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A B S T R A C T 

Developments presented in this paper are devoted to the monitoring of 

railway transport systems. Stochastic P-time Petri Nets (SP-TPN) are used for 

modelling. With the aim of improving the railway transport quality, we 

propose a new monitoring structure able to react to different situations 

without prior knowledge of the system's failure modes. The failure detection is 

based on taking into account the temporal aspect of the system to be 

monitored. In this context, the developed supervision approach, based on 

timed automaton, aims to detect, locate failures that affect system 

performance and reliability. Finally, to illustrate the effectiveness and 

accuracy of the dynamic monitoring approach, an application to realistic 

railway networks is outlined. 

© 2022 Published by Faculty of Engineeringg  

 

 

 

 

1. INTRODUCTION  
 

Monitoring refers all implemented means (operations, 

steps, functions and mechanisms) to track entity state 

(online, in real time) in order to deal with system 

failures. 

 

Over the years, railway traffic has become increasingly 

complex. In this transport system, journeys have 

temporal constraints which must be strictly adhered. 

The violation of these constraints can lead to traffic 

disruption and cumulative delays. As the railway 

industry evolved, maintaining operated equipment 

without failure became paramount. Traffic disturbances 

due to transport equipment breakdown were not 

tolerable anymore due to the increasing demand.   

The objective of this study is to propose a dynamic 

monitoring approach to enhance the equipment 

availability through early failures recognition. The 

parameter decreasing the equipment unavailability is the 

detection time. Starting from a controlled transportation 

system, this study focuses on the supervision of the 

system's various activities. The developed approach 

consists to check that all travel and parking activities are 

performed within predefined deadlines in order to 

improve the railway system availability. This is 

achieved by minimizing the number of downtimes that 

disrupt rail traffic through monitoring the system 

sensors status.  

 

The primary tenet of the supervision approach is to 

detect and locate faults that may affect the safety and 

security performance of a railway transport system. The 
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developed monitoring strategy, based on timed 

automata, include all system's states taking into account 

various system functioning modes. The aim is to 

prevent detection lags and false alarms.   

Thereby for each operating time, the implemented 

strategy consists in monitoring the time interval linking 

the command issue and the end of the operation 

execution.  If the time between these two events is not 

respected, there is a failure symptom. A diagnostic 

operation is carried out to determine the observed 

problem root. In an unexpected failure, alarms are 

triggered 

 

This paper is structured as following. Section II 

introduces the state of the art. Section III outlines the 

studied railway transport system and presents its SP-

TPN model. Subsequently, the surveillance problematic 

of railway transport networks is approached. An 

implementation method of the dynamic monitoring 

approach is outlined. For each transport activity a 

dynamic model using timed automata and taking into 

account the functioning modes is developed. In section 

V, an application of the developed approach to the 

studied railway network is proposed. Lastly, a summary 

is presented with some prospects. 

 

2. STATE OF ART 

 
Rail transport systems must be supervised online to 

avoid potentially critical situations due to disruptions. 

These perturbations can affect the railway 

infrastructure, traffic management and can lead to a 

transport service declination. In this context, various 

research projects have been carried out on the 

monitoring of transportation systems to achieve time ( 

(Lee et al., 2020) (Mhalla et al., 2020) and improve the 

rail service quality (Wang et al., 2021) (Tsunashima et 

al., 2019). 
 

The authors in (Soilán et al., 2019) present the design of 

a public transportation monitoring system using 

Intelligent Transportation System which works in real 

time with an Android-based application.  The traffic 

accident monitoring system is able to automatically 

detect traffic accidents and emergency events during a 

trip. The advantage of this system is that there is 

accident information that is connected to the community 

service when there is a suspicious activity or 

emergency. Experimental result shows that the traffic 

accident monitoring system has a high performance 

with four parameters, namely accuracy, robustness, 

integration and convenience. 
 

The authors in (Rajes et al., 2021)   propose a traffic 

flow detection scheme based on deep learning on the 

edge node. In this context, a vehicle detection algorithm 

based on the YOLOv3 (You Only Look Once) model 

trained with a great volume of traffic data is suggested.  

After that, the DeepSORT (Deep Simple Online and 

Realtime Tracking) algorithm is optimized by retraining 

the feature extractor for multiobject vehicle tracking. To 

verify the correctness and efficiency of the framework, 

the vehicle detection network and multiple-object 

tracking network are migrated and deployed on the edge 

device Jetson TX2 platform. The test results indicate 

that the proposed model can efficiently detect the traffic 

flow with an average processing speed of 37.9 FPS 

(frames per second) and an average accuracy of 92.0% 

on the edge device 

. 

For railway inspection and monitoring, authors in 

(Handayani et al., 2019) explore the usage of the UAVs 

(drones) in railways and computer vision based 

monitoring of railway infrastructure. Employing drones 

for such monitoring systems enables more robust and 

reliable visual inspection while providing a cost 

effective and accurate means for tracks monitoring. By 

means of a camera placed on a drone the images of the 

rail tracks and the railway infrastructure are taken. On 

these images, the edge and feature extraction methods 

are applied to determine the rails. The preliminary 

obtained results are promising. 

 

The authors in (Chen et al., 2020) presents a highly 

sensitive means for railway monitoring based on 

vibration measurement.  Fiber Bragg Grating (FBG) 

accelerometers placed on sleeper have been employed 

as sensor heads, which significantly facilitated the field 

sensor installation work compared to the positioning on 

the foot of the rail. An optimized signal demodulation 

algorithm has been effectively used to extract from the 

accelerometer traces both the axle number and the 

average speed information. Excellent capability of the 

developed system to obtain both parameters has been 

demonstrated by the way of field trials carried out on a 

Belgian railway line, during its normal operation 

.  

