝑖)
           (22) 

 

 Since there is self-elasticity in the same period and there is no change in price, there 

is no change in demand and so the term 𝑑𝑠(𝑖) 𝑑𝑜(𝑖)⁄  is always equal to unity (𝑑𝑠(𝑖) = 𝑑𝑜(𝑖)) 

in the same period. This means that in the same period, 𝑑𝑓(𝑖) = 𝑑𝑠(𝑖) = 𝑑𝑚(𝑖) and therefore 

the expression for 𝑑𝑓(𝑖) is justifiably valid. Hence:  

 

𝑑𝑓(𝑖) = {𝑑𝑜(𝑖) + ∑ 𝐸(𝑖, 𝑗). 𝑑𝑜(𝑖)[
 𝜌(𝑗)−𝜌𝑜(𝑗)

𝜌𝑜(𝑗)
]} . {1 + 𝐸(𝑖). [

 𝜌(𝑖)−𝜌𝑜(𝑖)

𝜌𝑜(𝑖)
]} 

24

𝑗=1
              (23) 

 

This is the customer’s final demand or consumption for each hour of the day (24 

hours). Equation (23) is seen to take into consideration both self-elasticities and cross-

elasticities, that is, it factors both fixed and flexible loads (loads of a real-world system).  

 

2.4. Model of the static var compensator 

 

 The SVC is a shunt static VAR generator or load whose output is arranged to switch 

and inject or consume either a capacitive or inductive current depending on the nature of the 

system’s load, so as to vary power system parameters, in particular bus voltage and power 

factor [30], [31], [32]. When the bus at which the SVC is connected has a low voltage level, 

SVC injects reactive power (capacitive) to the bus. On the other hand, when the bus voltage 

level is high, SVC absorbs reactive power (inductive) from the bus. Typically, an SVC 

comprises one or more banks of fixed or switched shunt capacitors or reactors, of which at 

least one bank is switched by thyristors. Elements which may be used to make an SVC 

typically include:  

• Thyristor controlled reactor (TCR), where the reactor may be air-cored or iron-

cored. 

• Thyristor switched capacitor (TSC). 

• Harmonic filter(s). 
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• Mechanically switched capacitors or reactors (switched by a circuit breaker).  

 

Figure 1 shows a schematic representation of an SVC.  

 

 

Fig. 1. Schematic diagram of an SVC [31], [33] 

 

 The structure of the static model of the SVC is a combination of a capacitor bank, 

shunted by a thyristor-controlled reactor with the whole connected in shunt to bus k as 

represented in Fig. 2 where 𝐼𝑆𝑉𝐶  and 𝑉𝑘 are the injected current by the SVC and the bus voltage 

at bus k, respectively.  

 

 

Fig. 2. Structure of the static model of the SVC [33], [34] 

This static model is summarized and represented as a variable shunt susceptance  𝐵𝑆𝑉𝐶, 

shown in Fig.3. 
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Fig. 3: Variable shunt susceptance model of the SVC [31], [34] 

 

The injected reactive power 𝑄𝑆𝑉𝐶 at bus k by the SVC is expressed as: 

 

𝑄𝑆𝑉𝐶 = −𝑉𝑘
2 ∗ 𝐵𝑆𝑉𝐶           (24) 

 

The linearized power flow models make use of (24) to make modifications in the 

corresponding Jacobian elements at the SVC bus. By considering the SVC’s susceptance as 

a control variable, the load flow model of the SVC can always be developed. 

 

2.5. Problem formulation 

 

 In this section, the mathematical concepts of the multi-objective approach are 

presented. The two objective functions to be considered here are generation (fuel) cost 

minimization and line active power losses minimization. 

 

• Generation fuel cost minimization 

 

 This objective seeks to dispatch the generation such that priority is given to generators 

with very affordable fuel cost, and also to optimize the active power outputs of the generators. 

