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Abstract: The well-known AM2 model is commonly used for simulation of biotechnological 

processes of two-phases anaerobic digestions. Nevertheless, numerical simulation and 

graphical results usually obtained by solving the non-linear system of differential equations 

characterizing this model do not always enable an easy analysis of the processes as well their 

sensitivity to the variations of the different parameters and the initial conditions. In this 

paper, as an alternative to simulation, an analytical approach is proposed for batch reactors. 

It consists of adopting some approximations to reduce the mathematical complexity of the 

coupled differential equations of the AM2 model. The aim is to derive approximate analytical 

expressions concerning the dynamical evolution of the substrates and bacterias involved in 

reactions. The obtained expressions, therefore, permit a relatively easy analysis of the 

evolution of the main processes and their sensitivity to the different parameters and initial 

conditions. Moreover, it provides an explicit mathematical expression that enables to 

estimate the cummulative production of methane. The comparison of the obtained results by 

this proposed analytical approach to the numerical simulation of the AM2 model shows a 

satisfying qualitative convergence of the proposed approach to the AM2 model.  

 

 

 

 

1. INTRODUCTION 

 

 A practical mathematical model named AM2 is very useful for simulating and analyzing 

biological process of anaerobic digestion of two phases. Many authors have used this model to 

study batch and continuous anaerobic digesters with different substrates in various conditions 

[1-3]. From the mathematical point of view, the AM2 model corresponds to a set of coupled 

ordinary differential equations (ODE) of the first order with non linear left hand sides. Because 
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of this non linearity, explicit analytical solutions about state variables cannot be obtained; so 

the solutions are only obtained numerically by various numerical integration methods and serve 

to simulate and visualize graphically the evolution of the state variables. Most of the results 

obtained by different authors, based on AM2 model, are qualitatively comparable but 

quantitatively they may differ. Indeed, the results are very sensitive with respect to the change 

of the parameter values and to the conditions of experiments [4]. This fact expresses the 

complexity of the phenomenon regarding the limits of this model. 

However, while the numerical simulation can graphically present the evolution of the 

different state variables, it doesn't always enable an easy analysis of the processes as well as 

the influence of the different parameters involved in the model and the conditions of 

experiments. In the literature, approaches leading to even approximate solutions of the AM2 

model are very few or limited to analyzing the stability of the AM2 model [6]. Most of 

analytical approaches propose approximate expressions of the output state variable that is 

usually the production of methane based on simplifications and empirical formulas [5-10]. 

In this paper, It is intended to solve the AM2 model by using an analytical approach. By 

adopting some approximations over the equations of the model, this approach led to obtain 

some analytical expressions concerning the dynamical evolution of the substrates and bacteria 

during the processes. The obtained analytical expressions enable to have an insight on the 

complexity of the problem and to perform a detailed analysis of the temporal evolution of the 

main processes and the influence of the different parameters involved in the mathematical 

model. The comparison of this analytical approach to the numerical simulation shows 

qualitatively a satisfying convergence of the former approach and therefore justifies its use 

within the limits of the adopted approximations. 

 

 

2. EQUATIONS GOVERNING THE AM2 MODEL 

 

2.1. Mathematical Formulation 

 

 The mathematical AM2 model is based on the laws of growth [4]. It involves the 

following dynamic variables: X1 is the concentration of the acidogenic bacteria population; X2 

is the concentration of the methanogenic bacterial population; S1 is the concentration of the 

substrate of carbonaceous material and S2 is the substrate concentration of volatile fatty acids. 

For batch systems, the mathematical model is expressed in the form of a coupled differential 

equations of the first order system: 

 

 
11

1 X
dt

dX
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For the growth process, the function of Monod µ1 for acidogens bacteria and the function 

of Haldane µ2 for methanogens bacteria are adopted and they are respectively:  
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with μ1m 
the maximal growth rate and KS1 the constant of half-saturation; and 
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with μ2m the maximal growth rate, KS2 the constant of saturation and KI2, the constant of 

inhibition. 

