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     RESUMO

Contexto: problemas empíricos em que o pesquisador se depara com 
um modelo que seja parcialmente especificado. Nestes casos, o método 
GMM é a alternativa natural para estimação dos parâmetros de interesse.  
Objetivo: o propósito deste artigo é oferecer um tutorial que permita ao 
pesquisador compreender os aspectos conceituais e práticos do método 
GMM. Métodos: são apresentadas as características, formas de estimação, 
e algumas limitações associadas ao método em duas aplicações na área de 
finanças empíricas. A primeira aplicação é para a estimação dos parâmetros 
dos modelos de apreçamento de ativos baseados em consumo; o segundo 
é a estimação dos parâmetros do modelo para descrever a taxa de juros em 
tempo contínuo. Os dados e o código em R são fornecidos nos apêndices 
on-line. Conclusão: o método GMM pode ser utilizado em problemas 
onde outros métodos como máxima verossimilhança não são factíveis, ou 
ainda quando se deseja estimar um modelo parcialmente especificado.

Palavras-chave: GMM; apreçamento de ativos; taxa de juros.

    ABSTRACT

Context: empirical problems in which the researcher is faced with a 
model that is partially specified. In these cases, the GMM method is the 
natural alternative for estimating the parameters of interest. Objective: 
the goal of this paper is to offer a tutorial that allows the researcher to 
understand both the theory and empirical aspects of the GMM method.  
Methods: we discuss the GMM concepts, forms of estimation, and 
limitations associated with the method. As a way of illustrating the method, 
we use two applications in the area of empirical finance. The first application 
is the estimation of the parameters of a consumption-based asset pricing 
models; the second is the estimation of the parameters of the evolution of 
the interest rate in continuous time. The data and codes in R are provided as 
online appendices. Conclusion: the GMM method can be used in problems 
where other methods such as maximum likelihood are not feasible, or even 
when the researcher wants to estimate a model partially specified.

Keywords: GMM; asset pricing; interest rate.
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INTRODUCTIONINTRODUCTION

Hansen (1982) introduced1 the generalized method 
of moments (GMM) and made significant contributions to 
empirical research in finance, in particular in asset pricing. 
This method has since been used to estimate parameters in 
models for which only moments are available. 

Historically, as Jagannathan, Skoulakis and Wang 
(2002) recall, before the rise of GMM, the main method 
used to estimate asset pricing was the maximum likelihood 
estimator (MLE). However, asset pricing parameter 
estimation with MLE presented many difficulties, limiting 
its usefulness. First, it was necessary to derive a test to 
see whether the model was poorly specified. In addition, 
adopting some form of linearization of the model was 
common since asset pricing models are generally nonlinear. 
Finally, the researcher needed to define hypotheses about 
the joint distribution of the model’s variables. When the 
hypothesized distribution is not corroborated by the data, 
the estimated parameters could be biased, even in large 
samples. As Cameron and Trivedi (2005) explain, we 
know that MLE is asymptotically efficient under certain 
conditions.

The main condition for asymptotic efficiency of 
MLE is that the likelihood function is correctly specified. 
This means that the true data generating process (DGP) is 
known, and the parameters are perfectly identified.

GMM, in turn, appears to be a viable alternative, 
since it allows the estimation of model parameters, linear 
or not, from a partially specified model. It thus circumvents 
the MLE method’s difficulties. The convenience of not 
assuming a priori a joint distribution of variables, and the 
generality of GMM, which allows it to be used in many 
problems, are briefly the two main reasons why GMM has 
become so popular in empirical finance re-search. 

Despite its advantages, GMM may not be as efficient 
as the MLE method. That is, the standard error of the 
estimates can be much larger than that found using MLE, 
for models that can also be estimated by MLE. 

