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1. Introduction 
Structural dynamics and vibration analysis are crucial 

aspects of engineering design, particularly when dealing 
with complex systems such as beams subjected to varying 
loads and uncertainties. In this context, the elastic modulus 
of materials plays a pivotal role in determining the response 
characteristics of structures. While traditional approaches 
often assume deterministic material properties, overlooking 
the intrinsic variability observed in real-world scenarios, 
Young’s modulus has been reported to display randomness 
rather than consistency in various investigations [1-5].

In this article, the author investigates the impact of 
random elastic modulus on beam eigenfrequencies. The 
author analyses the consequences of using various simulation 
methods to better understand these effects. The investigation 
encompasses MCS with MCS-CD, MCS-KKL, PCE, and a 
proposed RSM. The primary focus is to unravel the nuances 

associated with these methods and determine their efficacy 
in capturing the dynamic behaviour of beams subjected to 
uncertain elastic modulus distributions.

During simulations, it was observed that some elastic 
moduli were found to be negative in MCS with MCS-CD, 
leading to imaginary eigenfrequencies, particularly under 
certain conditions of normal distribution. The study unfolds 
by scrutinising this anomaly and reveals that transitioning to 
a log-normal distribution mitigates the issue. Comparative 
analyses of covariance structures between normal and log-
normal distributions provide insights into the impact of 
distribution choice on the structural response.

Building upon this foundation, the article introduces 
MCS-KKL, showcasing similar negative modulus 
occurrences. The investigation culminates in an examination 
of eigenfrequency estimation using PCE and a proposed 
RSM. The latter involves discretising the beam into distinct 
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elements with randomly assigned elastic moduli, exploring 
a vast range of permutations to obtain a comprehensive 
understanding of the system’s dynamic behaviour.

This research contributes not only to the fundamental 
understanding of how random elastic modulus influences 
beam eigenfrequency but also provides a comparative 
evaluation of simulation techniques. The insights gained 
herein are expected to advance the field of structural 
dynamics, guiding engineers and researchers towards more 
robust and accurate modelling approaches for systems 
subjected to material property uncertainties.

Figure 1 illustrates the adopted approach for structural 
analysis, incorporating randomness in material properties, 
loading, and geometry. The statistical properties of the 
structural response are inherently linked to the stochastic 
nature of the input parameters. Material properties, such 
as the elastic modulus, may exhibit spatial distribution and 
correlation across the structures. This necessitates a more 
comprehensive understanding of the probabilistic aspects of 
these parameters for robust structural design.

In literature, there are generally three methods 
for analysing how systems respond to random input 
variables. Firstly, perturbation methods [6-8] use Taylor 
series expansions, often truncated due to computational 
challenges. Secondly, polynomial chaos expansion [9, 
10] relies on Hermite multivariate polynomials, evolving 
into Generalised Polynomial Chaos [11, 12]. Lastly, MCS 
directly computes responses for a large set of random inputs, 
estimating statistical indicators [13].

PCE efficiently represents system responses with random 
inputs. For instance, the elastic modulus can be represented 
by a random process, often exhibiting correlation between 
different points. The KKL decomposition is similar to 
Fourier expansion, expressing the random process as an 
infinite sum of orthogonal functions. This method can be 
truncated after a few terms [14-17]. The eigenvalues and 
eigenfunctions are obtained by solving Fredholm integral 
equations, with available closed-form solutions for some 
covariance functions [18]. Numerical methods, such as 
Galerkin and Nystrom methods, can be employed to solve 
these integral equations [16, 19].

The orthogonal polynomials obtained through KKL 
expansion form a basis for PCE, offering a concise 
representation of the stochastic system response. It 
represents a random variable using combinations of 
orthogonal polynomials. If system input parameters are 
random, the response is represented by a polynomial chaos 
expansion, minimizing errors through Galerkin projection. 

Various researchers have proposed diverse methods 
to find eigenfrequencies, solving stochastic eigenvalue 
problems. Ghanem and Ghosh’s approach provides a 
comprehensive probabilistic description of eigenvalues 
and eigenvectors using the Newton-Raphson algorithm 
[20]. Pascual and Adhikari introduced hybrid methods, like 
reduced spectral power and inverse power [21]. S.B. Mulani, 
et al. (2006) [22] presented a non-statistical eigenvalue 
extraction algorithm, demonstrating accuracy through 
generalised polynomial chaos. C.V. Verhoosel, et al. (2006) 

Fig. 1. Schematic of random material and stochastic finite element method.
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[23] proposed a spectral expansion algorithm for random 
non-symmetric matrices, demonstrating efficient and 
robust performance. E. Sarrouy, et al. (2012) [24] utilised 
polynomial chaos expansion for complex eigenvalues and 
eigenvectors in damped structures. 

P.C. Nguyen, et al. (2021) [4] used MCS, utilising finite 
element analysis and an iterative algorithm, to explore the 
natural frequencies of a beam on an elastic foundation 
with uncertain material characterised by a homogeneous 
Gaussian random field of elastic modulus, generated 
through the spectral representation method. The stochastic 
analysis of the FGM beam is conducted through MCS, in 
which elastic modulus and mass density are considered as 
one-dimensional homogeneous stochastic processes [25].

Cholesky decomposition factorises the covariance 
matrix into a product of an upper triangular matrix and its 
transpose ‘
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T= cov(αiαj)	  (9)

Figure 2 illustrates the variation of elastic modulus (E) 
with length for σ values of 0.3, 0.4, and 0.5, considering 
50 realisations. It is evident that for σ=0.4 and σ=0.5, 
some elastic modulus values become negative, which is 
physically unrealistic and contradicts practical expectations. 
Additionally, with an increase in σ, the number of negative 
elastic modulus values rises. The literature recognises the 
challenge of encountering negative values post Cholesky 
decomposition of the random vector. It emphasises careful 
exclusion during simulations, particularly when significant 
variance exists in the random process, to ensure robust and 
reliable results [28].
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It is crucial to acknowledge that the elastic modulus 
may exhibit negativity at any σ value due to our utilisation 
of a Gaussian normal distribution. To address this issue, 
we propose adopting a log-normal distribution for elastic 
modulus samples. This shift ensures the generated values 
remain strictly positive, aligning with physical expectations 
and resolving the observed problem.

To overcome the challenges encountered, we have 
integrated the log-normal transformation through the 
Cholesky decomposition method. Specifically, a vector 
of independent standard normal random variables, Z, is 
generated and transformed into correlated variables, α, 
using the lower triangular matrix L obtained from Cholesky 
decomposition as given in Eq. (7).