The optimization problem can therefore be formulated as [35]:  

 

Min ∑ 𝐶𝑃𝐺𝑖      ($/ℎ𝑟)
𝑛𝐺

𝑖=1
                                                  (25) 

 

 where nG is the number of generators, CPG is the cost of active power generation. CPG is 

often a polynomial function and can be expressed mathematically as [35]: 

 

       𝐶𝑃𝐺𝑖 = 𝑎𝑖𝑃𝐺𝑖
2 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐  ($/ℎ𝑟)                        (26) 

 

with 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑃𝐺𝑖 being the generation coefficients of the i-th generator and the active 

power generated by the i-th generator, respectively. 
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• Line active power losses minimization 

 

 This objective seeks to achieve an optimal match of the active power generation with 

the active power demand (load) in the system. It optimizes the active power output of the 

slack bus and seeks to reduce the difference between generation and demand as far  as active 

power is concerned, thus, minimizing the line losses. The optimization problem can be 

formulated as [35]: 

 

Min   (∑ 𝑃𝐺𝑖 − 𝑛𝐺
𝑖=1 ∑ 𝑃𝐷𝑘

𝑛𝐷
𝑘=1 )                          (27) 

 

where 𝑃𝐺𝑖 and 𝑃𝐷𝑘 are the active power generated by the i-th generator and the active power 

demanded at the k-th bus respectively, 𝑛𝐺 and 𝑛𝐷 are the number of generators and the 

number of active power demand buses, respectively.  

 

• Optimization problem constraints 

 

 The above problems that have been formulated are all subject to load flow equality 

and inequality constraints expressed below. The equality constraints are both the balanced 

active and reactive power flow equations of the system. The various equations can be 

expressed as: 

 

Load flow equations without FACTS devices. 

 

                                  𝑃𝐺𝑖 − 𝑃𝐷𝑖 = |𝑉𝑖| ∑ |𝑉𝑗| |𝑌𝑖𝑗| cos(𝜃𝑖𝑗 +  𝛿𝑗 −  𝛿𝑖)
𝑛𝐵𝑈𝑆

𝑗=1
     (28) 

 

                                 𝑄𝐺𝑖 − 𝑄𝐷𝑖 = −|𝑉𝑖| ∑ |𝑉𝑗| |𝑌𝑖𝑗| sin(𝜃𝑖𝑗 +  𝛿𝑗 − 𝛿𝑖)
𝑛𝐵𝑈𝑆

𝑗=1
     (29) 

 

where 𝑃𝐺𝑖, 𝑃𝐷𝑖, Q𝐺𝑖, and 𝑄𝐷𝑖 are the active power generated, active power demanded, 

reactive power generated, and reactive power demanded at bus i, respectively. 𝑉𝑖, 𝑉𝑗, 𝑌𝑖𝑗, 𝜃𝑖𝑗, 

𝛿𝑖, and 𝛿𝑗 are respectively the i-th bus voltage magnitude, the j-th bus voltage magnitude, the 

branch admittance magnitude between the i-th bus and the j-th bus, the branch admittance 

phase angle between the i-th and the j-th bus, the voltage angle of the i-th bus and the voltage 

angle of the j-th bus. 𝑛𝐵𝑈𝑆 is the number of buses. 
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Load flow equation with SVC placed at bus k. 

 

                 𝑄𝐺𝑘 − 𝑄𝐷𝑘 = −(|𝑉𝑘| ∑ |𝑉𝑗| |𝑌𝑖𝑗| sin(𝜃𝑖𝑗 + 𝛿𝑗 −  𝛿𝑖) + 𝑉𝑘
2𝐵𝑆𝑉𝐶)

𝑛𝐵𝑈𝑆

𝑗=1
                (30)                                                               

  

The inequality constraints are the system operating limits. They are expressed as 

follows: 

 

Active and reactive power generation limits:  

 

𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥         𝑓𝑜𝑟 𝑖 = 1, … … , 𝑛𝐺         (31) 

 

𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥       𝑓𝑜𝑟 𝑖 = 1, … … , 𝑛𝐺         (32) 

 

The MVA flow limits in the branches denoted by: 

 

|𝑆𝑖(𝜃, 𝑉)| ≤ 𝑆𝑖
𝑚𝑎𝑥       𝑓𝑜𝑟 𝑖 = 1, … … , 𝑛𝐵𝑟                         (33) 

 

Bus voltage limits: 

 

𝑉𝑖
𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖

𝑚𝑎𝑥        𝑓𝑜𝑟 𝑖 = 1, … … , 𝑛𝐵𝑈𝑆                   (34) 

 

SVC susceptance limit:  

 