Given its broad applicability, this tutorial article aims 
to introduce and explain GMM to researchers, and to help 
them use it. Our first empirical example deals with asset 
pricing and its relationship with an individual’s aggregate 
lifetime consumption. The second exam-ple describes 
short-term interest rates in continuous time. Although they 
may seem to be restricted to the field of finance, or even 
dated, these models are still used and adapted to reflect 
preferences of individuals, whose consumption and future 
expectations take into account values, such as social well-
being, or reducing the environmental impacts of econom-ic 
activities. 

FROM THE METHOD OF MOMENTS TO THE FROM THE METHOD OF MOMENTS TO THE 
GMMGMM

The modern treatment of GMM was formalized 
by  Hansen (1982) based on the concepts and methods of 
Amemiya (1977) and Gallant (1977). 

The starting point for introducing GMM is to 
understand how the method of moments works, and how 
GMM actually changes to handle the more general case. In 
both cases, the formulation begins with a moment condition 
defined by economic or statistical theory. For example, for 
the first moment of a random variable X, with population 
mean μ, we have the following moment condition:

In turn, given a sample , we can rewrite 
Equation (1) through its empirical counterpart:

Hence, the moment method estimator for μ is 
obtained by:

The construction above can be extended to the 
linear regression model , where β is a vector of 
dimension K×1. Suppose the error u, conditioned to the 
regressors, has a mean of zero. This generates the following 
conditional momentum condition:

Combining the foregoing with the law of iterated 
expectations,2 we can write unconditional expectations:

Using the empirical counterpart of the moment 
condition, we can write (6) as:

Solving (7), we obtain the moment estimator:

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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Thus, the OLS method can be seen as a particular 
case of the method of moments. Further, the example 
above could be generalized to handle the case where x could 
be correlated with u. Then, the OLS estimator would be 
inconsistent. However, with the method of moments, it 
would be enough to include a new moment condition based 
on the existence of instruments z that are uncorrelated with  
u, that is, .

To find the estimator, we simply set dim(z)=K, that 
is, that the number of instruments is exactly equal to the 

number of regressors. In this case  

which represents the linear method using instrumental 

variables.

The idea behind using instrumental variables is to find 
a variable that carries only the ‘good’ variation contained in  
x and helps explain y, albeit indirectly.

This instrument must pass the test of relevance. That 
is, when regressing x on the other variables, the coefficient 
of z must be statistically significant. In other words, z is 
significant in explaining x even considering the effects of 
other regressors.

The instrument must also satisfy the exclusion 
condition: cov(z,u) = 0. Since the error term u, by definition, 
is unobservable, no test can guarantee that the instrument 
meets this condition. Therefore, it is up to the researcher to 
theoretically justify using the chosen instrument to address 
the problem. In the end, given the moment conditions 
above, the instrumental variable method can also be seen as 
a specific case of GMM.

Hansen's (1982) contribution was to generalize the 
concept above to more general moment conditions than 
that expressed in Equation (1). Accordingly, the general case 
can be written using the set of R moment conditions:

where f( ) is an R×1 vector of real functions, θ is a 
K-dimensional vector containing all parameters of interest, 
xt is a vector with observable variables, and zt is a vector of 
instruments.

The problem that GMM proposes to solve is how, 
from a sample , of population X, the parameter 
θ can be estimated, having specified only the moment 
condition described in (4).

Again, the empirical counterpart of the R moment 
conditions defined in (9) is:

To identify the parameters in this model, we must see 
how R and K are related. When R = K, the model is exactly 
identifiable. We can obtain the estimator of the moments 
method,  , by solving . On the other 
hand, when R < K, the model is under-identified, and it is 
impossible to solve . Finally, when R > K the 
model is over-identified, in which case the estimator of the 
generalized method of moments,  becomes important.

When the model is over-identified (R > K), we 
have more equations R than unknown K. Therefore, it is 
impossible to find a vector  to make the entire set of R 
moments exactly equal to zero. The solution to this problem 
consists of finding the vector of parameters  that puts  
as close to zero as possible (this distance concept depends 
on the norm adopted; here, the Euclidean norm is adopted, 
L2). Additionally, since not all R moment conditions can be 
satisfied, we adopt a positive definite symmetric matrix WT 
to weight these conditions properly. The method thus seeks 
to find the vector  such that . The GMM 
estimator for  seeks to minimize the following quadratic 
form:

Usually, the solution to (11) is not available 
analytically, so it ends up being found using numerical 
methods3.