The transformation is expressed as:
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Fig. 1. Variation of elastic modulus with length (elastic modulus normally distributed). 
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 log ( E
E0

) = α (10) 

 

 (10)

Here, α(x) represents the zero-mean random process 
capturing the random variation in elastic modulus, and the 

logarithmic transformation guarantees the strictly positive 
nature of the elastic modulus [29].

The impact of this log-normal transformation is depicted 
in Fig. 3, illustrating the variation of elastic modulus with 
length for different σ values (0.3, 0.4, and 0.5) based on 
50 realisations. The results demonstrate that the adjustment 
effectively eliminates negative values of elastic modulus, 
ensuring that our model adheres more closely to physical 
expectations. As σ increases, the log-normal transformation 
prevents the occurrence of physically unrealistic negative 
values, providing more accurate and meaningful insights 
into the behaviour of elastic modulus in structures subjected 
to random mechanical fields.

In order to generate a Monte Carlo simulation, we 
need to determine the structural dynamic characteristics 
of the beam. The determination of structural dynamic 
characteristics of the beam using deterministic FEM is 
described as follows:

Fig. 2. Variation of elastic modulus with length (elastic modulus normally distributed).

Fig. 3. Variation of elastic modulus with length (elastic modulus log normally distributed).
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The Euler-Bernoulli equation for beam bending is
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ρ ∂

2v
∂t2 +

∂2
∂x2 (EI

∂2v
∂x2) = q(x, t) (11) 

where v (x, t) is the transverse displacement of the beam; ρ is mass density per volume; EI 

is the beam rigidity; q(x, t) is the externally applied pressure loading; t is time; and x is 

spatial distance along the beam axis. The average weighted residual of Eq. (11) is: 

 
∫ {ρ ∂

2v
∂t2 +

∂2
∂x2 (EI

∂2v
∂x2) − q(x, t)}w dx 

L

0
= 0 (12) 

where L is the length of the beam; and w is test function. Galerkin’s method is considered, 

where the test function is equal to the trial function. 

 (11)

where v (x, t) is the transverse displacement of the beam; ρ 
is mass density per volume; EI is the beam rigidity; q(x,t) 
is the externally applied pressure loading; t is time; and x is 
spatial distance along the beam axis. The average weighted 
residual of Eq. (11) is:
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where L is the length of the beam; and w is test function. 
Galerkin’s method is considered, where the test function is 
equal to the trial function.

The weak formulation is obtained from integrations by 
parts twice for the second term of the equation. In addition, 
discretisation of the beam into a number of finite elements 
gives
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 The weak formulation is obtained from integrations by parts twice for the second term 

of the equation. In addition, discretisation of the beam into a number of finite elements gives 

 
∑ [∫ ρ ∂2v

∂t2 wdx + ∫ EI ∂2v
∂x2

∂2w
∂x2 dx − ∫ qwdx +]

n

1
+ [Vw − M ∂w

∂x ]
0

L
= 0 (1) 

 The boundary conditions for the cantilever beam are as follows: 

 Displacement and slope are zero at x=0 i.e. v(0) = w(0) = 0; θ = ∂v
∂x(L=0)

=

∂w
∂x (L=0)

= 0 and Shear Force (V) and Moment (M) is zero at x=L. 

 Applying the boundary conditions, the last term of Eq. (13) becomes zero. Also, for 

free vibration, q(x, t) = 0. Therefore, Eq. (13) becomes: 

 
∑ [∫ ρ ∂2v

∂t2 wdx + ∫ EI ∂2v
∂x2

∂2w
∂x2 dx] = 0

n

1
 (14) 

 There are four nodal variables for the beam elements, therefore, assuming a cubic 

polynomial function for v(x): 

  v(x) = c0 + c1x + c2x2 + c3x3 (15) 

 Since an Euler-Bernoulli beam has been assumed, the slope is computed from Eq. 

(15) as θ = dv/dx where: 

 θ(x) = c1 + 2c2x + 3c3x2 (16) 

 Hermitian shape functions are applied:  

v(x) = H1(x)v1 + H2(x)θ1 + H3(x)v2 + H4(x)θ2 

where 

 H1(x) = 1 − 3x2

l2 + 2x3

l3  ; H2(x) = x − 2x2

l + 2x3

l2 ; H3(x) = 3x2

l2 − 2x3

l3 ; H4(x) = − x2

l + x3

l2  

 Applying Hermitian shape functions and Galerkin's method to the second term of Eq. 

(14) we obtain the stiffness matrix of the beam element. Specifically, 

 
[K]e = ∫ [B]TEI[B]dx

L

0
 (17) 

where [B] = {H1
′′ , H2

′′ , H3
′′ , H3

′′ ] and the corresponding element nodal degrees of freedom is  

de = {v1 , θ1,  v2, θ2}T, and vi and θi are deflection and slope nodal variables, respectively. 

The double prime denotes the second derivative of the function. 

 For dynamic analyses of beams, the transverse deflection is a function of x and t. The 

deflection is interpolated within a beam element as given below: 

  (13)

The boundary conditions for the cantilever beam are as 
follows:

Displacement and slope are zero at x=0 i.e. v(0)=w(0)=0; 
θ=
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 The elemental stiffness and mass matrix are assembled to obtain global stiffness (K) 

and global mass matrix (ℳ). Thus, the equation of free vibration of beam becomes the Eigen 

value problem of the equation: 

 KX − ω2ℳX = 0 (19) 

where ω is eigenfrequency. Making the substitution ω2 = λ, the eigenfrequencies are 

obtained by finding the eigenvalue of the following equation:  

 (K − λℳ)X = 0 (20) 

 For MCS, the variations of elastic modulus (E) are generated using Eqs. (6), (7), and 

(1), which are substituted in Eq. (17). For each value of E, a corresponding eigenvalue and 

eigenvector can be obtained using Eq. (20). This procedure is repeated for a large number of 

random data sets of elastic moduli to produce an ensemble of the structural dynamic response 

characteristics. These values are used to compute the mean and standard deviation of the 

structural dynamic characteristics represented by the first three eigenfrequencies. 

 In this method the cantilever beam of length ‘L’ having variable elastic modulus ‘E’ 

along its length is considered. The random field of elastic moduli has infinite-dimensional 

probability space (Ω, Θ, Ρ), where Ω is set of elementary events, Θ a sigma algebra generated 

on Ω, and P is a probability measure on (Ω, Θ). However, after the spatial discretisation, we 

have a finite dimensional representation of the random elastic field, which can be represented 

as a random vector:  

 x = [x1, x2 …  xM]T (21) 

where M can be regarded as the number of elements in a discretised model. So, for 

each xi, i=1, 2… M is a random variable that represents the random elastic property in each 
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random data sets of elastic moduli to produce an ensemble of the structural dynamic response 

characteristics. These values are used to compute the mean and standard deviation of the 

structural dynamic characteristics represented by the first three eigenfrequencies. 