The flow of methane which is the end product depends directly on the growth of 

methanogenic bacteria population X2(t), according to the relation: 

 

  )(..)( 2244 tXktQCH =   (7) 

 

The cumulative quantity C(t) of the produced methane can be estimated by:  

 

 )(.)( 24 tXktC =  (8) 

 

 There are nine parameters involved in this model (μ1m, KS1, μ2m, KS2, KI2, k1, k2, k3, k4). 

To mathematically solve this system of differential equations, we must also provide four initial 

conditions: S1(0), S2(0), X1(0) and X2(0). 
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2.2. State Space Model 

 

The system constituted of the differential equations (1), (2), (3) and (4) is a set of 

coupled differential equations of first order with non linear functions at the right hand side. Its 

integration provides the temporal evolution of the bacteria and the substrate concentrations. The 

production of the methane can be deduced from equation (7) and (8). For the implementation, 

this model can be written in a state space form such as: 
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 (9) 

 

with the state space vector: 𝑧(𝑡) = (𝑋1(𝑡) 𝑋2(𝑡) 𝑆1(𝑡) 𝑆2(𝑡))𝑇
    

and initial conditions are:

   

𝑧(𝑡0) = (𝑋1(𝑡0) 𝑋2(𝑡0) 𝑆1(𝑡0) 𝑆2(𝑡0))𝑇 

This ODE system has been implemented by means of Euler's integration method and 

has been solved by using the ODE function of SCILAB software [11]. The graphical results 

obtained by solving this system correspond to a simulation carried out with the following 

parameter values: 𝜇1𝑚 = 0.4/day; 𝐾𝑠1 = 72
g

l
;   𝜇2𝑚 =  0.4/day;    𝐾𝑠2 =  18

g

l
;    𝐾I2  =

 103 g/l; k1= 13; k2= 12; k3 = 22; and the initial values are: S1(0) = 10 g/l; S2(0) = 2 g/l; X1(0) = 

0.4 g/l and X2(0) = 0.01g/l. 

 

 

3. ANALYTICAL APPROACH FOR S1(t) AND X1(t) 

 

3.1. Temporal evolution of substrate S1(t) 

 

 To analyze the system of differential equations of AM2 model, consider the differential 

equations X1(t) and S1(t) corresponding to equations (1) and (3). It can be noticed that they are 

in fact decoupled from equations X2(t) and S2(t). Therefore, by combining (1) and (3), it can 

writen the following equalities: 
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by integrating this differential equation, one gets the following linear relationship between S1(t) 

and X1(t) that is: 

 

 10110111 .)(.)( XkStXktS ++−=  (11) 

 

where X10 and S10 are respectively the initial values of X1(t) and S1(t). 

 To explicit X1(t), let's replace µ1 in (10) by its expression in (1) so that one gets the 

following relationship: 
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replacing X1(t) by its expression obtained in (11), one gets the following first order non linear 

differential equation in terms of S1(t) with respect to the time variable: 
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with: 10110 .XkSa +=  

 The expression (13) can be written in the following form by separating the variables 

from both sides: 
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 By introducing the initial conditions, one obtains the solution of the differential equation 

(14) in an analytical inverse form t=f(S1): 
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 It is not possible to express explicitly S1(t) in a standard form. However, from (15), S1(t) 

can be easily computed and graphically represented as shown in fig.1 by just giving values to 

S1 and computing the corresponding time t. Expression (15), t=f(S1) or )()( 1

1 tftS −=  are the 

analytical functions that contain the model parameters (KS1, µ1m, k1) and initial values (S10, X10). 

This enables to study analytically the interaction and the influence of any of the involved 

parameters (Ks1, µ1m, k1) or initial values (S10, X10) on the dynamical evolution of the process 

S1(t) that is the concentration of the substrate of carbonaceous material. The profiles of S1(t) 
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obtained by the analytical function (15) and that obtained by solving the system of differential 

equations are presented on the same graphic as implemented under Scilab software. They 

appear superimposed in the graphics of fig.1 and thus are similar.

