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1. Introduction

In recent years, thermo-acoustical investigations 
of organic, ionic, and electrolyte liquid mixtures have 
become crucial in numerous industries. Primarily, 
the intermolecular interactions in liquid mixtures are 
of significant interest due to their excess properties. 
Continuing from earlier reports [1-4], the physico-
chemical analysis, along with the excess parameters, 
was computed using standard and experimental data, 
observing deviations from the ideal mixtures of any 
solution [5, 6]. Ultrasonic and thermo-dynamical studies 
in binary liquid mixtures, involving certain alcohols with 
aniline [7, 8], were undertaken at varying temperatures. 
The analysis of non-polar liquids, vital in the extraction 

processes of coal for compound analysis, and in the 
membranes of nylon fibre, nylon moulding, resin, paint, 
varnish, and oils, as well as its use as a plasticiser, is 
paramount. Such fluid mixtures are utilised for processing 
and product formation across numerous industries. For 
instance, organic solvents might be used in the food 
industry for the gas-sweetening absorption process and 
as intermediates in the manufacture of other chemicals. 
To comprehend the interactions among the molecules, 
particularly in polar and non-polar molecules [9, 10], 
physico-chemical analyses are indispensable. Moreover, 
these analyses provide insights into the bonding of 
associated molecular complexes and other molecular 
processes.
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The experimental findings were juxtaposed with 
theoretical models, correlating and validating these 
against proposed empirical theories [11-13]. The aim 
of the present investigation, centred on the molecular 
interactions of adopted systems, necessitates selecting 
a particular model and applying a concept from the 
various available ones [14, 15]. If none of the extant 
models provide a satisfactory prediction of molecular 
functioning, it might be prudent to propose new models 
considering the nature of the molecules. Consequently, 
the theoretical assessment of ultrasonic velocity in the 
ternary liquid mixtures of organic solutions at different 
temperatures has been calculated, employing methods 
such as NR [16], Van Deal-Vangeal’s IMR [17], IDR [18], 
CFT [19], N-K [20]. Furthermore, some supplementary 
test parameters have also been calculated [21]. In this 
study, the authors present excess properties at various 
temperatures for mixtures of Toluene, Chloroform, and 
Cyclohexane. The types of molecular interaction are 
then validated against the theoretical model to reaffirm 
the precision of interaction. The article is structured as 
follows: Section 2 details experimental procedures; 
Section 3 covers some excess parameters with pertinent 
theories/models of ultrasonic velocity; Section 4 presents 
results and their comprehensive discussion; and Section 
5 concludes with the derived outcomes.

2. Experimental

Analytical Grade chemicals were purified using 
standard procedures [22, 23]. Their purity was estimated 
at 99.7%. Sound velocities in liquids were measured 
using an interferometer (2 MHz), with a precision of 
±0.1 m/s. The densities and viscosities of the solutions 
were determined using a specific gravity bottle (10 ml) 
and Oswald’s viscometer. Temperatures were maintained 
consistently with a deviation of 0.1 K. Computations were 
performed in the Excel environment, deriving parameters 
from the following expressions [1].

3. Theories and models

The excess parameters such as excess compressibility 
are given as

 βE = βexp
 - (x1 β1 + x2 β2 + x3 β3)   (I)

and the corresponding excess free length is expressed as

Lf
E = Lfexp

 - (x1 Lf1  + x2 Lf2 + x3 Lf3)  (II)

The excess free volume is denoted as

Vf
E = Vfexp

 - (x1Vf1  + x2Vf2 + x3 Vf3)   (III)

and the excess internal pressure is represented by

πi
E = πiexp

 - (x1πi1  + x2πi2 + x3 πi3)   (IV)

The excess impedance is given by

ZE = Zexp
 - (x1 Z1  + x2 Z2 + x3 Z3)  (V)

and the excess enthalpy takes the following form: 

HE = Hexp
 - (x1 H1  + x2 H2 + x3 H3)   (VI)

where all notations have their usual meanings. 

NR: O. Nomoto (1958) [16] formulated an assumption 
based on the linear dependence of sound velocity on molar 
volume in binary mixtures, expressed as 
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adiabatic compressibility (β) of the mixture is [17]:
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By adopting specific heat, γ, it can be applied to a 
homogeneous medium as.
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The following relationship is only applicable to ideal 
systems: 

γ1 = - γ2 = γIM                                           (6)

Using Eq. (4), Eq. (6) can be written as 

βIM  = X1β1 + X2β2     (7)

In binary systems, 

2
1

2
2

2

2

1
2

1

1
2
1

2211

1
−









+








+

=
Um
X

Um
X

mXmX
UIMR

 
      

 
(8)

For ternary systems, Eq. (8) can be extended and 
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where Vm is the molar volume; Si is the collision factor; 
Bi is the actual volume; Xi is the mole fraction of the 
component i.