 In this method the cantilever beam of length ‘L’ having variable elastic modulus ‘E’ 

along its length is considered. The random field of elastic moduli has infinite-dimensional 

probability space (Ω, Θ, Ρ), where Ω is set of elementary events, Θ a sigma algebra generated 

on Ω, and P is a probability measure on (Ω, Θ). However, after the spatial discretisation, we 

have a finite dimensional representation of the random elastic field, which can be represented 

as a random vector:  

 x = [x1, x2 …  xM]T (21) 

where M can be regarded as the number of elements in a discretised model. So, for 

each xi, i=1, 2… M is a random variable that represents the random elastic property in each 

)X = 0	  (20)

For MCS, the variations of elastic modulus (E) are 
generated using Eqs. (6), (7), and (1), which are substituted 
in Eq. (17). For each value of E, a corresponding eigenvalue 
and eigenvector can be obtained using Eq. (20). This 
procedure is repeated for a large number of random data sets 
of elastic moduli to produce an ensemble of the structural 
dynamic response characteristics. These values are used to 
compute the mean and standard deviation of the structural 
dynamic characteristics represented by the first three 
eigenfrequencies.

2.2. Kosambi - Karhunen - Loève expansion

In this method the cantilever beam of length ‘L’ having 
variable elastic modulus ‘E’ along its length is considered. 
The random field of elastic moduli has infinite-dimensional 
probability space (Ω,Θ,Ρ), where Ω is set of elementary 
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events, Θ a sigma algebra generated on Ω, and P is a 
probability measure on (Ω,Θ). However, after the spatial 
discretisation, we have a finite dimensional representation 
of the random elastic field, which can be represented as a 
random vector: 

x = [x1, x2… xM ]T		   (21)

where M can be regarded as the number of elements in a 
discretised model. So, for each xi, i=1, 2… M is a random 
variable that represents the random elastic property in each 
element. The beam is discretised into M number of elements 
so that xi is an M dimensional vector.

Now, assume we are given N number of realisations of 
the random elastic field [x1, x2… xN], where each realisation 
is represented as an M-dimensional column vector. The 
random vector xi obtained after the discretisation are highly 
correlated. In order to obtain uncorrelated elastic moduli, we 
consider a nonlinear mapping φ that relates the input space 
RM to another space F. We will refer to F as the feature space. 
These realisations xi are mapped onto the feature space F to 
φ(xi), denoting the mean of the φ-mapped data by:  
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 φ̅ = 1
N ∑ φ(xi)

N

i=1
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 and defining the centred map as  

 φ̃ = φ(x) − φ̅ (23) 

 The covariance matrix C in the feature space can be obtained as: 

 C=1
N

∑ φ̃(xi)φ̃(xi)TN
i=1  (24) 

 The dimension of the covariance matrix is NF ∗ NF where NF is the dimension of the 

feature space. The KKL expansion involves solving the eigenvalue problem CV = λ V. As 

explained [30], NF could be extremely large. As a result, it will be impossible to compute 

the C matrix and solve the eigenvalue problem directly. Thus, a kernel eigenvalue problem, 

which uses only dot products of vectors in the feature space, is formulated to solve the 

original eigenvalue problem indirectly [30]. The dot product in the feature space is defined 

as: 

 [φ̃(yi).φ̃(yi)]=φ̃(yi)φ̃(yi)T (25) 

 We now have to find eigenvalues λ ≥ 0 and eigenvectors ϵ ℱ such that CV = λ V 

[31], which implies all solutions of V with λ ≠0 lie in the span of φ(x1), φ(x2) … φ(xN). 

For us, this has two useful consequences. First, we may instead consider the set of equations: 

 (φ̃(xi)xCV)=λ (φ̃(xi)xV), ∀ i=1, 2 … N (26) 

 Second, there exist coefficients βj ∀ j=1, 2… N such that we can expand the solution 

V as  

 V=∑ βjφ̃(xj)  N
j=1  (27) 

          Now, combining Eq. (26) and Eq. (27), we obtain 

	  
(22)
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The covariance matrix C in the feature space can be 
obtained as:
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The dimension of the covariance matrix is NF * NF 
where NF is the dimension of the feature space. The KKL 
expansion involves solving the eigenvalue problem CV=λV. 
As explained [30], NF could be extremely large. As a result, 
it will be impossible to compute the C matrix and solve 
the eigenvalue problem directly. Thus, a kernel eigenvalue 
problem, which uses only dot products of vectors in the 
feature space, is formulated to solve the original eigenvalue 
problem indirectly [30]. The dot product in the feature space 
is defined as:
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We now have to find eigenvalues λ≥0 and eigenvectors 
ϵ F such that CV=λV [31], which implies all solutions of 
V with λ≠0 lie in the span of φ(x1), φ(x2)… φ(xN). For us, 
this has two useful consequences. First, we may instead 
consider the set of equations:
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Second, there exist coefficients βj ∀ j=1, 2… N such that 
we can expand the solution V as: 
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Now, combining Eq. (26) and Eq. (27), we obtain:
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 1
N ∑ βj ∑ (φ̃(xi). φ̃(xk))

N

k=1
(φ̃(xk). φ̃(xj))

N

j=1

= λ ∑ αjφ̃(xi). φ̃(xj)
N

j=1
 

for i = 1, 2…N 

(28) 

 Defining the N*N kernel matrix R, which is the dot product of vectors in the feature 

space ℱ R: Rij = φ(xi). φ(xj) and the corresponding centred kernel matrix: 

 R̃: Rij̃ = φ̃(xi). φ̃(xj) (29) 

We obtain R̃2β = NλiR̃ β  ∀ i=1, 2… N 

where β = [β1, β2… βN]. 
This is equivalent to the following kernel eigenvalue problem, 

 R̃ β = Nλi β (30) 

We rewrite above equation in the following matrix form: 

 R̃ U =∧ U (31) 

where ∧=diag(λ1, λ2… λN) is the diagonal matrix of the corresponding eigenvalues, U = [β1, 

β2… βN] is the matrix containing the eigenvectors of the Kernel matrix R̃, and each column 

consists of the ith eigenvector βi = [β1, β2… βN]. 
Therefore, through Eq. (27), the ith eigenvector of the covariance matrix C in the 

feature space can be shown to be [30, 32]: 

 Ṽi=∑ β̃ijφ̃(xj)N
j=1  (32) 

where β̃ij = βij
√λi

 . It is easy to verify that Eq. (32) satisfies the orthonormal condition  

Ṽi . Ṽi = 1 

 Ṽi=∑ βij √λi φ̃(xj)N
j=1  (33) 

