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Abstract. Since in Ukraine there are fines for imbalances in solar power 
generation in the “day-ahead” energy market, the forecasting of electricity 
generation is an important component of the solar power plant operation. To 
forecast the active power generation of photovoltaic panels, a mathematical 
model should be developed, which considers the main factors affecting the 
volume of energy generation. In this article, the main factors affecting the 
performance of solar panels were analysed using correlation analysis. The 
data sets for the construction of the forecasting model were obtained from 
the solar power plant in the Kyiv region. Two types of data sets were used 
for the analysis of factors and model building: 10-minute time interval data 
and daily data. For each data set, the input parameters were selected using 
correlation analysis. Considering the determining factors, the models of 
finding the function of reflecting meteorological factors in the volume of 
electricity generation are built. It is established that through models with a 
lower discreteness of climatic parameters forecast it is possible to determine 
the potential volume of electricity production by the solar power plant for 
the day-ahead with a lower mean absolute error. The best accuracy of the 
model for predicting electric power generation over the 10-minute interval 
is obtained in the ensemble random of a forest model. It is determined that 
models without solar radiation intensity parameters on the input have an 
unsatisfactory coefficient of determination. Therefore, further research will 
focus on combining a model of forecasting the day-ahead solar radiation 
with 10-minutes discreteness with a model for determining the amount of 
electricity generation. The determined predicted values of solar radiation 
will be the input parameter of the forecasting model described in the article
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INTRODUCTION
One of the largest sources of energy is the sun. Every year 
there is an increase in the exponential dependence of 
the electricity production of a solar power plant (SPP) 
in Ukraine [1]. According to [2], the main target parameters 
for the period up to 2035 include optimisation of the 
energy balance of the state, based on the requirements 
of security of energy supply and ensuring the share of 
renewable energy at 25%. A significant role is devoted 
to solar energy. However, with the development of re-
newable energy sources, there is a problem of ensuring 
the appropriate manoeuvrability of the power system. 
In [3], it is stated that the structure of the generating 
capacities of the Integrated Power System (IPS) of Ukraine in 
terms of ensuring effective frequency and power reg-
ulation in the power system is suboptimal. Among the 
reasons are the unregulated and variable operation of 
wind and solar power plants, aggravated by a lack of tools 
and approaches for forecasting electricity generation 
regimes.

According to the Law of Ukraine No. 1928-IX 
“Amendments to Certain Laws of Ukraine on Improving 
the Conditions for Supporting the Production of Electricity 
from Alternative Energy Sources” [4], in the day-ahead 
energy market, the fines for imbalances in the generation 
of SPP came into force since 2020. However, the Law 
does not provide a mechanism for short-term genera-
tion forecasting. There are no comments on databases, 
algorithms, techniques, and other grounds for effective 
day-ahead forecasting. In addition, Ukraine does not have 
an infrastructure base for a synoptic accurate short-term 
forecast for this field, which should be the basis for 
calculating the volume of generation, does not specify 
the degree of responsibility of third parties who provide 
data for forecasts, and there are no indications of the 
permissible accuracy of weather data for forecasting. At 
the same time, the Law imposes fines for actual hourly 
deviation from the projected schedules for the day-ahead 
and obliges the producer to be financially responsible 
for the imbalance of electricity to the Guaranteed Buyer.

That is why the issue of accurate forecasting of 
the possible electricity generation volume has become 
acute. However, solar energy forecasting is a rather dif-
ficult task, as it largely depends on climatic conditions 
that change over time. To overcome the above issues, it 
is important to use new intelligent methods to obtain 
reliable and accurate results. 

Today, Machine Learning Methods have attracted 
considerable attention from many researchers and devel-
opers in solar radiance and power generation forecast-
ing [5; 6]. Linear models based on the Autoregression 
method are mostly used to determine the radiation inten-
sity. This method is simple but not flexible. An improved 
autoregressive integrated model with a moving average 
for determining the monthly solar radiation based on a 
set of radiation and temperature data for previous periods 
was proposed in [7]. A novel solar radiation prediction 

approach that combines two models, the Auto Regres-
sive Moving Average (ARMA) and the Nonlinear Auto 
Regressive with eXogenous input (NARX) is presented 
in [8]. The effectiveness of combining a modification au-
toregression model and a convolutional neural network 
was studied in [9]. An empirical hybrid Autoregressive 
Integrated Moving Average (ARIMA) and Artificial Neural 
Network (ANN) approach shows a high correlation with 
experimental results and a relatively small error rate [10]. 
Deterministic and probabilistic forecasting of photovoltaic 
power based on a deep convolutional neural network 
is discussed in [11]. Also, recurrent neural networks are 
used for the hourly prediction of photovoltaic power 
output using meteorological information [12].