𝐵𝑆𝑉𝐶
𝑚𝑖𝑚 ≤ 𝐵𝑆𝑉𝐶 ≤ 𝐵𝑆𝑉𝐶

𝑚𝑎𝑥      (35) 

 

2.6. Particle swarm optimization (PSO) 

 

 Particle swarm optimization (PSO) is a heuristic method that optimizes a problem by 

trying to improve a candidate’s solution iteratively. It is a population-based search algorithm 

in which individuals, referred to as particles, change their positions in a seacrh-space in serach 

for a global best position called Gbest [31], [34]. Each particle moves by its own experience 

and cognitive, taking cognizance of its environment/neighborhood, using its velocity. This 

particle’s movement in the search-space is therefore influenced by its local best-known 

position called Pbest, while it is also guided toward the best-known positions in the search-

space which are updated as other particles find better positions. The Pbest is an evaluted fitness 

value of the particle. The particle’s velocity and position are updated at every iteration, until 

the maximum number of iterations 𝑇𝑚𝑎𝑥 which is a major stopping criterion that is reached 
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by (36) and (37) below. These are the main equations of the PSO algorithm. 

 

 𝑣𝑖𝑑(𝑡 + 1) = 𝑤𝑣𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑝𝑖𝑑 − 𝑥𝑖𝑑(𝑡)) + 𝑐2𝑟2 (𝑝𝑔𝑑 − 𝑥𝑖𝑑(𝑡))   (36) 

 

𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1)         (37) 

 

where 𝑥𝑖𝑑(𝑡) is the current position of the particle i, 𝑝𝑖𝑑 is a better position of particle i, 𝑝𝑔𝑑 

is the entire swarm’s better-known position, 𝑤 is the inertia factor (positive constant), 𝑐1 and 

𝑐2 are also positive constants called cognitive learning rate, 𝑟1 and 𝑟2 are randomly generated 

numbers ranging between 0 and 1, and 𝑣𝑖𝑑 is the velocity of the particle belonging to the range 

of minimum and maximum velocities Vmin and Vmax. 

 

 

3. PROPOSED METHOD 

 

 Towards the execution of the research work, the following methodological steps were 

followed:  

1. The TOU demand response program was modeled based on price elasticity of demand 

(PED) for responsive loads including the flexible load model. 

2. The SVC was modelled as a reactive power injector operating as a variable 

susceptance. 

3. The standard IEEE 30-bus test system was selected as the case-study system, and 

simulated using the MATLAB/MATPOWER. 

4. The DR (TOU) program was applied solely on the case-study system, and the multi-

objective effects on congestion noted.   

5. The DRP was then used in conjunction with the SVC, which was optimally sized and 

placed using the particle swarm optimization (PSO) tool, and again applied to the case-

study system.  

6. The multi-objective effects of this hybridized DRP-SVC approach on the IEEE 30-

bus test system were also noted, and then compared with those of the DRP (TOU) 

approach.  

 

3.1. Study system 

 

 The case study system is the standard IEEE 30-bus test system, which is represented 

in Fig. 4. 

The generators’ data for this standard test system above is shown in Table 1 [37]. 
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Figure 4: IEEE 30-bus test system [36] 

 

Table 1. Generator data – IEEE 30-bus test system 

 

Gen. 

no. 

 

Bus 

no. 

 

Pmin 

 (MW) 

 

Pmax  

(MW) 

 

ai  

($/MW2hr) 

 

bi  

($/MWhr) 

 

ci  

($/hr) 

1 1 0.00 80.00 0.02000 2.00 0.00 

2 2 0.00 80.00 0.01750 1.75 0.00 

3 22 0.00 50.00 0.06250 1.00 0.00 

4 27 0.00 55.00 0.00834 3.25 0.00 

5 23 0.00 30.00 0.02500 3.00 0.00 

6 13 0.00 40.00 0.02500 3.00 0.01 

 

3.2. Implementation of the PSO 

 

 The PSO was used to resize and locate the already sized (with the presence of DRP) 

SVC in the IEEE 30-bus test system considering the objective functions of voltage profile, 

generator fuel cost, system losses and demand. The algorithm was used to combine the DRP 

and the SVC FACTS device as a single hybridized congestion relieving program. In this 

application, three cases were considered. These are: 
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• Case 1 (‘the Base Case or Reference Scenario’) represents the Peak Period conditions. 