 
 

 

Fig. 1. Temporal Evolution of S1(t) by simulation and analytically 

 

3.2. Temporal evolution of bacteria X1(t)  

 

 The dynamic evolution of bacteria X1(t) can be derived from relation (11) as follows: 
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 Similarity to S1(t), X1(t) cannot be written in a standard form but can be expressed in the 

inverse form:  t = g(X1). Therefore, the analytical expression is the function t = g(X1): 
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 The analytical expression (17) includes the model parameters (Ks1, µ1m, k1) and the 

initial values (S10, X10). It enables to analyze the evolution of the concentration of the acidogenic 
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bacteria population as well as its sensitivity to the related model parameters. By varying the 

values of X1, the values of corresponding time are computed and the function X1=g1(t) can be 

drawn. Graphics of X1(t) obtained by simulation and by the analytical expression (17) are 

presented in Fig. 2. They appear superimposed and thus are similar. 

 

Fig.2. Temporal Evolution of X1(t) by simulation and analytically 

 

3.3. Some Remarks 

 

3.3.1. Behavior evolution of S1(t) and X1(t) 

 Although the equation of X1(t) and S1(t) are non-linear, there profiles present behaviors 

like systems whose dynamics are characterized by transient response followed by a steady state 

one. So, to determine the steady state asymptotic value of X1(t) which is  for large time 

values, it requires combining (3), (5), (11) and equaling to zero the first derivative of X1(t): 
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This leads to the condition: 0. 11 =+− aXk , which consequently leads to the asymptotic 

steady state value of acidogenic bacteria: X1(t) = lg
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 Similarly, from equation (11), we can determine the asymptotic steady state value for 

S1(t) which is zero. This means that the concentration of the substrate of carbonaceous material 

will be almost completely consumed at relatively large time durations.  

 

3.3.2. Settling time for X1(t) and S1(t) 

 In such systems, it is important to determine the settling time tset which is defined as the 

time to reach the steady state value up to 5%. For X1(t), it corresponds to: X1(tset) = X1set = 

0.95*X1S = 1.11 g/l. By replacing this settling value X1 set in (12), the settling time ts is about 

45 days. From equation (11), we can estimate the settling value for S1(t) which is about 50 days. 

The comparison of these results is in full agreement with those given by simulation of the 

system of differential equations composing AM2 model. 

 

3.3.3. Sensitivity analysis 

 Given the analytical relations (15) and (17), the analysis of the evolution of the substrate 

S1(t) and of the bacteria X1(t) with respect to all involved model parameters as well as their 

sensitivity can be easily performed analytically from these expressions. 

 

 

4. TEMPORAL EVOLUTION OF X2(t) AND S2(t) 

 

4.1. Establishment of differential equations for X2(t) and S2(t) 

 

 From the previous equations (2) and (4), we can write: 
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 On the other hand, by using (1) and (2), equation (4) can be written in the following 

form:  

 

  
dt

dX
k

dt

dX
k

dt

dS 2
3

1
2

2 .−=   (20) 

 

by integrating this last equation (20), we obtain:  
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which can also be written as:   
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(22) 

 

with: CtXktf += )(.)( 12  and 20310220 .XkXkSC +−= .
 

 By replacing S2(t) from (22) into the (19), we can explicit a non linear differential 

equation of the first order on X2(t) which depends on X1(t) via the term b(t): 
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(23) 

 

 Under this form, the differential equation (23) cannot be solved to obtain an analytical 

expression. This is only possible in the case where X1(t) is independent from time which is not 

the case in our general problem since we know already the profile given by (17). However, we 

can integrate (23) by numerical methods without the need to solve the system of coupled 

differential equations. But it requires to provide the values of X1(t) at each step of integration 

by tabulation or by integrating the inverse of X2(t) which is: 
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XXg
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This differential equation contains all the model parameters (μ2max, KS2, KI2, k2, k3) that 

affects the evolution of the methanogens as well as the corresponding initial conditions: S20, 

X20. The other parameters concerning the acidogenic bacteria with their initial conditions are 

introduced in (23) by b(t) which is linked to X1(t). At this level, integrating only (23) instead of 

solving the set of differential equations of the AM2 model, makes it easier to study and analyze 

the influence of all parameters and initial conditions on X2(t). Another easiest way consists of 

integrating (23) by using a piecewise linear approximation of X1(t) derived from (17). Further, 

we will integrate the differential equation (23) using this linear piecewise approximation of 

X1(t). The results will be compared to simulation and to those of our analytical approach. 