In addition, there are also some nonlinear meth-
ods based on time series. For example, a deep learning- 
based Photovoltaics (PV) power generation forecasting 
model based on Long Short-Term Memory (LSTM) model 
uses both outdated and forecast data by replacing the 
outdated weather data with the future weather forecast 
data during the testing phase for daily PV power generation 
forecasting [13]. In [14], the authors used a traditional 
recurrent artificial neural network and Support Vector 
Machine (SVM), based on a set of time series data, to 
increase forecasting accuracy for the next 24 hours. The 
special feature of time forecasting is that it considers the 
trend and seasonality of the predicted parameter. But 
the influence degree of the nature of changes in the  
values of climatic parameters in these models is mainly 
not considered. The question arises about the need in 
evaluating the application of other methods of Regression 
Analysis of Machine Learning, that will better account 
for the influence of disturbing factors on the further 
forecast through artificial neural networks. [15] presents 
Feature-Selective Ensemble Learning-Based Long-Term 
Regional PV Generation Forecasting. The Ensemble model 
that used simple multilayer perceptron and CNN with 
applied feature selection shows higher predictive power 
than the time series based single model. 

The purpose of the study is to develop a concept 
and methodology for building a mathematical model 
for forecasting the amount of electricity generated by 
solar panels. It can be done by feature selection for active 
power generation parameters and selection of an adequate 
mathematical model for determining the target value 
of the energy generation function based on actual data.

MATERIALS AND METHODS
Data for the analysis of electricity generation by pho-
tovoltaic facilities and factors affecting the solar power 
plant (SPP) were obtained from Dymerska SPP in the 
village of Velyka Dymerka, Kyiv region. The data consisted 
of more than 26 thousand samples collected from July 1, 
2020, to December 31, 2020, which characterize the 
operating conditions of solar panels with a capacity of 
9 MW.
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The data set consists of two types:
1. Weather condition data. The first part of the data 

consists of measured weather parameters such as tem-
perature, humidity, solar radiation, atmospheric pressure, 
wind direction and wind speed.

2. Data from metering devices on the amount of 
electricity produced.

The analysed dataset consisted of the actual value 
of the output electric power for 10-minute intervals (the 
meter transfers the generation value to the monitoring 
point with the discreteness of 10 minutes) and the mea-
sured climatic parameters for the appropriate period. 
The data of 10-minute discreteness samples also need 
to be aggregated into daily samples for forecasting elec-
tric power generation on a day ahead.

To estimate the actual value of the influence of 
each parameter on the target function and separately 
on each of the input factors of the model, a correlation 
matrix is used. It is a structured approach to ranking 
the importance of predictors or input variables at the 
output. The correlation coefficient for the sample is de-
termined from the equation [16]:

𝑟𝑟𝑥𝑥𝑥𝑥 =
∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − 𝑛𝑛�̄�𝑥�̄�𝑦𝑛𝑛
𝑖𝑖=1
(𝑛𝑛 − 1)𝑠𝑠𝑥𝑥𝑠𝑠𝑥𝑥

=
∑ (𝑥𝑥𝑖𝑖 − �̄�𝑥)(𝑦𝑦𝑖𝑖 − �̄�𝑦)𝑛𝑛
𝑖𝑖=1

√∑ (𝑥𝑥𝑖𝑖 − �̄�𝑥)2𝑛𝑛
𝑖𝑖=1 √∑ (𝑦𝑦𝑖𝑖 − �̄�𝑦)2𝑛𝑛

𝑖𝑖=1
 (1)

(2)

(3)

(4)

(5)

where n is the sample size; x and y are the sample means 
of the individual sample points x and y accordingly; sx 
and sy are the sample standard deviations for x and y 
accordingly.