Let x be a realisation of the random field with a mapping φ(x) in ℱ. The random 

function φ(x) can be decomposed in the following way: 

 
φ(x) = ∑ ziṼi

N

i=1
+ φ̅ (34) 

where zi is the projection coefficient onto the ith eigenvector Ṽi: 

 zi = Ṽi. φ̃(x) = ∑ β̃ijφ̃(x). φ̃(xj)
N

j=1
 (35) 

 (28)

for i = 1, 2… N
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 zi = Ṽi. φ̃(x) = ∑ β̃ijφ̃(x). φ̃(xj)
N

j=1
 (35) 

This is equivalent to the following kernel eigenvalue 
problem:

11 
 

 1
N ∑ βj ∑ (φ̃(xi). φ̃(xk))

N

k=1
(φ̃(xk). φ̃(xj))

N

j=1

= λ ∑ αjφ̃(xi). φ̃(xj)
N

j=1
 

for i = 1, 2…N 

(28) 

 Defining the N*N kernel matrix R, which is the dot product of vectors in the feature 

space ℱ R: Rij = φ(xi). φ(xj) and the corresponding centred kernel matrix: 

 R̃: Rij̃ = φ̃(xi). φ̃(xj) (29) 

We obtain R̃2β = NλiR̃ β  ∀ i=1, 2… N 

where β = [β1, β2… βN]. 
This is equivalent to the following kernel eigenvalue problem, 

 R̃ β = Nλi β (30) 

We rewrite above equation in the following matrix form: 

 R̃ U =∧ U (31) 

where ∧=diag(λ1, λ2… λN) is the diagonal matrix of the corresponding eigenvalues, U = [β1, 

β2… βN] is the matrix containing the eigenvectors of the Kernel matrix R̃, and each column 

consists of the ith eigenvector βi = [β1, β2… βN]. 
Therefore, through Eq. (27), the ith eigenvector of the covariance matrix C in the 

feature space can be shown to be [30, 32]: 
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Normalising the coefficient zi as εi = 
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Normalising the coefficient zi as εi = zi
λi

1/2 where εi are zero mean, mutually 

uncorrelated random variables with unit variance [32], we can represent φ(x) as:  

 
φ(x) = ∑ εiλi

1/2Ṽi

N

i=1
+ φ̅ (36) 

 From Eq. (29), it can be seen that in order to compute the kernel matrix, only the dot 

products of vectors in the feature space ℱ are required, while the explicit calculation of the 

map φ(𝐱𝐱) does not need to be known. As shown [33], the dot product can be computed 

through the use of the kernel function. Not all arbitrary functions except the Mercer kernels 

can be used as a kernel function [30]. The kernel function R(xixj) calculates the dot product 

in space ℱ directly from the vectors of the input space ℝM. Mercer proved that any positive 

definite function R(xi, xj)  with xi, xj∈ℝD defines an inner product of another vector space V.  

R(xi, xj)  is called the covariance or kernel function [34]. In this paper we have used 

exponential covariance function Rαα(ξ) = σα
2exp (− |ξ|

d  ). Kernels depend on a parameter d 

called the correlation length, describing the correlation between two points of the field. The 

limit d → ∞ generates a fully correlated random field, whereas d → 0 produces a random 

field without any spatial correlation [35]. 

 Since R  is real and symmetric, it has an Eigen decomposition of the form: 
 R(s, t) = ∑ λiVi(s)Vi(t)

i
 (37) 

where λi are eigenvalues and Vi are eigenvectors of R. 
 The eigenvectors are obtained by solving the homogenous Fredholm integral equation 

of the second kind [36] as: 

 
∫ R(x, y)Vk(x)dx = λk

b

a
Vk (38) 

 Writing random functions as φ(x, θ) = E(x, θ)), φ̅ =  E0, and ∑ εiλi
1/2Ṽi

N
i=1 = E0 ∗

α(x, θ), we have: 

 E(x, θ)= E0[1 +  α(x, θ)] (39) 

where 𝔼𝔼[E(x, θ)]= E0 is the mean value of the random elastic field and α(x, θ) is a zero mean 

random process.  

 Figure 4 shows the Mercer Eigen functions. Fig. 5 shows the realisations of the 
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N
i=1 = E0 ∗

α(x, θ), we have: 

 E(x, θ)= E0[1 +  α(x, θ)] (39) 

where 𝔼𝔼[E(x, θ)]= E0 is the mean value of the random elastic field and α(x, θ) is a zero mean 

random process.  

 Figure 4 shows the Mercer Eigen functions. Fig. 5 shows the realisations of the 

random function  α having zero mean. 

	  
(36)

From Eq. (29), it can be seen that in order to compute 
the kernel matrix, only the dot products of vectors in the 
feature space F are required, while the explicit calculation 
of the map φ(x) does not need to be known. As shown 
[33], the dot product can be computed through the use of 
the kernel function. Not all arbitrary functions except the 
Mercer kernels can be used as a kernel function [30]. The 
kernel function R(xixj) calculates the dot product in space 
F directly from the vectors of the input space ℝM. Mercer 
proved that any positive definite function R(xi, xj) with xi, 
xj∈ℝD defines an inner product of another vector space V.  
R(xi, xj)  is called the covariance or kernel function [34]. In 
this article, we have used exponential covariance function 
Rαα (ξ)= σα

2 exp(-

12 
 

Normalising the coefficient zi as εi = zi
λi

1/2 where εi are zero mean, mutually 

uncorrelated random variables with unit variance [32], we can represent φ(x) as:  

 
φ(x) = ∑ εiλi

1/2Ṽi
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Fig. 4. Representation of eigenvalues.

Fig. 5. Realisations of random function alpha.

2.3. Truncation of Kosambi-Karhunen-Loève expansion

In order to obtain a random process, an infinite sum of 
linear combination of eigenfunction is not required. The 
series can be truncated after a finite number of terms, the 
specific value of which depends on the desired level of 
accuracy. The proof for truncation is explained below.

Random coefficients ξm of the KKL expansion are 
uncorrelated having zero mean and unit variance. The 
variance of α is simply the sum of the variances of the 
individual components of the sum:
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 In order to obtain a random process, an infinite sum of linear combination of 

eigenfunction is not required. The series can be truncated after a finite number of terms, the 

specific value of which depends on the desired level of accuracy. The proof for truncation is 

explained below. 

 Random coefficients ξm of the KKL expansion are uncorrelated having zero mean 

and unit variance. The variance of α is simply the sum of the variances of the individual 

components of the sum: 

 
var[E(x, θ)] = var[E0 ∗ α] = ∑ λkVk

2var[εk] 
N

k=1
 (40) 

Since var[ξk] = 1,  

 (40)

Since var [ξk] = 1, 
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 Using the orthonormality of Vk, we obtain the total variance of the process: 
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 The total variance of the T-truncated approximation is given by the sum of the first T 

eigenvalues denoted as ∑ λk
T
k=1 . Consequently, the T-truncated expansion explains a 

proportion of the variance equal to    ∑ λk
T
k=1

∑ λkN
k=1

  of the variance. 