Regarding desirable properties of the estimator, 
any positive symmetric WT weighting matrix meets the 
conditions to guarantee that the estimator is consistent. 
Consequently, there are as many GMM estimators as there 
are choices for the WT weighting matrix. However, estimator 
efficiency is not obtained for any arbitrary WT matrix, only 
for the case where WT = S-1, when S-1 represents4 the long-
run covariance matrix of the moments. These, in turn, must 
also be estimated through .

Estimating  presents the challenge of how to 
construct a consistent estimator for S( ), as well as the 
dependent relationship between  and . If we 
initially assume that  is known, the optimal weighting 
matrix  can be estimated using the method of 
heteroskedasticity autocorrelation covariance (HAC), 
which is robust to the presence of heteroskedasticity and 
autocorrelation.

(8)

(9)

(10)

(11)
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Solving Equation (11) depends on the method 
adopted to estimate the weight matrix . This, however, 
also depends on . This dependence is undesirable since 
inference on  relies on how we represent the weight 
matrix WT. To address this, several methods have been 
developed to try to solve (11). The first alternative, the two-
step method (two-step GMM) initially defines an arbitrary 
matrix WT , often represented by the identity matrix, and 
then obtains the value of . Once we have this value, we 
use it in the functional form of  to find the 
solution .

Although, in theory, the two-step GMM has good 
statistical properties, empirical studies show that its behavior 
in small samples tends to be unsatisfactory. To circumvent 
its limitations, Hansen, Heaton and Yaron (1996) propose 
two new methods for estimating .

The first alternative involves a natural evolution of the 
two-step method, in which the process is repeated n times 
until it reaches a convergence criterion. This is the iterative 
method (iterative GMM). A second alternative is the 
continuously updated estimator method (CUE GMM), in 
which the matrix   and  are estimated simultaneously. 
In addition to improved performance in small samples, 
another advantage is that this method is invariant to certain 
types of transformations and normalizations that can be 
performed with the data (Hall, 2005). On the other hand, 
the optimization problem to be solved is highly nonlinear, 
and therefore extremely sensitive to initial conditions. For 
this reason, the initial conditions of the CUE estimator 
usually use a result of earlier estimation via the two-step 
method or the iterative method.

Finally, GMM minimizes a quadratic function that 
contains the moment conditions properly weighted by WT.; if 
these moment conditions are correct, i.e., , 
then . This result naturally leads to a model 
specification test, known as the J test, defined as:

Rejecting the test indicates that the model is poorly 
specified, because some moments are not statistically equal 
to zero. That is, the model is rejected, since the moment 
condition is not valid. 

The number of moments to include in the 
specification is not easily determined. Nevertheless, Hall 
(2005) recommends that for small samples, with up to 100 
observations, we can include up to five moments more than 
the number of parameters to be estimated.

APPLICATIONSAPPLICATIONS

Having introduced the main concepts of GMM, 
in this section we present two applications based on well-
known studies. 

For our data, we opt to make use of public data from 
previous research (Chan, Karolyi, Longstaff, & Sanders, 
1992; Verbeek, 2004). This facilitates the reproduction of 
analysis and comparison of results. In addition, this tutorial 
aligns with the concepts and suggestions of Martins (2021), 
observing best practices in research and embracing the 
concept of open data.

We invite interested readers to use the R codes available 
in the online appendix to replicate all results presented in 
this article and adapt them in their own research.

Estimation of consumption-based asset 
pricing models (CCAPM)

In their groundbreaking article Hansen and 
Singleton (1982) develop the GMM model from the formal 
construction of Lucas (1978). This model aims to explain 
aggregate movements of consumption and asset returns. 
The framework to support using aggregated data is based on 
positing a single representative agent who wants to choose 
the optimal consumption path by maximizing the present 
value of the expected utility of consumption:

subject to budget constraint:

where Ft represents the set of information available at time  
t, qt+s is the individual’s wealth at the end of period t + s, rt+s 
is the rate of return obtained from investing in a set of assets, 
and wt+s represents labor income.