NK theorem: This theorem is formulated from 
collision factor theory [20], which can be expressed as: 
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4. Results and discussion 

All excess and theoretical velocity values are 
presented in Table 1. From Fig. 1A, it can be observed 
that the values of (βE) show an increasing trend up to 0.06 
m, thereafter a decreasing trend is observed with Toluene 
at all temperatures, with maximum values at 313.15 K. 
The positive sign of (βE) is a result of dispersion forces 
[23-25]. The trend of excess free length mirrors that 
of (βE), as shown in Fig. 1B. The dissociation of like 
molecules and the positive excess contribution indicate 
weak interactions; the negative sign of βE strongly 
suggests increasing solute-solute molecular interactions. 
This implies the potential formation of complexes 
between donors and acceptors, causing molecules to come 
closer and leading to decreased adiabatic compressibility 
[26]. For these concentrations, the negative values of 
free length suggest the possibility of close arrangements 
due to molecular ordering, thus intensifying interactions 
amongst molecules [27].

From Fig. 1B, the increasing trends of Lf
E values 

highlight the structural variations among molecules of 
different sizes [28, 29]. From Fig. 1C, the (Vf

E) values 
increase and show an upward trend with Toluene across 
all molalities and temperatures, with peak values at 
303.15 K up to 0.06 m, followed by maximum values 
at 308.15 K. This suggests the strength of the hydrogen 
bond. A positive Vf

E indicates the formation of complexes 
and the prevalence of interactions between dissimilar 
molecules [30, 31]. The values of (πi

E) are negative and 
increase with Toluene at all molalities and temperatures. 
However, the larger values observed at 303.15 K are 
depicted in Fig. 1D. These suggest weaker interactions 
between dissimilar molecules [32].
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Table 1. The measured and calculated values of ultrasonic velocity (U), their percentage deviation (∆U/U), standard 
percentage error (e), and molecular interaction parameter (α) for various molarity (m) of Toluene + Chloroform + 
Cyclohexane at 303.15, 308.15, and 313.15 K.

(m)
(U) – (m/s) (∆U/U) – (m/s)

(α)
Uexp UNR UIMR UIDR UNK UCFT UNR UIMR UIDR UNK UCFT

303.15 K

0.01 1151.2 1178.2 1156.7 1131.3 1168.2 1173.8 -1.2441 -0.2148 0.1246 -1.4321 -3.3765 -0.0316

0.02 1144.1 1180.3 1158.9 1138.0 1171.2 1195.9 -3.1731 -1.3024 0.5245 -2.3776 -4.5367 -0.0527

0.03 1136.3 1195.5 1162.2 1142.7 1175.1 1200.9 -5.2377 -2.3063 -0.5897 -3.4419 -5.7130 -0.0700

0.04 1120.0 1211.6 1165.5 1147.2 1179.2 1222.3 -8.1786 -4.0625 -2.4285 -5.2857 -9.1339 -0.1263

0.05 1112.6 1228.6 1168.9 1151.7 1183.1 1227.1 -10.486 -5.1169 -3.5701 -6.3938 -10.350 -0.1047

0.06 1104.7 1246.6 1172.3 1156.0 1187.2 1230.5 -12.917 -6.1865 -4.7101 -7.5362 -11.458 -0.0832

0.07 1096.2 1265.7 1175.7 1160.3 1191.1 1233.2 -15.484 -7.2719 -5.8667 -8.6770 -12.518 -0.0485

0.08 1112.4 1285.9 1179.2 1164.5 1195.2 1232.8 -15.638 -6.0431 -4.7212 -7.4820 -10.863 -0.0404

0.09 1136.9 1307.5 1182.7 1168.6 1199.1 1240.6 -15.097 -4.1102 -2.8697 -5.5545 -9.2077 0.0213

0.10 1152.1 1330.4 1186.2 1172.7 1203.1 1239.3 -15.486 -2.9687 -1.7968 -4.4357 -7.5781 0.0288

e ---- 0.0379 0.0293 0.0020 0.0349 0.0438

308.15 K

0.01 1142.3 1169.2 1139.8 1121.5 1159.2 1189.9 -2.0142 -0.9827 0.6623 -1.3233 -31298 -0.0813