 

4.2. Approximation of the growth process of Bacteria µ2(S2) 

 

 To obtain analytical solutions for X2(t) and S2(t), it is necessary to make some 

approximations that simplify the differential equations (22) and (23). That is the only way to 

make them amenable to expressions that are analytically integrable. To this purpose, we 

consider a first approximation that concerns X1(t). One appropriate simple simplification is to 
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use a piecewise linear approximation by two segments. The first segment corresponds to a linear 

approximation derived from (17) during the transient response. The second one consists of 

approximating X1(t) by a horizontal line corresponding to the asymptotic steady state response. 

The point of junction between the two segments corresponds to the settling time of X1(t). 

 However, even by using a linear approximation of X1(t) during the transient response, 

X2(t) remains still dependant from time, then (23) cannot be solved analytically. To be solvable 

analytically, it needs to be simplified to the level that the grown law of the process of the 

methanogenic bacterial population becomes linear of the form:  
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 By adopting these simplifications, (23) can be written as follows:  
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 Now, the differential equation (26) corresponds to Bernoulli's equation [12] can be 

rewritten to match the standard form of Bernoulli's differential equation for the case where the 

coefficient n = 2; that is: 
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 Equation (246) structured in the standard Bernoulli's form becomes: 
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 To solve (27), it is converted into another simpler differential equation of the first order 

that has a general solution [12]: 
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To explicit the general solution in the form of (31), it requires the provision of P(t) 

which means in our case to provide the profile of X1(t). Here again, the problem of integrating 

this function is not obvious in standard analytical expressions. So, in this paper, we will use a 

piecewise linear approximation for X1(t) as announced.  

 

 

5. DETERMINATION OF X2(t) 

 

5.1. Determination of X2(t) with linear approximation of X1(t) 

 

The linear approximation of X1(t) to the first order during the transient response is given 

from (17) by considering:  
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By applying this approximation, relation (17) can be written in a linear form such as: 
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It follows from (29) that P(t) is also linear with respect to time:    
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with: 
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Having determined the expressions of P(t) and Q(t) according to the general solution 

(31), we can integrate the expressions in its numerator and in the denominator. The numerator 

in (31) equals: 
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by introducing the initial value X2(0) that is X20, (31) becomes: 
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The integral in the denominator is a special mathematical function that depends on the 

values of the coefficients (a1, b1). Its behaviour depends particularily on the sign of the term (-

b1). In our case, b1 is negative, thus (-b1) is positif. Therefore, the corresponding integral leads 

to a function known as the imaginary errot function erfi(x) which is defined as [13]:  
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In case where the coefficients (α, β) are both positive, the integral in the denominator in 

expression (40) becomes according to [13]: 
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Since in our approximation, α = -a1 and β = -b1 / 2 then, the final expression of X2(t) 

under the set of adopted approximations is finally: 
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This expression shows the temporal evolution of X2(t) during the transient response of 

the processes. We can observe the presence of all the involved model parameters except K12 

which has been neglected for the seek of approximations and simplifications. The presence of 

all the model parameters in expression (43) proves and explains the complex sensitivity and 

interactivity of biotechnological problems. This explains the sensitivity of the methane 

production as a final product with respect to all these parameters and conditions. 

Expression (43) is mainly valid for the duration of the transient response. After that, it 

must be approximated by an asymptotic horizontal line corresponding to the steady state 

response. The steady state value of X2(t) can be determined from the expression derived from 

(21): 
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For large values of the time, X1(t) tends to (X1S = a / k1) and S2(t) tends to zero; then the 

asymptotic value of X2s corresponding to the steady state response is: 
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Fig. 3 represents the temporal evolution of X2(t) obtained by simulation (blue curve); by 

the analytical expression (43) and (45) (black curve) and by integration of (23) using the 

piecewise linear approximation of X1(t) (red curve) The analytical curves corresponding to 

expression (43) is limited by its asymptotic value at about t = 45 days where X2(t) reaches X2S.  