 For instance, if we seek an approximation that accounts for 95% of the variance, we 

must determine a value of T such that 

 ∑ λk
T
k=1

∑ λk
N
k=1

≥ 0.95 (43) 

 The truncation order ‘T’ obtained is 5 for 95% accuracy and 3 for 90% accuracy. Note 

that the statement "The truncation order ‘T’ obtained is 5 for 95% accuracy and 3 for 90% 

accuracy" indicates the level of approximation achieved through truncating the MCS-KKL. 

In essence, it means that by considering the first 5 terms in the expansion, we can capture 

95% of the total variance of the process, while for 90% accuracy, only the first 3 terms are 

necessary. This is based on the fact that Eq. (42), the total variance of the process, can be 

represented as the sum of the eigenvalues associated with each term in the expansion. By 

truncating at a certain order, we essentially prioritise the dominant modes that contribute 

most to the variance of the process. 

 

Fig. 6. Bending stiffness covariance 𝐑𝐑 = 𝛔𝛔𝟐𝟐𝐞𝐞𝐞𝐞𝐞𝐞 (− |𝛏𝛏|
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necessary. This is based on the fact that Eq. (42), the total variance of the process, can be 

represented as the sum of the eigenvalues associated with each term in the expansion. By 

truncating at a certain order, we essentially prioritise the dominant modes that contribute 

most to the variance of the process. 
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The bending stiffness for a given realisation can thus be calculated by Eq. (44).  

 
Fig. 9.  Variation of alpha and elastic modulus with length for normal distribution. 
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9B represents instances where the elastic modulus values are negative, which is physically 

impossible. To address this issue, the elastic modulus is considered as lognormal, and it is 

depicted in Figs. 10A and 10B for σ=0.1 and σ=0.2, respectively. 

 
Fig. 10.  Variation of alpha and elastic modulus with length for lognormal distribution. 

 In order to calculate MCS for KKL, the process is described as follows:  

 (i) Assemble the system matrices Kj. 

 (ii) Generate the sets of independent standard Gaussian variables {ξ1(θi),… ξT(θi)} 

with i = 1, … nMCS . 
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The bending stiffness for a given realisation can thus be 
calculated by Eq. (44). 
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Fig. 9.  Variation of alpha and elastic modulus with length 
for normal distribution.

Figure 9A shows the realisation of elastic modulus with 
length for σ=0.1, while Fig. 9B displays the realisation of 
elastic modulus with length for σ=0.2. The black curve 
in Fig. 9B represents instances where the elastic modulus 
values are negative, which is physically impossible. To 
address this issue, the elastic modulus is considered as 
lognormal, and it is depicted in Figs. 10A and 10B for σ=0.1 
and σ=0.2, respectively.

Fig. 10.  Variation of alpha and elastic modulus with length 
for lognormal distribution.

In order to calculate MCS for KKL, the process is 
described as follows: 

(i) Assemble the system matrices Kj.

(ii) Generate the sets of independent standard Gaussian 
variables{ξ1 (θi),… ξT (θi)} with i=1,… nMCS.

(iii) Assemble the stiffness matrix K(θi), for every 
realisation i.

(iv) The eigenfrequency is obtained by finding the 
eigenvalue of the equation
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 (iv) The eigenfrequency is obtained by finding the eigenvalue of the equation 

 KX = ω2ℳX = (K − λℳ)X = 0 (46) 

 (v) Solve the deterministic system of equations K(θi) X=λℳX. 

 
Fig. 11. Mean and variance of the first three eigenfrequencies of Monte Carlo 

Simulation obtained after Kosambi-Karhunen-Loève expansion decomposition having 

truncation order ‘T’=5. 

         The mean and variance of MCS obtained after KKL decomposition converges nearly 

after 1500 samples as shown in Fig. 11. For calculation purposes, the number of MCS is 

taken as 2000.  

 2.3. Polynomial chaos expansion 

 In the polynomial chaos method, the solution u(θ) of differential equations are 

projected on a vector space spanned by polynomials ψi(ξ). In this paper, we discuss the 

Galerkin-based intrusive spectral projection method. In this approach, a random variable is 

represented as spectral representation in terms of a set of polynomial basis functions:  

 u(θ) = ∑ui
iϵℕ

ψi(ξ) (47) 

where u(θ) is a random variable and ψi(ξ) is a polynomial function of another random 

variable ξ. 
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(v) Solve the deterministic system of equations K(θi) X 
= λ
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Fig. 11. Mean and variance of the first three eigenfrequencies of Monte Carlo simulation obtained after Kosambi-Karhunen-
Loève expansion decomposition having truncation order ‘T’=5.
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where u(θ) is a random variable and ψi(ξ) is a polynomial 
function of another random variable ξ.

The polynomials are chosen to be orthogonal with 
respect to the joint probability of these random variables:
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where ui are deterministic coefficients, referred to as PC coefficients. 

 Wiener in his original paper (1938) considered the spectral representation of random 

variables by Hermite polynomial with germs as Gaussian random variables. The PCE was 

later generalised by D. Xiu, et al. (2002) [12] known as generalised Polynomial chaos or 

gPC. Table 1 mentions the polynomial type and its corresponding random variable or germ. 

Table 1. Generalised polynomial chaos (adapted from [12]). 
Uncertain parameter type Optimal polynomial type 
Gaussian Hermite 
Gamma Laguerre 
Beta Jacobi 
Uniform Legendre 

 In this paper, Gauss-Hermite PCE type has been considered, and the basis functions 

are Hermite polynomials as a function of Gaussian random variables ξ.  

 In order to obtain the deterministic coefficient ui, the random variable u is projected 

on to the space spanned by Hermite polynomials as its basis. The number of degrees of 

freedom of the random variables determines the dimension of the germ ξ. However, if the 

random variable has infinite degrees of freedom, then in that case the number of terms (T) 

after which the KKL expansion is truncated determines the dimensionality of ξ. Given the 

space dimension T (number of random variables) and the order of the polynomial chaos p, a 

basis dimension P containing the number of PC used in the expansion can be computed as 

[18, 37]:  

P + 1 =
(T + p)!

p! T!  

where p depends on the information contained about the random variable that has been 

represented. Table 2 shows the number of terms of P for a given truncation T and order of 

polynomial p. If the truncation order T is 3 and the order of polynomial is 1, P=5. If the 

truncation order T is 5 and the order of the polynomial is 2, then P=20. 