0.02 1136.3 1170.7 1148.7 1127.3 1161.6 1191.3 -3.0546 -1.1180 0.7659 -2.2535 -4.8680 -0.0763

0.03 1126.7 1172.9 1151.6 1131.7 1165.1 1198.3 -4.1652 -2.2735 -0.5062 -3.4725 -6.4210 -0.0668

0.04 1112.3 1175.2 1154.6 1135.9 1168.8 1213.4 -5.6835 -3.8309 -2.1493 -5.1079 -9.1187 -0.1237

0.05 1104.8 1177.7 1157.6 1140.1 1172.4 1218.3 -6.6757 -4.8551 -3.2699 -6.1957 -10.353 -0.1148

0.06 1096.1 1180.2 1160.6 1144.1 1175.9 1222.7 -7.6825 -5.8942 -4.3887 -7.2901 -11.560 -0.0931

0.07 1072.7 1182.8 1163.6 1148.1 1179.6 1222.1 -10.336 -8.5448 -7.0989 -10.037 -14.002 -0.0847

0.08 1104.5 1185.6 1166.7 1152.0 1183.1 1222.0 -7.3913 -5.6793 -4.3478 -7.1649 -10.688 -0.0500

0.09 1128.6 1188.5 1169.9 1155.8 1186.7 1232.8 -5.3635 -3.7145 -2.4645 -5.2039 -9.2908 -0.0015

0.10 1136.3 1191.5 1173.0 1159.6 1190.4 1229.7 -4.8856 -3.2570 -2.0775 -4.7887 -8.2482 0.0060

e ---- 0.0413 0.0330 0.0026 0.0384 0.0484

313.15 K

0.01 1141.2 1159.2 1127.3 1109.2 1148.2 1187.2 -0.3165 -0.0021 0.0032 -0.0198 -3.2432 -0.0821

0.02 1128.0 1160.9 1138.4 1117.3 1151.9 1189.5 -2.9166 -0.9219 0.9486 -2.1188 -5.4521 -0.0731

0.03 1096.4 1163.3 1141.5 1121.8 1155.7 1190.6 -6.1405 -4.1514 -2.3540 -5.4471 -8.6314 -0.0635

0.04 1088.2 1165.8 1144.6 1126.3 1159.5 1205.2 -7.1507 -5.2022 -3.5202 -6.5717 -10.772 -0.1209

0.05 1072.1 1168.3 1147.8 1130.6 1163.3 1216.1 -8.9832 -7.0709 -5.4664 -8.5168 -13.442 -0.1119

0.06 1056.9 1171.0 1151.0 1134.8 1167.1 1220.1 -10.890 -8.9962 -7.4621 -10.521 -15.540 -0.1031

0.07 1042.8 1173.8 1154.3 1139.0 1170.9 1221.1 -12.648 -10.777 -9.3090 -12.37 -17.188 -0.0946

0.08 1088.8 1176.7 1157.5 1143.1 1174.7 1217.6 -8.1525 -6.3878 -5.0643 -7.9688 -11.912 -0.0730

0.09 1112.2 1179.8 1160.8 1147.1 1178.5 1231.0 -6.0971 -4.3884 -3.1564 -5.9802 -10.701 -0.0245

0.10 1120.1 1183.2 1164.2 1151.2 1182.3 1229.8 -5.6250 -3.9464 -2.7678 -5.5625 -9.8036 -0.0030

e ---- 0.0429 0.0346 0.0028 0.0402 0.0503
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The excess acoustical impedance (ZE) generally 
shows a negative value and an increasing trend up to 
0.06 m, after which a decrease is noted with Toluene. 
The maximum values are observed at 313.15 K (Fig. 1E). 
Similar patterns have been observed by other researchers 
[33, 34]. Positive excess values suggest interactions 
among dissimilar molecules [35]. There exists the 
potential for additional interactions between molecule 
constituents, and the formation of charge transfers 
in complexes is indicated by the positive deviations 
in acoustic impedance. Thus, deviations in acoustic 
impedance clearly suggest the presence of more charge 
transfer complexes. 

The value of excess enthalpy shows an increasing 
trend with concentration and decreases at higher 
concentrations with negative values (Fig. 1F). These 
patterns suggest the possibility of molecular attraction 
during the mixing process, and another potential 
for molecular attraction due to polarisation between 
dissimilar molecules. This becomes dominant over the 
attraction between like molecules, and the effects of 
temperature lead to variations in these values, especially 
at low temperatures. Therefore, the deviations diminish 
at higher temperatures [36].