The first task of this study was to determine the 
nature of the dependence of the output target function, 
i.e., the volume of electricity generation on the set of in-
put parameters (climate conditions) and to build math-
ematical models based on them. Thus, it is necessary to 
determine the amount of electricity generated (Y):

𝑌𝑌 = ∑𝛽𝛽𝑗𝑗𝑗𝑗𝜓𝜓𝑗𝑗(𝑋𝑋1, … , 𝑋𝑋𝑁𝑁)
𝑛𝑛

𝑗𝑗=1
 

where βjk is an unknown constant, when ψk(⋅) is the set 
of basic functions, at k∈{1,…,N}, X1,…,XN are the set of in-
put parameters (temperature, humidity, solar radiation, 
wind speed etc.).

The determination of active power generation 
from solar panels is possible by the methods of linear 
regression, ridge regression, lasso regression and random 
forest regression. For linear regression, the relationship 
between the data was built using linear functions, and 
the unknown parameters of the model were estimated 
from inputs. Using the linear regression model, it is pos-
sible to obtain a process model:

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + ⋯+ 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 + 𝜀𝜀 

where y is the target variable (the predicted value); X1,…,Xi 
are independent variables; β0 is the bias coefficient; 

β1,…,βi are coefficients of independent variables; ε is the 
error term (the residual).

The coefficient β0 is the predicted value of y when 
X is 0. The coefficients βi of the model were selected by 
the least-squares method (LSQ). This method minimizes 
the sums of the squares of the regression residuals.

In the case of increasing the number of model 
parameters, the linear regression does not differentiate 
between “important” and “less important” predictions in 
the model. So, it includes all variants. The model will be 
retrained, and it will be difficult to find unique solutions 
after. There will also be issues with the multicollinearity 
of data.

One of the solutions to the multicollinearity issue 
is to use L2 regularisation. Ridge regression belongs to 
a class of regression tools that uses L2 regularisation. 
L2 regularisation adds an L2 penalty, which is equal to the 
square of the value of the coefficients. All coefficients 
are reduced by a coefficient (so none are excluded) [17]: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =∑(𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1⏟        
𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙

+ 𝜆𝜆∑𝜔𝜔𝑖𝑖2
𝑘𝑘

𝑖𝑖=1⏟      
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃

 

where yi is the actual value; ŷi is the predicted value; λ is 
a non-negative tuning parameter; ωj is the model weight.

Another modification of linear regression is lasso 
regression. In lasso regression, the loss function is modi-
fied to minimise the complexity of the model by limiting 
the sum of the absolute values of the model coefficients 
(the so-called L1-norm):

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∑(𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1⏟        
𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙

+ 𝜆𝜆∑|𝜔𝜔𝑗𝑗|
𝑘𝑘

𝑗𝑗=1⏟      
𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃

 

L1 regularisation will lead to zero weights of some 
features. So, the features selection is the result of the 
L1 regularisation, which produces sparse coefficients.

The influence of random fluctuations in a single 
dimension is weakened by averaging the results of ob-
servations. This can provide a more stable and reliable 
assessment. Algorithms of combining models present a 
similar concept. The construction of their ensembles is 
one of the most powerful methods of Machine Learn-
ing. They are often the best models for the quality of 
forecasts compared to other methods. One of the most 
common ensemble methods is the random forest method. 
Random Forest Regression builds several decision trees 
of a regression model during training and obtains an 
average forecast as input. The basic concept of a random 
forest is that a set of random trees find a solution in-
dependently of each other and act together, surpassing 
any solution obtained by a single decision tree [18].

The results of testing models obtained using the 
considered methods must be checked for the accuracy 
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(6)

(7)

(8)

(9)

(10)of obtaining forecasts for the generation of electricity. 
For this purpose, authors applied such criteria as mean 
square error (MSE), root mean square error (RMSE), mean 
absolute error (MAE), mean absolute percentage error 
(MAPE) and coefficient of determination (R2). The MAE 
measures the average distance between ŷ̂i and yi, i.e., 
directly describes the mean offsets. The R-squared (R2) 
measures the level of correlation between ŷ̂i and yi [19]. 
The MSE is a function that corresponds to the expected 
value of the error loss square. The MAPE is widely used 
as a loss function for regression problems and in model 
evaluation, because of its very intuitive interpretation 
in terms of relative error. In the case of SPP, it is normalised 
by power. Mathematical equations of indicators are for-
mulated as follows:

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁∑(𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2

𝑁𝑁

𝑖𝑖=1
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑅𝑅𝑅𝑅𝑅𝑅  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁∑|�̂�𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖|

𝑁𝑁

𝑖𝑖=1
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100
𝑁𝑁 ∑|𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖

𝑀𝑀0
|

𝑁𝑁

𝑖𝑖=1
 

𝑅𝑅2 = 1 − (
∑ (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1
(𝑦𝑦𝑖𝑖 − �̄�𝑦𝑖𝑖)2

) 

where N is the sample size; yi is the actual value; ŷi is 
the predicted value; ȳ̄ is  the sample mean; P0 is the rated 
power of the SPP.