• Case 2 (‘with DRP only’) represents the sole application of the DRP on the same case 

study system, and   

• Case 3 (‘with both DRP and SVC’) represents the combination of the DRP and SVC 

FACTS device.  

The implementation of the PSO was done according to the following steps: 

• Step 1-Setting of Network Parameters: The IEEE 30-bus network data including the 

reactive power and voltage constraints were read and set. The bus data was replaced 

with bus data obtained from the results of the application of the DRP on the IEEE 30 

bus system. This afore-mentioned data was used to compose the power flow algorithm 

where the locations, sizes, and limits of SVC were randomly picked, arranged, and set.  

• Step 2-Particle Parameters and Initialization: The number of particles NP, accelerate 

constants C1 and C2, the minimum and maximum inertia weights 𝑊𝑚𝑖𝑛  and 𝑊𝑚𝑎𝑥, as 

well as the maximum iteration number 𝑇𝑚𝑎𝑥 were set. Subsequently, the position and 

velocity of the particle were randomly initialized.  

• Step 3-Fitness Evaluation: The fitness of the particles of the swarm was evaluated 

according to the fitness function to obtain the Pbest and the Gbest and the particle’s 

velocity was set at zero. 

• Step 4-Weight Inertia Determination and Velocity Updates: While the maximum 

number of iterations 𝑇𝑚𝑎𝑥 has not been reached by the iteration counter (t) and the 

counter variable (i) not exceeding the number of particles NP, determine the particle’s 

weight inertia using equation 

 

 𝑤 = 𝑤𝑚𝑎𝑥 − (
𝑤𝑚𝑎𝑥−  𝑤𝑚𝑖𝑛

𝑇𝑚𝑎𝑥
) ∗ t       (38) 

 

and subsequently update the particle’s velocity using (36). 

• Step 5-Position Updates: In accordance with the new velocity, the particle’s new 

position is also updated using (37). If any particle violates its position limit, the 

position is reset at the violating limit. 

• Step 6-Update Pbest and Gbest: The fitness of all the particles in the swarm is re-

evaluated with the new positions to obtain the new Pbest and Gbest. The location of the 

SVC is indicated by the particle’s position with an appropriate size considering the 

voltage of that position. 

• Step 7-Termination: The termination criterion was based on the preset maximum 

number of iterations Tmax. 
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Fig.5. Flowchart of used PSO Algorithm 

 

 

The flowchart is shown in Fig. 5. 
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4. RESULTS AND ANALYSIS 

 

 The PSO control variables or parameters used are: 

Number of Particles (NP) = 50  

Maximum number of iterations Tmax = 100 

Minimum inertia weight Wmin = 0.4  

Maximum inertia weight Wmax = 0.9 

Accelerate constants C1 = C2 = 2.  

 The PSO algorithm optimally placed two SVCs of sizes 15.33 MVar and 10.71 MVar 

at buses 8 and 21, respectively. Table 2 is a snapshot from the MATLAB command window 

showing the placed and sized SVCs by the PSO. 

 

Table 2. Snapshot from the results of the PSO-based sizing and placing of the SVCs 

 

 

The results have been presented for the three cases, namely: Case 1 - the Base Case 

Scenario, Case 2 - with DRP only, and Case 3 - with both DRP and SVC, as follows. 

 

 

4.1 Effects on the Voltage Profile 

 

 Table 3 and Fig. 6 present the 30 voltage profiles for all the three cases. 
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Table 3. Voltage profiles for all the three cases 

Voltage Profile 

Bus 

Number 

Case 1 

(Base Case 

Scenario) 

Case 2 (With DRP Only) Case 3 (With DRP and SVC) 