The agent can invest in N risky assets, which have 
a gross return of ri,t , and in a risk-free asset that has a rate 
of return rf,t . Solving the consumption and intertemporal 
asset allocation problem involves determining the first order 
condition of Equation (13), subject to constraint (14), 
producing the following Euler equation: 

(12)

(13)

(14)

(15)
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where  is the consumer’s marginal utility.

Euler equation imposes restrictions on the joint 
movement between consumption and the price of financial 
assets, helping us understand the behavior of these two 
variables.

In turn, the moment condition to estimate the 
parameters via GMM requires adopting a functional form 
to represent this agent’s utility. The simplest case involving 
consumption-based asset pricing models is where the utility 
function belongs to the class of functions with constant 
relative risk aversion (CRRA):

where the parameter γ represents the investor’s risk aversion 
coefficient.

So, using Equation (17) in Expression (16) we obtain:

Assuming that , the law of iterated expectations 
allows us to write the unconditional moment expectation as:

In general, the instrumental variable zt may include 
a constant, equivalent to the unconditional expectation of 
the Euler equation, and macroeconomic variables used to 
describe the set of information available to the representative 

agent at the moment when he makes his decisions on 
optimal consumption and investment.

Initially using zt = {1} as an instrument, Equations 
(18) and (19) represent a set of N+1 moment conditions 
that allow us to identify the parameters . We can 
write them in the general form of the GMM model:

To estimate the CCAPM model using GMM, we 
use a set of 10 portfolios. These portfolios are built based 
on the market value of shares (size-based) traded on the 
NYSE. Portfolio 1 contains the return of the  smallest 
10% of companies listed on the NYSE, while portfolio 
10 is formed by the largest 10% of companies listed on 
the NYSE. The risk-free asset is represented by the three-
month Treasury bill (T-bill) rate. 

We use monthly data from February 1959 to 
November 1993. Portfolio data are obtained from 
the Center for Research in Security Prices (CRSP). 
Consumption data consist of the amounts spent on 
household consumption of non-durable goods and 
services in the US economy. 

Results of the estimation by GMM (Tab. 1) are as 
follows:

Table 1 shows that the coefficients are statistically 
significant in all forms of estimation. While the estimate of 
the parameter β is reasonable, according to economic theory, 
the value of the risk aversion coefficient γ is excessively high. 
However, the J test does not reject that the model is poorly 
specified for any of the estimation methods.

(16)

(17)

(18)

(19)

(20)

Table 1. CCAPM Model.

Two-step GMM Iteratitve GMM CUE GMM

Coefficient Std. error Coefficient Std. error Coefficient Std. error

β 0.81*** 0.12 0.83*** 0.12 0.70*** 0.12

γ 62.08* 33.79 57.40* 34.22 96.19*** 31.62

J-stat 4.54 p-value 0.87 5.76 p-value 0.76 5.14 p-value 0.82

Note. Models estimated with the instrument zt = {1}. Standard error is calculated using the HAC estimator of Andrews (1991). ‘Two-step’ is the two-step estimation method 
proposed by Hansen (1982). ‘CUE’ and ‘Iterative’ are, respectively, the continuous updating and the interactive methods proposed by Hansen et al. (1996). *** denotes 
significance at 1%. ** denotes significance at 5%. * denotes significance at 10%.
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In an attempt to obtain a more reasonable parameter 
γ, a second exercise uses other variables as instruments — for 
example, . . We now have 2(N+1) moment 
conditions, as shown below:

Simplifying the notation in (21) using the Kronecker 
product gives us another way to represent the moment 
conditions:

The GMM estimation with the same three criteria, 
using the robust error, gives the following estimation 
results (Tab. 2).