Sometimes, the equation (9) is normalised by the 
actual value, i.e., yi, rather than P0, which has the disad-
vantage as a zero power value has a meaning when the 
SPP does not generate energy.

RESULTS AND DISCUSSION
The thermal parameter correlation matrix for the power 
generation data for the 10-minute intervals is shown 
in Figure 1a and for the daily intervals in Figure 1b. For 
daily intervals, the values of wind speed, temperature, 
humidity, and atmospheric pressure were averaged per 
day, and the total value per day was calculated for so-
lar radiation and generation. Weather condition data on 
10-minutes discreteness consists with measured wind 
direction parameters for each period. Otherwise, values 
of this parameter cannot be aggregated on a daily period. 
But for a daily active power generation can be used an-
other parameter – the duration of daylight. It is a time 
duration from sunrise to sunset.
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Figure 1. Correlation heatmaps for weather features and active power generation
for a) 10-minutes intervals data; b) daily intervals data

According to the results of the calculation, two 
parameters had positive correlations with the output 
power, namely solar radiation, air temperature on each 
data time discreteness. Also, such parameter as the du-
ration of daylight on daily data has a huge correlation 
with active power generation (85%) and the wind speed 
parameter on 10-minutes intervals has almost 50% cor-
relation. Relative humidity had a negative correlation. 

It should be noted that the wind direction is correlated 
with an atmospheric pressure of 99% on 10-minute 
discreteness. This dependence means that the value of 
one parameter changes almost completely as the value 
of another. Thus, these factors in the model will be dupli-
cated. Such a case could increase the error of the model 
and the possibility of retraining. Therefore, the “wind 
direction” parameter was excluded. If ensemble models 
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are built in combination with other climatic parameters, 
the atmospheric pressure factor can also affect them. 
However, there was no effect of atmospheric pressure 
on the model at a daily interval according to the correlation 
matrix and this factor was not included in the totality 
of output parameters. In this case, the degree of influ-
ence of most factors may vary depending on the season. 
Therefore, in further studies, both solar radiance and 
electricity generation values should consider seasonality 
and introduce the degree of importance of input parame-
ters depending on the age of the data.

The data for the six months which were used in 
the experiment were divided into three segments: a 
training data set (60%), a validation data set (20%), and 
a test data set (20%). A training data set was used to 
train the models and a five-time test was performed as 
a resampling procedure. The experiments were imple-
mented using the scikit-learn library in Python 3.8 which 
allows implementing the Machine Learning Methods.

Construction models should be analysed on the 
accuracy of forecasting active power generation. MAE, 
MSE, RMSE could be used to characterise the difference 
in solar forecasting performance attributed to spatial aggre-
gation [20]. A lower value of these indicators points to a 
higher quality of the forecast. For a day-ahead forecast, 

the value of these errors is important, as in absolute 
terms it shows how real data may differ from the fore-
cast. However, it is necessary to consider the variability 
of data in the short term. There can be a significant dif-
ference between the possible minimum and maximum 
value of absolute errors for certain climatic conditions. 
In particular, at night in the winter months, the genera-
tion of active electricity varies from 0 to 10 W per hour. 
At the same time, during daylight hours in the summer 
months, the generation can vary from a few hundred 
W to 50 W per hour. For this period, the absolute errors 
are higher. In this case, it is also advisable to use rel-
ative errors to assess the effectiveness of the model. 
Percentage errors have the advantage of being unit-
free, so they are frequently used to compare forecast 
performances between data sets [21]. MAPE metric can 
be used to compare the results from different spatial 
and temporal scales of forecast errors. Firstly, attention 
should be paid to absolute errors and the coefficient 
of determination. Then it is necessary to determine the 
MAPE value (Table 1). In case the model has a bad or 
insufficient forecast error of MAPE then it is better to 
choose another model with lower absolute errors [22]. 
Table 2 shows the results of the calculation of accuracy 
for all models.