In p.u. % Increase In p.u. % Increase 

1 1.050 1.050 0.000 1.050 0.000 

2 1.013 1.017 0.395 1.024 1.086 

3 1.000 1.011 1.100 1.027 2.700 

4 0.981 1.001 2.039 1.012 3.160 

5 0.979 0.985 0.613 0.992 1.328 

6 0.972 0.981 0.926 0.988 1.646 

7 0.976 0.984 0.820 0.990 1.434 

8 0.979 0.985 0.922 1.008 3.279 

9 1.015 1.022 0.690 1.031 1.576 

10 1.012 1.019 0.692 1.025 1.285 

11 1.071 1.071 0.000 1.071 0.000 

12 1.038 1.041 0.289 1.048 0.963 

13 1.062 1.069 0.564 1.069 0.564 

14 1.019 1.024 0.491 1.027 0.785 

15 1.011 1.019 0.791 1.025 1.385 

16 1.019 1.027 0.785 1.028 0.883 

17 1.000 1.012 1.200 1.024 2.400 

18 0.998 1.004 0.601 1.013 1.503 

19 0.994 0.999 0.503 1.006 1.207 

20 0.999 1.004 0.501 1.014 1.501 

21 1.001 1.010 0.899 1.019 1.798 

22 1.001 1.010 0.899 1.016 1.499 

23 0.997 1.000 0.301 1.011 1.404 

24 0.986 0.993 0.710 0.995 0.913 

25 0.980 0.985 0.510 0.989 0.918 

26 0.955 0.966 1.152 0.980 2.618 

27 0.987 0.991 0.405 0.997 1.013 

28 0.983 0.989 0.610 0.992 0.916 

29 0.976 0.981   0.512 0.987   1.127 

30 0.966 0.978 1.242 0.981 1.553 

Average % 

Increase 

 0.705 1.414 
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Fig.6. Voltage profiles for all the three Cases 

 

Discussions 

 

 It can be seen from Table 3 and Fig. 6 that: 

i. There has been an average of 0.705% improvement in the bus voltage profile from 

Case 1 (the Base Case Scenario) where there was congestion, to Case 2 where the 

TOU program (DRP) was solely applied to relieve the congestion. The addition of the 

SVCs in Case 3 further improved the voltage profile of Case 2 by an average of 

0.709%.   

ii. The three voltage profiles show clearly that when there is congestion (Case 1), the bus 

voltage levels decrease, resulting in greater voltage deviations. This base case scenario 

does not only increase the system losses, but also creates voltage regulation problems 

for the customers. 

iii. The application of TOU program (DRP) in Case 2 raised the bus voltages to very 

appreciable levels (average of 0.705% increase, and as a result, decreased the margin 

of deviation. However, when the SVCs were added to the DRP (Case 3), the bus 

voltage levels were further improved by 0.709% on the average, resulting in a total 

improvement of averagely 1.414%  from Case 1. 

iv. This really shows that even though DRPs single-handedly are effective in congestion 

management by enhancing system voltage profiles, adding SVC further enhances the 
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system voltage profiles and thus reduces losses. Therefore, the combination of DRP 

and FACTS devices leads to better congestion management than DRPs only, by 

having a greater effect on system voltage profiles. 

 

4.2 Effects on Generation Fuel Cost, Demand and System Losses 

  

 Figure 7 and Table 4 present a comparison of the total average demands, the total 

average fuel costs, and the total average losses for all the three cases. 

 

 

Fig. 7. Comparison of demands, fuel costs and losses for all the three cases 

 

Table 4. Summary of results for the three (3) Cases in Fig. 7 

Parameter Case 1 

(Base case 

scenario) 

Case 2 

(With DRP only) 

Case 3 

(With both DRP and 

SVC) 

 % Reduction  % Reduction 

Demand (MW) 195.6 132.50 32.25 132.50 32.25 

Generation Fuel 

Cost ($/hr) 

652.66 363.51 44.3 361.22 44.65 

System Losses 

(MW) 

2.91 0.89 69.42 0.84 71.13 
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Discussions 

 

 The following analyses can be made from Fig. 7 and Table 4: 

 

On Fuel Cost:  

i. The fuel cost in Case 1 is greater by 79.54% (652.66 $/hr compared to 363.51 $/hr) 

than that of Case 2, whilst that of Case 2 also being greater by 0.7% (363.52 $/hr 

compared to 361 $/hr) than that of Case 3. The high fuel cost in the Peak Period for 

Case 1 points to the fact that congestion presents some costs to both utilities and 

customers.  

ii. However, with the application of the TOU program in Case 2, even though only 32% 

of the load responded to the TOU program, the fuel cost reduced drastically by 44.3% 

(as shown in Fig.7).  

iii. The good results of Case 2 were slightly improved in Case 3, when both the DRP and 

the SVC were combined. As can be seen, the fuel cost further decreased slightly in 

Case 3. The fuel cost decreased from 363.51 $/hr to 361.22 $/hr, representing 0.63% 

(from 652.66 $/hr in Case 1 to 361.22 $/hr in Case 3, thus by 44.65% - compared with 

44.3% for Case 2). This is attributed to the presence of the SVC.  