Table 2. Hermite polynomial chaos in 1D and 2D (adapted from [10]). 
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random variable that has been represented. Table 2 shows 
the number of terms of P for a given truncation T and order 
of polynomial p. If the truncation order T is 3 and the order 
of polynomial is 1, P=5. If the truncation order T is 5 and the 
order of the polynomial is 2, then P=20.
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The equation of motion of a free vibration of a beam can 
be written as:
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The equation of motion of a free vibration of a beam can be written as: 

[M]{ü} + [K]{u} = 0. 
 Now, uncertainty in the modulus of elasticity will result in uncertainty in the stiffness 

matrix (K) such that:  

 
Ki(ξ) = K0 + ∑ Kiξi(

M
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θ) (49) 

 Since uncertainty in  K will induce uncertainty in u, a polynomial chaos expansion for 

u is specified:  

 
u = ∑ ukψk(ξ)

∞

k=0
 (50) 

where uk is a deterministic unknown coefficient. 

 The eigenvalue equation of the vibration of a beam can be written as:  

 (K − λℳ)u = 0 (51) 

 Substituting the value of u and K in Eq. (51), we obtain: 

 
{( K0 + ∑ Kiξi

T

i=1
) − Mλ} {∑ uni⟨ψj⟩)

P

j=1
} = 0 (52) 

 Multiplying both sides of the equation with ψk, and taking the expectation with 

respect to the basis germ ξ, we obtain: 
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where uk is a deterministic unknown coefficient.

The eigenvalue equation of the vibration of a beam can 
be written as: 

(K- λ
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 (iii) Assemble the stiffness matrix K(θi), for every realisation  i. 
 (iv) The eigenfrequency is obtained by finding the eigenvalue of the equation 

 KX = ω2ℳX = (K − λℳ)X = 0 (46) 

 (v) Solve the deterministic system of equations K(θi) X=λℳX. 
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Multiplying both sides of the equation with ψk, and 
taking the expectation with respect to the basis germ ξ, we 
obtain:
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∑∑∑ Kiunj⟨ξiψjψk⟩

P

k=1
−

P

j=1

T

i=0
M ∑∑unjλ⟨ψjψk⟩

P

k=1

P

j=1
 

Taking unj common, we obtain: 
(53) 
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P
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−

P

j=1

T

i=0
M(∑∑λ⟨ψjψk⟩

P

k=1

P

j=1
)unj = 0 
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2.4. Random sampling method 

 In the RSM for a given mean and standard deviation of the elastic modulus, one can 

randomly choose a vector of size n assuming normal distribution. Using these n values of 

elastic modulus, for all possible combinations, the structural dynamic characteristics of the 

beam is evaluated. For example, if the beam is divided into two elements, then each element 

can have one value of elastic modulus. Considering E1 and E2 as two possible values of 

elastic modulus, the possible combinations are [E1E1, E1E2, E2E1, E2E2]. Similarly, for N 

elements with N possible values of elastic modulus, the total number of combinations will 

be NN. It may be noted that the total number of possible cases increases rapidly with number 

of elements of the beam.  For ten elements, the number of possible combinations is 1010.  

 
Fig. 12.  Convergence plot of eigenfrequencies with number of finite elements. 

 Figure 12 illustrates the convergence plots of the first three eigenfrequencies as a 

function of the number of elements. In Figs. 12A and 12B, it is evident that the first two 

natural frequencies converge satisfactorily with five elements. However, Fig. 12C reveals 

that achieving convergence for the third frequency necessitates at least six elements. 

 The computational cost, particularly for the RSM, exhibits an exponential increase 

with the number of elements, escalating from 3125 to 46656 evaluations. This steep rise 

poses a significant challenge for practical implementation, highlighting the need for a 

balanced approach. 

 To strike a compromise between accuracy and computational cost, this paper adopts 

five elements for RSM and six elements for MCS-CD, MCS-KKL, and PCE methods. This 
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2.5. Random sampling method

In the RSM for a given mean and standard deviation of 
the elastic modulus, one can randomly choose a vector of 
size n assuming normal distribution. Using these n values 
of elastic modulus, for all possible combinations, the 
structural dynamic characteristics of the beam is evaluated. 
For example, if the beam is divided into two elements, 
then each element can have one value of elastic modulus. 
Considering E1 and E2 as two possible values of elastic 
modulus, the possible combinations are [E1E1, E1E2, E2E1, 

E2E2]. Similarly, for N elements with N possible values of 
elastic modulus, the total number of combinations will be 
NN. It may be noted that the total number of possible cases 
increases rapidly with number of elements of the beam.  For 
ten elements, the number of possible combinations is 1010. 

Figure 12 illustrates the convergence plots of the 
first three eigenfrequencies as a function of the number 
of elements. In Figs. 12A and 12B, it is evident that the 
first two natural frequencies converge satisfactorily with 
five elements. However, Fig. 12C reveals that achieving 
convergence for the third frequency necessitates at least six 
elements.

Fig. 12.  Convergence plot of eigenfrequencies with number of finite elements.
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The computational cost, particularly for the RSM, 
exhibits an exponential increase with the number of elements, 
escalating from 3125 to 46656 evaluations. This steep rise 
poses a significant challenge for practical implementation, 
highlighting the need for a balanced approach.

To strike a compromise between accuracy and 
computational cost, this paper adopts five elements for 
RSM and six elements for MCS-CD, MCS-KKL, and PCE 
methods. This decision is made to optimise computational 
efficiency while ensuring sufficient accuracy for reliable 
analysis.

By implementing this approach, the study aims to 
achieve a practical balance, enabling effective analysis of 
natural frequencies in uniform beams without imposing 
prohibitive computational burdens.

3. Results and discussion

In this study, a cantilever beam of length 1 m, width 12 
mm, and depth 10 mm is taken as the sample problem. The 
first three natural frequencies and mode shapes are treated as 
the response quantities to study the effect of randomness of 
the elastic modulus.  The density of material is 7850 kg/m3. 
The mean value of modulus of elasticity (E) is taken as 200 
GPa. The cantilever beam is discretised into finite elements, 
with each element having two nodes. The nodal degrees 
of freedom represent the nodal displacement and rotation. 
Cubic Hermite polynomials are used as interpolating 
functions between the two nodes.      

In this study, the beam has been discretised into five 
elements for RSM and six for the other two methods. For 
MCS, a sample size of 2000 sets is generated. It may be 
noted that the mean and variance converge after a sample 
size of 1500 sets. 

Table 3. Mean of eigenfrequencies.