The experimental and computed ultrasonic velocities, 
along with their respective parameters for the mixture of 
toluene, chloroform, and cyclohexane, are presented in 
Table 1. From Table 1, the observed trend for ultrasonic 
velocity consistently increases with concentration up 
to 0.07 m, and a decreasing trend is noted across all 
temperatures. 

From Table 1, IDR closely aligns with the experimental 
values at all temperatures, while IMR moderately does so. 
This suggests both a good and exceptional compatibility 
with the experimental results.

The molecular interactions between the components 
of a liquid combination may account for the percentage 
differences between observed and estimated sound 
velocities. In the context of relevant theories, such 
interactions have not been fully considered [37-39]. 
Moreover, they do not comprehensively account for the 
experimental manifestation of molecular interaction in 
various ultrasonic processes. The assumptions made in 
these theories regarding non-polar-non-polar and non-
polar-polar interactions between molecules might explain 
the variation in velocities.

Of the various theories considered, IDR provides 
an outstanding prediction of sound velocity for all 
temperatures in this study. With respect to the combination 
of toluene, cyclohexane, and chloroform, the predictions 
from the IDR model closely match experimental results 

Fig. 1. Excess compressibility (A), excess free length 
(B), excess free volume (C), excess internal pressure (D), 
excess impedance (E), and excess enthalpy for various 
molalities (m) of Toluene + Chloroform + Cyclohexane (F) 
at various temperatures.
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experimental manifestation of molecular interaction in various ultrasonic processes. 
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Fig. 1. Excess compressibility (A), excess free length (B), excess free volume (C), 
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From Fig. 1B, the increasing trends of LfE values highlight the structural 

variations among molecules of different sizes [28, 29]. From Fig. 1C, the (VfE) values 
increase and show an upward trend with Toluene across all molalities and 
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values at 308.15 K. This suggests the strength of the hydrogen bond. A positive VfE 
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dissimilar molecules [30, 31]. The values of (iE) are negative and increase with 
Toluene at all molalities and temperatures. However, the larger values observed at 
303.15 K are depicted in Fig. 1D. These suggest weaker interactions between 
dissimilar molecules [32]. 
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maximum values are observed at 313.15 K (Fig. 1E). Similar patterns have been 
observed by other researchers [33, 34]. Positive excess values suggest interactions 
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indicated by the positive deviations in acoustic impedance. Thus, deviations in 
acoustic impedance clearly suggest the presence of more charge transfer complexes.  
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potential for molecular attraction due to polarisation between dissimilar molecules. 
This becomes dominant over the attraction between like molecules, and the effects of 
temperature lead to variations in these values, especially at low temperatures. 
Therefore, the deviations diminish at higher temperatures [36]. 

The experimental and computed ultrasonic velocities, along with their 
respective parameters for the mixture of toluene, chloroform, and cyclohexane, are 
presented in Table 1. From Table 1, the observed trend for ultrasonic velocity 
consistently increases with concentration up to 0.07 m, and a decreasing trend is noted 
across all temperatures.  
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for most molarities in Table 1. Some alignment is also 
noted for several molarities in IMR. The percentage 
deviation being close to zero for both IDR and IMR 
reinforces the reliability of predictions for both in the 
ternary systems.

Molecular interaction largely depends on the strength 
of the molecules and is influenced by other factors such 
as dispersion forces [40]. Furthermore, the values of (α), 
computed from the IMR values and listed in Table 3, 
show that α is negative for ternary mixtures across all 
considered molarities. These negative values suggest the 
potential formation of intra-molecular hydrogen bonds 
[2] and further indicate weak dipolar and dispersive 
interactions. The maximum α value recorded is -0.1850 
at 0.07 m, while the minimum is -0.02 and 0.05 at 
0.01 and 0.10 m, respectively. This re-emphasises that 
cyclohexane exhibits much lower interactions compared 
to the other constituents of the mixture. 

The overall molecular interactivity in a liquid 
mixture is influenced by multiple factors. Given its 
size, cyclohexane predominantly offers dispersive intra-
molecular interactions. This confirms the dispersive 
interactions between similar molecules and weak dipolar 
interactions between dissimilar ones [41].

5. Conclusions
1. The in-depth analysis affirms the formation of 

hydrogen bonds between the molecules. 

2. The introduction of toluene results in solute-solvent 
interactions at lower concentrations, and solvent-solvent 
interactions at higher ones. 

3. Distinct types of interactions among the components 
are evident. 

4. Among the theories considered in this study, IDR 
aligns exceptionally well with experimental values, while 
IMR does so to a lesser degree. 

5. The mixtures approach ideal behaviour at higher 
concentrations. 
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