 

On System Losses:  

i. The system losses in Case 1 is greater by 226.97% (2.91 MW compared to 0.89 MW) 

than that of Case 2, whilst that of Case 2 also being greater by 5.95% (0.89 MW 

compared to 0.84 MW) than that of Case 3.  

ii. Again, with the application of the TOU program in Case 2, with only 32% load 

participation in the TOU program, the losses reduced by 69.4%. The losses further 

reduced slightly in Case 3 by 5.62%, decreasing from 0.89 MW in Case 2 to 0.84 MW 

in Case 3. 

 

On Demand:  

i. Both the DRP only (Case 2) and the hybridized approach (Case 3) reduced the demand 

from 195.6 MW to 132.5 MW representing a reduction of 32.25%. 

ii. The application of the SVC in Case 3 has no effect on the demand. 

 

4.3 Effects on MVA flows on Congestion-Prone Lines 

 

 Figure 8 and Table 5 present results comparing the MVA flows in the congestion-

prone lines for all the three cases. 
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Fig.8. Comparison of MVA flows in congestion-prone lines for all three cases 

 

Table 5. Comparison of MVA flows in congestion-prone lines for all three cases 

Line MVA Flows 

(Limit) 

MVA Flows 

(Case 1) 

MVA Flows 

(Case 2) 

MVA Flows 

(Case 3) 

10 32.00 32.00 15.16 17.38 

29 32.00 32.00 22.44 17.93 

30 16.00 16.00 4.98 4.48 

35 16.00 16.00 4.89 4.45 

 

 

Discussions 

 

i. The flows (in MVA) in lines 10, 29, 30, and 35 are higher in the base case scenario 

(Case 1) than those in the same lines for Case 2 (DRP Only) and Case 3 (DRP and 

SVC). This is because, before the application of the TOU program, it can be seen in 

Table 5 that these lines were congested as the MVA flows in them reached their 

respective ratings. This means that the operating limits of these lines were reached.  

ii. However, after the application of the TOU program (Case 2), it can clearly be seen 

from Fig. 8 and Table 5 that the flows in these lines have reduced significantly, 

relieving the congestion in the lines.   

iii. Case 3 also has the flows in lines 29, 30 and 35 being lower than the same lines for 
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Case 2. Again, these good results from the application of the TOU program (DRP) 

were further enhanced by the addition of the SVC, as can be seen in Case 3, where the 

flows in lines 29, 30 and 35 further reduced by 20.1% (from 22.44 MVA to 17.93 

MVA), 10.04% (from 4.98 MVA to 4.48 MVA), and 9.0% (from 4.89 MVA to 4.45 

MVA) respectively, compared to the flows in the same lines in Case 2.  

 

 

8. CONCLUSION  

 

 In this paper, the effects of a combination of DRP and SVC FACTS device as a multi-

objective approach for congestion management in transmission lines have been studied. The 

results show that, in comparison with the Base Case Scenario, the proposed method 

(employing both DR and SVC) reduced the Peak Period fuel cost from 652.66$/hr to 

361.22$/hr, signifying a significant 44.65% reduction,  as well as the losses in this same Peak 

Period from 2.913MW to 0.84MW, resulting in another significant 71.13% reduction. The 

voltage profile was also significantly enhanced by an average of 1.414% increase from the 

Base Case Scenario. 

 The high losses (2.913MW) and high generation fuel cost (652.66$/hr) in the Peak 

Period (represented by Case 1) again point to the fact that congestion presents some costs to 

both utilities and customers. Also, the proposed hybridized DRP-SVC method (represented 

by Case 3) further reduced VAR flows in the lines from 111.18MVAr in the Peak Period 

(Case 1) to 37.44MVAr, resulting in a significant 66.34% decrease in VAR flows (and hence 

losses), thus further decongesting the lines of reactive power and leading to an increased or 

higher line utilization factor (LUF) for the active power. The effectiveness of the proposed 

hybridized DR-SVC, multi-objective method in congestion management of transmission lines 

has thus been underscored.  
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