Eigenfrequency in rad/sec Random 
sampling KKL M=5 PC

M=5 p=1
PC
M=5 p=2 Cholesky

First eigenfrequency 5.12E+01 5.12E+01 5.12E+01 5.12E+01 5.12E+01

Second eigenfrequency 3.21E+02 3.21E+02 3.21E+02 3.21E+02 3.21E+02

Third eigenfrequency 9.01E+02 9.01E+02 9.00E+02 9.00E+02 9.01E+02

Table 4. Variance of eigenfrequencies.

Variance of 
eigenfrequencies

Random 
sampling KKL M=5 PC

M=5 p=1
PC
M=5 p=2 Cholesky

First eigenfrequency 3.64E-03 2.58E-03 4.33E-04 1.06E-04 2.09E-02

Second 
eigenfrequency 9.47E-02 1.01E-01 1.70E-02 4.17E-03 7.38E-01

Third eigenfrequency 6.17E-01 7.97E-01 1.34E-01 3.28E-02 5.66E+00

Fig. 13. Comparison of mean of eigenfrequency by Random 
Sampling method, Kosambi-Karhunen-Loève expansion, 
Polynomial Chaos expansion, and Monte Carlo simulations 
with Cholesky decomposition.

Fig. 14. Comparison of ratio of variance of third and second 
eigenfrequency with first eigenfrequency.

Figure 13 illustrates that all four methods yield 
nearly identical eigenfrequencies. However, there is a 
notable disparity in the variance among these methods. 
Additionally, within each method, there is a sharp increase 
in variance across different eigenfrequencies (Table 3). 
Fig. 14 highlights this observation, showing that the ratio 
of the variance of the third to the first eigenfrequency is 
approximately 100. The elevated variance of the third 
eigenfrequency holds significant implications, particularly 
considering its crucial role in the vibration characteristics 
of rotor blades.

Fig. 15. Comparison of variance of eigenfrequency by 
Random Sampling method, Kosambi-Karhunen-Loève 
expansion, Polynomial Chaos expansion, and Monte Carlo 
simulations with Cholesky decomposition (Table 4).
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From Fig. 15, it can be observed that PCE has least 
variance whereas (MCS-CD) has highest variance. The 
observed difference in variances between polynomial chaos 
and MCS-CD can be attributed to the inherent characteristics 
of each method in handling uncertainty.

Polynomial chaos expansion systematically represents 
the uncertain input variables (in this case, random elastic 
modulus) as a series of orthogonal polynomials, allowing 
for efficient and accurate estimation of the response 
statistics. This method excels in capturing the variability in 
the system with a reduced number of simulations, leading 
to a lower variance in the results. Essentially, polynomial 
chaos provides a more focused and structured approach to 
handle uncertainty.

On the other hand, MCS-CD rely on random sampling 
and, in certain scenarios, may encounter challenges, such 
as the occurrence of outliers. These anomalies can lead 
to significant variations in the results, resulting in higher 
variances. Cholesky decomposition, particularly when 
applied to normal distributions with specific covariance 
conditions, might introduce instabilities that contribute 
to the increased variance observed in the eigenfrequency 
estimates.

Fig. 16. Comparison of variance of eigenfrequency by 
Monte Carlo simulations with Cholesky decomposition 
and Monte Carlo simulations with Kosambi-Karhunen-
Loève expansion.

Similarly, from Fig. 16, it can be observed that MCS-
CD has higher variance compared to MCS-KKL. The 
observed difference in variances between MCS using the 
KKL expansion method and MCS-CD can be attributed 
to the specific characteristics and advantages of the KKL 
expansion approach in handling uncertainty.

KKL expansion is a technique that efficiently represents 
a random field in terms of uncorrelated modes. These modes 
capture the major variations in the random field, allowing 

for a more effective dimensionality reduction. When applied 
to MCS, the KKL expansion method effectively captures 
the dominant modes of variability in the elastic modulus 
field, leading to a more focused and reduced set of samples 
needed for estimation.

On the other hand, Cholesky decomposition involves 
transforming a covariance matrix to obtain uncorrelated 
samples. In certain situations, particularly when the 
covariance structure is intricate or when dealing with 
specific distributions, Cholesky decomposition may lead 
to challenges, including potential numerical instabilities. 
These challenges can contribute to a broader spread of 
samples and, consequently, a higher variance in the results 
compared to the KKL expansion method.

Fig. 17. Comparison of variance of eigenfrequency by 
Monte Carlo simulations with Kosambi-Karhunen-Loève 
expansion and Random Sampling method.

From Fig. 17, it can be observed that RSM and MCS-KKL 
have nearly identical variance. The similarity in variance 
between the proposed RSM and KKL expansion can be 
explained by their shared focus on efficiently representing 
and exploring the dominant modes of variability in the 
system. Both methods aim to capture the key patterns in 
the random field, allowing for a more focused analysis and 
reducing the overall variability in the results.

Similarly, the reason that RSM has lower variance as 
compared to MCS-CD is that the permutation-based nature 
of RSM introduces a level of variability, particularly when 
exploring a wide range of possible combinations. In contrast, 
MCS with Cholesky can face challenges related to numerical 
instability and negative modulus values, potentially leading 
to a broader spread of samples and higher variance.

Comparing the variance of RSM with PCE, it can 
be observed that RSM has higher variance. This can be 
attributed to the fact that Polynomial chaos relies on 
structured representations using orthogonal polynomials, 
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contributing to a more controlled and focused analysis, 
resulting in lower variances. RSM, while comprehensive 
in exploration, may introduce more variability due to its 
unstructured permutation-based nature.

Figure 18A displays the variation of the COV of 
eigenfrequencies with correlation length for different values 
of sigma, while Fig. 18B depicts the variation of COV with 
sigma for different values of correlation length. These 
analyses were conducted using MCS-CD for both normally 
distributed elastic modulus. Similarly, Fig. 19A displays the 
variation of the COV of eigenfrequencies with correlation 
length for different values of sigma, while Fig. 19B depicts 
the variation of COV with sigma for different values of 
correlation length for log normally distributed elastic 
modulus for MCS-CD. It can be observed that both normal 
and lognormal distribution of elastic modulus give similar 
results. This can be reasoned because the transformation 
from a normal distribution to a lognormal distribution 

involves an exponential function. It is possible that the 
transformation of the random variable by the exponential 
function cancels out terms of the covariance of the 
response. Also, the statistical properties of the normal and 
lognormal distributions are different, but when we compute 
the covariance of the response, the specific transformation 
might lead to similar results. The correlation structure and 
variability may be preserved even after the distribution 
change. 