Table 1. Interpretation of typical MAPE values

Table 2. Comparison of errors criteria for the results obtained for each of the tests from the solar radiation forecast

MAPE, % Forecast accuracy

Lower than 10% High

10-20% Good

21-40% Satisfactorily

41-50% Bad

More than 50% Unsatisfactorily

Model MAE, W MSE, W RMSE, W MAPE, % R2, abs.un.

10-minute interval

Linear regression 243.25 259514.05 509.43 11.12 0.912

Ridge regression 242.71 260008.21 509.91 10.86 0.915

Lasso regression 231.51 266892.45 516.62 11.56 0.916

Random forest regression 146.91 172864.78 415.77 9.34 0.941

Daily interval

Linear regression 28979.11 1.24e+09 35227.21 15.19 0.947

Ridge regression 25719.42 1.21e+09 34734.32 13.43 0.949

Lasso regression 35520.55 1.77e+09 42024.57 34.92 0.925

Random forest regression 25509.59 1.41e+09 37557.94 17.99 0.94

The simulation results showed that in the dataset, 
where a better correlation of model parameters was 

observed (more than 80%, and especially with the value 
of solar radiation of 0.96) with the target function, linear 
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regression and ridge regression had better quality. This 
is mainly attributable to the fact that the model did 
not require a combination of features, and the sample 
was smaller. Such results were obtained for daily intervals 
datasets. The best results in a sample of the 10-minute 
interval were obtained by the method of random forest 
regression, where the overall correlation was not so close.  
In this case, sorting features and randomly searching for 

the optimal model by combining and crossing features 
allowed to get a more accurate model. The combined 
features were more correlated with the target function 
than when they were alone. The results of the forecast 
of active power generation on July 1st and July 2nd ac-
cording to the initial parameters in the test sample and 
the real data are shown in Figure 2.
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Figure 2. The forecast of active power generation by the method of random forest regression
according to the initial parameters

Figure 2 shows that in general, the model predicts 
the amount of electricity generation accurately. The results 
in Table 2 also show that the models obtained at the 
daily interval have a higher coefficient of determination – 
0.95 (ridge regression), while on the 10-minute interval 
the model obtained by the random forest method was 

0.94. However, to determine which time period was more 
effective, it is necessary to compare the value of the 
obtained deviation of values of the original function. If 
in the random forest regression model for a 10-minute 
interval the MAE value is 146.9 W, then it can have the 
following maximum value per day:

𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑀𝑀𝑀𝑀𝑀𝑀10𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 6 ∙ 24 = 146.9 ∙ 6 ∙ 24 = 21 155[𝑊𝑊], (11)

because an hour has 60 minutes (six 10-minute intervals), 
and a day has 24 hours. 

Obtaining accurate predictions of solar radiation 
can be quite a challenge for certain measurement sites. 
Therefore, models determining the amount of electricity 
generation according to the climatic data defined above, 
excluding the amount of solar radiation, were found. On 

the daily interval, instead of its value, it is possible to 
apply data on the duration of daylight (the correlation 
coefficient according to Figure 1b is 0.92). The 10-minute 
model excluded the parameter of radiation. 

The values of the accuracy indicators of the models, 
excluding the solar radiation and including the duration 
of daylight at daily intervals, are given in Table 3.

Table 3. Comparison of criteria for results errors, excluding the solar radiation at 10-minute intervals
and including the duration of daylight at a daily interval

Model MAE, W MSE, W RMSE, W MAPE, % R2, abs.un.