Again, the parameter β proves to be economically 
and statistically significant. However, the parameter γ 
ends up being estimated with a negative value, which is 
inconsistent. In this case, the J test correctly rejects the 
proposed model specification.

However, having observed that the risk aversion 
parameter found for the American economy was excessively 
high, Mehra and Prescott (1985) coined the expression 
‘equity premium puzzle’ (EPP), and opened a fruitful new 
area of research. Since then, research has undertaken to 
modify the original problem and find the best value for 
the risk aversion parameter. Much of this research relies 
on proposing alternative forms for the utility function, as 
discussed in detail by Campbell (2018).

For the Brazilian economy, some authors have sought 
to empirically evaluate the existence of the EPP, among 
them Issler and Piqueira (2002) and Cysne (2006). Unlike 
those from the US, Brazilian data on different functional 
forms for the utility function do not support the existence 
of the EPP, except as found by Cysne (2006). 

Another way of using Equations (18) and (19) is to 
compare expected returns predicted by the model with the 
return realized for each portfolio. To do this, we use the 
concept of the stochastic discount factor (SDF) identified 
by this model:

Advantages of using the SDF include: (a) the ability 
to describe a large class of asset pricing models with just one 
representation; and (b) a general and unified way to study 
and analyze variation in the expected return of different 
assets. Therefore, using the SDF representation, we can 
obtain the decomposition of the expected return for this 
model. Starting from:

we obtain:

(21)

(22)

(23)

Table 2. CCAPM Model,

Two-step GMM Iterative GMM CUE GMM

Coefficient Std. error Coefficient Std. error Coefficient Std. error

β 0.91*** 0.03 0.98*** 8.83E-04 0.98*** 8.74E-04

γ 33.9*** 8.28 -1.25*** 0.38 -1.23*** 0.372

J-stat 133 p-value 0.00 30.2 p-value 0.067 30.2 p-value 0.067

Note. Models estimated with  . The standard error was calculated using the HAC estimator of Andrews (1991). ‘Two-step’ is the two-step estimation method 
proposed by Hansen (1982). ‘CUE’ and ‘Iterative’ are, respectively, the continuous updating and the interactive methods proposed by Hansen et al. (1996). *** denotes 
significance at 1%. ** denotes significance at 5%. * denotes significance at 10%.

(24)

(25)
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One implication of Equation (25) arising from 
consumption-based models is that assets that have positive 
covariance with the consumption growth rate must offer a 
higher rate of return so that, in equilibrium, the investor 
chooses these assets for his portfolio.

Additionally, we can investigate the model’s quality 
by calculating the pricing error, which consists of comparing 
excess returns predicted by the model to those observed.

Figure 1 shows the excess realized return and the 
excess return predicted by the model for all 10 portfolios. 

For model-predicted returns, we follow Cochrane (1996) 
suggestion and use the parameters estimated in one-step 
procedure, having assumed that WT is the identity matrix.

An analysis of Figure 1 confirms that the model’s 
performance is not satisfactory, since it is unable to explain 
cross-sectional variation observed in excess return. In 
particular, the portfolio formed by the smallest 10% of firms 
is the one that most deviates from the 45° line. Therefore, 
the consumption-based asset pricing model is also unable to 
solve the size-effect pointed out by Banz (1981).

Figure 1. Dispersion between observed excess return and the excess return 
predicted by the CCAPM for 10 stock portfolios (size-based).

Interest rate model estimation

A second use of the GMM method is that of Chan, 
Karolyi, Longstaff and Sanders (1992), who seek to estimate 
the parameters of the stochastic differential equation (SDE) 
used to describe the dynamics of the short-term interest rate 
in continuous time:

where the parameter κ represents the speed with which the 
rate moves toward the long-term mean and  the long-term 
mean.

Or equivalently,

In this representation,  and . Specification 
(26) encompasses the following models, according to the 
restriction in the parameters: (a) Brownian motion with 
drift (β = 0 and γ = 0); (b) Ornstein-Uhlenbeck (or Vasicek) 
(γ = 0) ; and (c) Cox-Ingersoll-Ross (γ = 1/2).