Carpathian Journal of Electrical Engineering           Volume 15, Number 1, 2021 

41 

 

Fig. 3. Temporal evolution of X2(t) by simulation and analytically 

 

Although, the curve obtained by simulation is considered as the reference, the 

comparisons of the two other curves to that reference show some difference due to the adopted 

approximations. However, there is a quanitative agreement during the beginning of the process 

during about the 15 first days. Then, after that, there is a qualitative agreement. For long 

durations corresponding to the steady state response, the curves meet and are almost similar. 

 

5.2. Evolution of substrate S2(t) under linear approximation of X1(t)  

 

By replacing X2(t) and X1(t) with their respective expressions in expression (21), we 

obtain the temporal evolution of the profile of the substrate S2(t) in the analytical form. 
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Fig. 4 represents the temporal evolution of S2(t) obtained by simulation (blue curve); by 

the analytical expression (46) (black curve) and by numerical integration derived from (23) 

using the piecewise linear approximation of X1(t) (red curve). The analytical expressions S2(t) 

contains the parameters involved in the process and reveal their complex interaction with the 
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biological processes. This expression is an approximation during the beginning of the process 

that corresponds to the transient responses. At large time duration, S2(t) vanishes after about 60 

days.  

 

Fig. 4. Temporal evolution of S2(t) by simulation and analytically 

 

Comparing the other curves to the blue one that constitutes the reference, there curves 

are in quantitatively in agreement during the 20 first days at the beginning of generation of the 

processes. After that, there are differences because of the adopted approximations and because 

of the change on the slope of S2(t) during the remaining period of the transient response. In this 

part, the linear approximations of X1(t) and that of 2

 

in (23) can't hold anymore. Nevertheless, 

despite the used approximations used, there is a qualitative agreement that enables to analyze 

the influence of the parameters involved in the processes. Qualitatively, the profile of the 

analytical expression S2(t) is roughly reproduced compared to that obtained one by solving the 

system of differential equations. 

 

5.3. Evaluation of Methane Production 

 

To estimate the methane production from the AM2 model, the literature provides data 

corresponding to a value of k4 which is closer to 75 l2/mg [4]. According to this model, the 

temporal evolution of methane flow QCH4(t) is computed from the expression (7) as follows:   
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The cumulated quantity of methane Cm(t) over a given period is obtained by integrating 

QCH4(t) which is proportional to X2(t):
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The production of the methane depends on the derivative of X2(t) from the analytical 

expression (44), we can see the influence of almost all parameters involved in the AM2 model 

and then the sensitivity of the methane production to them. However, the cumulated quantity 

of methane depends only on X2(t). In case of batch reactors, X2(t) tends after a transient period 

to a steady state response where X2(t) becomes constant. It can be evaluated by the expression 

derived from (45): 
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(49) 

 

In this expression, one can notice that it does not contain the parameters of bacteria's 

growth rate which are mainly active during the transient period.  

 

 

6. CONCLUSION  

 

As an alternative to simulation by solving the system of differential equations 

characterizing the AM2 model, an analytical approach is proposed in case of batch reactors. It 

consists of adopting some approximations to reduce the mathematical complexity of the 

coupled differential equations. Analytical expressions for the state variables have been derived 

incorporating the model parameters and initial conditions revealing the complexity of the 

biotechnological systems. The proposed analytic expressions enable thus to perform a relatively 

easy analysis of the evolution of the main processes as well as the influence of the different 

parameters and initial conditions. The comparison of the results provided by this analytical 

approach to the numerical simulation shows a satisfying qualitative convergence of the former 

and therefore may justify its use under the adopted assumptions. It also opens some perspectives 

for improving and optimizing the biotechnological processes involved in such models. 
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