10-minute interval

Linear regression 1290.65 3.19e+06 1787.89 62.34 0.494

Ridge regression 1288.024 3.2e+06 1788.72 61.47 0.494

Lasso regression 1476.25 3.86e+06 1963.55 72.64 0.39

Random forest regression 735.5 1.86e+06 1362.17 83.12 0.61

Daily interval

Linear regression 36549.11 1.24e+09 35227.21 27.75 0.793

Ridge regression 34719.42 1.21e+09 34734.32 16.88 0.823

Lasso regression 42521.52 1.77e+09 42024.57 21.14 0.82

Random forest regression 35512.19 1.41e+09 37557.94 15.95 0.827
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The forecast result shows that the complete elimi-
nation of the radiation parameter from the model did 
not allow obtaining an adequate accuracy of the target 
function (R2<0.75 and MAPE is 50% higher). The daily chart 
shows that the presence of the duration of daylight param-
eter made it possible to obtain a model with R2>0.75. 
However, it was significantly worse than the model with 
a solar radiation parameter (R2=0.827 compared to R2=0.949 
for a model with a solar radiation factor at the input). Ac-
cordingly, the MAE value is also lower by about 26% and 
MAPE has a higher evaluation error. The results showed 
the need for a solar radiation parameter in the model, 
and the daylight indicator did not replace it completely. 
Therefore, it is needed to predict solar radiation for a short 
period ahead. These results should then be used in a model 
for predicting active power generation from the data sets 
used at 10-minute intervals.

The next step in the research involves a forecast-
ing model based on neural networks of long short-term 
memory. This network may allow providing time series 
in conditions when there are time delays of unknown du-
ration between important events and when it is necessary 
to take into account the seasonality of parameters [23]. 
So, obtaining a model by random forest method for ob-
taining active power generation amount on 10-minutes 
intervals can be used for forecasting on a long short-term 
period by time series models. 

CONCLUSIONS
It is established that the main factors for building a 
model of power generation forecasting are solar radiation, 
temperature, humidity, and wind speed. The obtained mod-
els by using both 10-minute and daily intervals were quite 
accurate, as the coefficient of determination was more than 
0.94 for each of them. In addition, it was found that the 
models that used a 10-minute interval had a lower MAE 
value per day compared to the value from the daily interval. 
Therefore, the use of a model with a lower discreteness 
of the forecast of climatic parameters will determine 
the possible volume of electricity generation of SPP for 
the day-ahead with a lower forecast error. The best accuracy 
in models at a 10-minute interval was obtained in the 
ensemble model of a random forest, and among models, 
with daily interval, the best one was obtained based on 
linear regression and its regularisation. This results from 
the high correlation dependence of the main factors (so-
lar radiation, temperature, and humidity) with the target 
function.

The models that did not use solar radiation as one 
of the input parameters had an unsatisfactory value of the 
coefficient of determination (R2<0.75) and MAPE (>50%). 
By replacing the solar radiation parameter with the du-
ration of daylight on the daily interval, it was possible 
to obtain an adequate model (R2>0.75), although the 
MAE value increased by more than 25%. This indicated 
that the model should include solar radiation.
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Анотація. Оскільки в Україні діють штрафи за дисбаланс виробництва сонячної енергії на ринку електроенергії «на 
добу вперед», то виникає необхідність прогнозування виробництва електроенергії сонячною електростанцією. Для 
прогнозування виробництва активної потужності фотоелектричних панелей потрібно розробити математичну 
модель з урахуванням основних факторів, що впливають на величину генерації енергії. В статті виділення 
основних факторів, що впливають на роботу сонячних панелей, було здійснено за допомогою кореляційного 
аналізу. Набір даних для побудови моделі прогнозування було отримано на сонячній електростанції в Київській 
області. Для аналізу факторів і побудови моделі використовувалися два типи наборів даних: дані 10-хвилинних 
інтервалів часу та добові дані. Для кожного набору даних за допомогою кореляційного аналізу були обрані 
відповідні вхідні параметри. З урахуванням визначених факторів побудовано моделі знаходження функції 
відображення метеорологічних факторів від обсягу вироблення електроенергії. Встановлено, що моделі з 
меншою дискретністю прогнозу кліматичних параметрів дозволяють визначити можливий обсяг виробництва 
електроенергії сонячною електростанцією на добу вперед з меншою середньою абсолютною похибкою. 
Найкращу точність моделі прогнозу виробітку електричної енергії на 10-хвилинному інтервалі отримано в 
ансамблевій моделі випадкового лісу. Встановлено, що моделі, що не містять на вході параметру інтенсивності 
сонячного випромінення, мають незадовільний коефіцієнт детермінації. Тому подальші дослідження будуть 
зосереджені на поєднанні моделі прогнозування сонячного випромінення з 10-хвилинною дискретністю на 
добу наперед із моделлю визначення кількості виробленої електроенергії. Визначені прогнозовані значення 
сонячного випромінення будуть вхідним параметром описаної в статті моделі прогнозування

Ключові слова: сонячна електростанція, сонячне випромінювання, регресійний аналіз, регуляризація, точність 
моделі, коефіцієнт детермінації
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