The derivation of the moment conditions uses the 
Euller-Maruyama discretization to obtain the discrete-time 
version of Equation (27), thus:

with

 and 

and term ϵt+Δt describes a standardized normal random 
variable.

(26)

(27)

(28)
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The MLE method cannot be used to estimate 
the model, since the distribution of increments depends 
on the value of γ. When γ = 0, the increments have a 
normal distribution, and when γ = 1⁄2 they have a gamma 
distribution.

In turn, GMM provides the econometric conditions 
necessary to estimate the models, since (28) enables us 
to write the moment conditions. Chan et al. (1992) use 
zt = (1,rt) as instruments. With this, we can write the 
following moment conditions:

Once the model is exactly identifiable, we obtain the 
GMM estimator for θ = (α,β,σ,γ)' by solving . 
The weight matrix WT becomes redundant.

We use the same data as Chan et al. (1992): monthly 
data for the average bid-ask spread implicit in the 30-day 
T-bill for the period from June 1964 to November 1989, 
available from CRSP. Since the data are monthly, the interval 
is defined as Δt = 1/12.

Following are the results (Tab. 3).

Table 3. Unrestricted CKLS model.

Coefficient Standard error
α 0.042** 0.019
β -0.607* 0.350

σ 1.324 0.956

γ 1.505*** 0.279

Note. The standard error is calculated using the HAC estimator of Andrews (1991). 
*** denotes significance at 1%. ** denotes significance at 5%. * denotes significance 
at 10%.

In addition to these two examples, a classic reference 
for the GMM estimation is by Arellano and Bond (1991), 
whose estimator5 is  known as GMM in differences (GMM-
Dif ) or AB-GMM. The estimator was developed in a 
dynamic panel data context, that is, a fixed-effect model 
including the dependent variable in the lagged form as a 
regressor:

for and 

The inclusion of the lagged term yit-1 generally implies 
that the regressor is not strictly exogenous, since the lagged 
variable is usually correlated with the error term uit, giving 
rise to the so-called dynamic panel bias, as Nickell (1981) 
argues. This bias makes estimation by OLS unfeasible and 
justifies using GMM estimators.

Despite its merits, the AB-GMM estimate has known 
deficiencies. In particular, (a) if the dependent variable yit 
has significant persistence, ρ≈1; (b) in the case of panel data 
in which the time dimension T has many observations, 
the number of instruments required grows substantially, as  
T/(T - 1)/2 instruments are required.

LIMITATIONS OF GMMLIMITATIONS OF GMM

Although theory provides the conditions to claim 
that the GMM estimator is consistent, efficiency and bias 
fundamentally depend on the choice of moment conditions 
and the choice of instruments. 

Asymptotic properties are well documented in 
Hansen's (1982) seminal paper, but the properties for finite 
samples are not fully known. The choice of right instruments 
is an ongoing research agenda. So-called ‘weak instruments,’ 
that is, variables that are weakly correlated with the variables 
of interest, represent some of the difficulties that may arise 
in finite samples. In GMM, weak instruments correspond to 
the weak identification of some or all the model parameters. 

Table 4. Restricted CKLS model — Two-step GMM.

Coefficient Standard error
α 0.023 0.016
β -0.269 0.287

σ 0.082*** 0.007

γ 0.5 -

J-stat 5.13 p-value: 0.023

Note. Model estimated with γ = 0.5. Standard error is calculated using the HAC 
estimator of Andrews (1991). ‘Two-step’ is the two-step estimation method proposed 
by Hansen (1982). *** denotes significance at 1%. ** denotes significance at 5%. * 
denotes significance at 10%.

These results are similar to those of Chan et al. (1992). 
In particular, the coefficient γ is approximately equal to 1.5 
and significant at 1%. Since the model is exactly identified, 
the J test is equal to zero by construction.