Figure 20A displays the variation of the COV of 
eigenfrequencies with correlation length for different 
values of sigma, while Fig. 20B depicts the variation of 
COV with sigma for different values of correlation length. 
These analyses were conducted using MCS-KKL for both 
normally-distributed elastic moduli. Similarly, Fig. 21A 
displays the variation of the COV of eigenfrequencies with 
correlation length for different values of sigma, while Fig. 
21B depicts the variation of COV with sigma for different 

Fig. 18. COV of eigenfrequencies with correlation length and sigma for normal distribution.

Fig. 19. COV of eigenfrequencies with correlation length and sigma for lognormal distribution.
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values of correlation length for lognormally distributed 
elastic moduli for MCS-KKL. In this case, normal and 
lognormal distributions do not have any significant effect 
on the COV of the response. This can be attributed to the 
fact that MCS methods such as Cholesky decomposition 
and KKL expansion may be less sensitive to the choice of 
distribution for certain types of problems. The algorithms 
used in these methods could handle the transformation 
without significantly impacting the covariance of the 
response. The correlation length and the correlation structure 
of the random elastic modulus may have a more dominant 
effect on the covariance of the response than the specific 
choice between a normal and lognormal distribution.

Figure 22A displays the variation of the COV of 
Eigenfrequencies with correlation length for different 
values of sigma, while Fig. 22B depicts the variation of 
COV with sigma for different values of correlation length. 
These analyses were conducted using PCE for normally 

distributed elastic modulus. Similarly, Fig. 23A displays the 
variation of the COV of eigenfrequencies with correlation 
length for different values of sigma, while Fig. 23B depicts 
the variation of COV with sigma for different values of 
correlation length for log normally distributed elastic 
modulus for PCE. In this case, the COV of response varies 
significantly for normal and lognormal distribution. This 
can happen because PCE relies on orthogonal polynomials 
as the basis functions. These polynomials are specifically 
designed to work well with certain types of distributions. 
If the distribution changes from normal to lognormal, the 
orthogonality properties of the polynomial basis may be 
affected, leading to different behaviours in the PCE. Also, 
PCE involves the expansion of the response in terms of 
orthogonal polynomials of the random variables. The 
transformation of the random variable from a normal to 
a lognormal distribution involves different mathematical 
operations (exponential function), and this transformation 
can affect the representation of the response in the PCE.

Fig. 20. COV of eigenfrequencies with correlation length and sigma for normal distribution.

Fig. 21. COV of eigenfrequencies with correlation length and sigma for lognormal distribution.
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Table 5. Computational cost.

Method Number of 
simulations

Computational time 
(in seconds)

MCS-CD 2000 19.95792

MCS-KKL 2000 1.312695

PCE (T=5, p=1) 5 0.017394

PCE (T=5, p=2) 20 0.03018

RSM (nos. of elements=5) 3125 31.63806

Table 5 provides a comparison of the computational cost 
for different RSMs including MCS-CD, MCS-KKL, PCE 
with different polynomial orders, and RSM.

The computational cost for RSM is relatively higher 
compared to MCS-CD, MCS-KKL and PCE. This can be 
attributed to the nature of RSM, which involves evaluating 
the structural dynamic characteristics of the beam for all 
possible combinations of elastic modulus values.

Despite requiring a larger number of simulations 
compared to other methods, RSM provides a comprehensive 
analysis by considering all possible combinations of 
elastic modulus values, this exhaustive approach ensures 
a thorough exploration of the structural behaviour under 
varying material properties.

MCS-KKL demonstrates lower computational cost 
compared to MCS with MCS-CD, suggesting that MCS-
KKL may be a more efficient RSM for the given analysis. 
KKL offers optimised sampling strategies that lead to faster 
convergence and reduced computational cost. It leverages 
the eigenstructure of the covariance matrix to efficiently 
sample from the underlying distribution, resulting in fewer 
iterations required to achieve accurate results compared to 
traditional methods like Cholesky decomposition.

Fig. 22. COV of eigenfrequencies with correlation length and sigma for normal distribution.

Fig. 23. COV of eigenfrequencies with correlation length and sigma for lognormal distribution.
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It may be noted that RSM may require more 
computational resources due to the exponential increase in 
possible combinations with the number of elements, it offers 
a comprehensive analysis of the structural behaviour, which 
can be valuable for understanding the effects of material 
variability on the system response.

Figure 24 depicts the mode shapes of MCS-CD, MCS-
KKL, RSM, and PCE. Upon examination of Figs. 24A and 
24B, it becomes apparent that the spread of mode shapes 
in MCS-CD is larger compared to the proposed RSM and 
MCS-KKL. Furthermore, the spread of mode shapes in 
MCS-KKL and RSM appears to be nearly identical. This 
difference can be attributed to variations in their respective 
variances. The observed differences in the spread of mode 
shapes among MCS-CD, MCS-KKL, RSM, and PCE 
models bear practical significance in structural design and 
analysis. Understanding the variations in mode shapes 
can provide valuable insights into the dynamic behaviour 
of the system under consideration. For instance, a larger 

spread of mode shapes, as seen in MCS-CD, may indicate 
increased uncertainty or variability in structural response, 
necessitating robust design strategies. Conversely, the 
similarity in mode shapes between MCS-KKL and RSM 
suggests a comparable predictive capability between these 
methods, offering potential efficiency gains in computational 
modelling and analysis tasks.

4. Conclusions

In this study, we have thoroughly investigated 
the influence of random elastic modulus on beam 
eigenfrequencies using various simulation techniques, 
including MCS-CD and MCS-KKL, PCE, and a proposed 
RSM. We successfully addressed anomalies encountered 
in MCS by adopting a log-normal distribution for the 
elastic modulus, effectively mitigating negative values 
and imaginary eigenfrequencies. Through comparative 
analyses focusing on covariance variation of the first three 
eigenfrequencies with correlation length and standard 

Fig. 24. Mode shapes for Monte Carlo simulations with Cholesky decomposition, Monte Carlo simulations with Kosambi-
Karhunen-Loève expansion, Random Sampling method and Polynomial Chaos expansion.
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deviation of the random field, we highlighted nuanced 
differences between normal and log-normal distributions. 
Additionally, PCE revealed distinct responses, showcasing 
variations in covariance with different distributions.

Our study culminated in eigenfrequency estimation 
using the proposed RSM, where the beam was discretised 
into n elements with randomly assigned elastic moduli. 
Comparative analysis with existing methods showed that 
the RSM yields nearly identical results for small numbers 
of finite elements, with the variance of the proposed method 
closely approximating that of the KKL method. However, 
it is essential to note that the proposed method becomes 
computationally expensive as the number of elements 
increases. For instance, when the number of elements 
increases from n=6 to n=7, the computational complexity 
rises significantly from 66=46,656 to 77=823,543. Therefore, 
while the RSM offers promising results, its scalability 
may pose challenges in computational resources for larger 
structural models.
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