A second exercise consists of estimating the restricted 
model CIR SR: we impose γ = 1/2, and estimate the model 
proposed by Cox, Ingersoll and Ross (1985). In this case, 
we have an over-identified model, and the weighting matrix 
WT, becomes relevant (Tab. 4).

The J test is rejected at a significance level of 5%, 
indicating that the model is poorly specified. This is an 
intriguing result, since the unconstrained model estimates 
the parameter γ ≈ 1,5.
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Therefore, the researcher must be careful when 
selecting instruments. Stock, Wright and Yogo (2002) review 
recent developments in instrument choice and impacts on 
the quality of estimation in finite samples. 

In addition to questions about the choice of 
instrument, a second limitation of GMM concerns the 
moment condition, in particular when: (a) the model 
moment condition cannot be obtained in an analytical form 
or presents a functional form that is too complex to evaluate; 
(b) the moment condition depends on the behavior of an 
unobservable latent variable; or (c) the moment condition 
is derived from censored variables, and therefore, they are 
partially observed by the researcher.

To overcome the problems described above, a new 
class of estimators is proposed, called the simulated moments 
method (SMM), developed from the GMM model. Early 
contributors include McFaden (1989) and Duffie and 
Singleton (1993). 

Conceptually, SMM uses simulations to approximate 
the moment condition that is unavailable in the analytical 
form. Thus, it allows parameters to be estimated in a similar 
way to GMM. The challenge associated with the SMM 
model, compared to GMM, is that the process of estimating 
parameters becomes computationally intensive. For a set 
of simulations, the parameters must be re-estimated until 
convergence occurs. 

Using simulations to approximate an analytical result 
that is difficult to obtain also led to the development of the 
simulated maximum likelihood method (SML). Pedersen 
(1995) and Brandt and Santa-Clara (2002) independently 
propose that the likelihood function can be numerically 
approximated through simulations. The advantage of 
simulation methods is the possibility of including complex 
structures in a relatively straightforward way, something 
that is not trivial when devising an analytical solution. 
For example, Genaro and Avellaneda (2018) estimate via 
SML the parameters of a continuous-time model in which 
jumps occur endogenously, which cannot be estimated by 
maximum likelihood because the intensity of the jump 
process is a latent variable.

FINAL REMARKSFINAL REMARKS

One difficulty for a reader encountering GMM 
for the first time is that it needs the moment conditions 

to be defined. These are different for each model, and can 
be confusing. The purpose of this tutorial is to present the 
method, step by step.

Precisely because each model has a specific moment 
condition, we present two relevant cases in the empirical 
finance literature that use GMM. These examples can help 
consolidate the reader’s understanding of the method. 

To complement this, we also consider using GMM 
in the presence of instrumental variables, as well as the 
theoretical limitations of the method. These limitations 
have motivated the development of alternatives, such as the 
simulated moments method (SMM). 

It is worth noting, again, that pricing models using 
the technique presented here are still widely applied. In the 
current market context, especially, it is extremely important 
to measure the impacts of purportedly sustainable 
investments made by corporations worldwide. 

Finally, the present tutorial article offers a view of 
the GMM method in line with the attitude expressed by 
Hansen (2013), allowing the researcher “to do something 
without having to do everything.”

NOTESNOTES

1. In 2013, Lars Peter Hansen was awarded the Sveriges 
Riksbank Prize in Economic Sciences in Memory 
of Alfred Nobel for his contributions to research in 
robust econometric methods, in particular for formally 
introducing the principle of “doing something without 
doing everything,” which motivated the development of 
GMM. Lars Hansen shared that year’s Nobel Prize with 
Eugene Fama and Robert Shiller.

2. In general, if , then  for every 
function g.

3.   In this tutorial, we adopt the gmm package available in  R. 
Due to the popularity of the method, standard statistical 
software includes GMM packages. Currently, R 's gmm 
package is being replaced by the package momentfit.

4.   The fact that the matrix S is inverted shows that moments 
of greater variance end up having a lower weight in the 
solution of (9).

5.  R’s dynpanel package allows the implementation of the 
estimator, as in Arellano and Bond (1991).
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