All previous works are different from our labor. The 

study purpose is to monitor rolling stock by reviewing 

the travel and parking times in view of increasing the 

Electric Multiple Unit (EMU) availability. This is 

accomplished by studying the travel cycle time. To the 

best of our knowledge, such surveillance method has 

been never formalized for railway transport networks. 

Thus paper contributes to the state-of-the-art of railway 

monitoring problem and address a situation where the 

possession time is restricted. By investigating the 

presented monitoring strategy, it is possible to provide 

an answer for infrastructure managers of complex 

railway networks where there’s a growing demand for 

track use and increasing pressure to extend operating 

time and reduce infrastructure maintenance.  
 

The contributions of the present study are: 

(i) Development of a new monitoring approach 

based on the study of rolling stock travelling 

cycle time and the sensors states. 

(ii) Implementation of a system dynamic model 

based on timed automaton tool to check 

operating time. The developed dynamic model 

requires the knowledge of all system forbidden 

situations. 
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3. TUNISIAN RAILWAY NETWORK 
 

3.1 Presentation  

 
Tunisian National Railways Company (TNRC) is a 

public company, which is charged to operate, maintain 

and manage the national railway network. The TNRC 

manages the Sahel railway network. This railway line 

connects many villages in the Sahel from Mahdia to 

Monastir, fig. 1. With an average frequency of 50 

minutes, the Sahel Metro guarantees regular daily traffic 

between 5:00 am and 10:00 pm. 

 

 
Figure 1.  The Sahel Railway line 

 

3.2 Modelling of the railway transport system  

 

Definition 1 (Khansa et al., 1996): A SP-TPN system is 

a triplet< R, IS, IR>where: 

• R is a Petri net system, 

• IS : P → Q + × (Q +   {+}) such that ISi = [Li, 

Hi] with 0 Li Hi is the static interval 

associated to the place pi. 

• IR: P → Q + × (Q +   {+}) such that IRi = [i, 

βi] with  Lii βi Hi is the dynamical interval 

associated to the place pi. 

 

The main impartial is to build a model able to reproduce 

the railway traffic behavior. From the measurements 

reported by the Supervisory Control And Data 

Acquisition (SCADA) of the TNRC company, a SP-

TPN (S) model is proposed, fig. 2. The acquired S is 

used to the monitoring of the Tunisian Railway system.  

 

In SP-TPN model, a specific module (VU) is introduced 

for bi-directional segments, fig. 2, where: 

• The blue places p11 and p14 represent two 

resources added to avoid the train collision and 

the crossover of the two trains on the single 

tracks, 

• Green places indicate the direction of train 

circulation (p119, p120, p121, p122, p123 and 

p124). 

For each place of S, we denote ],,[
ij

e

ijij
HqL the lower 

bound of the time window, the expected sojourn time of 

tokens, and the upper bound of the time window, 

respectively.  

 

4. THE MONITORING MODULE 

 
The supervision approach proposed in this paper is based 

on a statistical analysis of the real measurements, 

collected by the SCADA system of the TNRC, to 

identify the time parameters of the SP-TPN model. The  

 

literature reveals three approaches for supervision 

transport systems which are cited: 

•  Monitoring integrated into the control, 

•  Separate monitoring of the control, 

•  A mixed approach (combination of the two 

previous approaches). 

 

In the first approach, the monitoring system is 

integrated with the control. It considers that abnormal 

operations must be known and incorporated with the 

control system. This supposes an absolute knowledge of 

all possible system evolutions. For diagnosis, the system 

must be able to associate to each failure probable 

causes. 

 

 In the second approach, the control and the monitoring 

system are separated. This detachment has the 

advantage of relieving control and the ability to 

implement new monitoring techniques. The main 

drawback is the conflicts generation between 

monitoring and control since they both act on the 

process. These conflicts arise from the segregation 

between normal and abnormal behavior. Indeed, what is 

normal for monitoring may be abnormal for control. 

 

The mixed approach is a compromise between the two 

previous ones; diagnostic and decision functions are 

separate while detection and recovery functions are 

integrated into the control. In this case, the control 

system defines the normal behavior, consequently any 

change not provided by the control model will then be 

considered as abnormal. The advantage of this approach 

lies in the fact that the limit between normal and 

abnormal behavior is established as soon as the control 

model is itemized. 
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For the monitoring of the rail transport system, our 

choice is focused on the third approach because of these 

major advantages over the other two approaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. SP-TPN model of the Tunidsian Sahel  Railway network 
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RAILWAY TRANSPORT SYSTEM 
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                       + 
Diagnostic 

SUPERVISION : + Recovery  

 + Emergency treatment 

MAINTENA

NCE 

PLANNING AND SCHEDULING 

4.1 Monitoring structure  

 
Some monitoring approaches found in the literature are 

based on the relationship between the control and the 

process (Banić et al., 2019), (Bianchini et al., 2020), 

while others are more linked to the dynamic evolution 

of the operational part (Priyanka et al., 2018), (Fedorko 

et al., 2018). In the case of rail transport networks, a 

failure can lead to traffic disruption and cumulative 

delays. Thus, the monitoring of the railway system is 

characterized by the monitoring of service time (travel 

and parking time). 

 

The tenet of this paper is the integration of monitoring 

tools into a scheduled railway transport system. The 

proposed monitoring module receives the information 

from sensors which represent the basic element for the 

fault detection and localization, fig. 3. In the proposed 

approach, the recovery and emergency processing 

functions are included in the supervision module. While 

the maintenance module collects information from the 

monitoring module and from the supervision module 

(statistics of breakdowns for example) in order to 

establish the maintenance scheduling, fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Proposed  monitoring structure  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Monitoring Module 

The only information at the input of the monitoring 

module is the sensor states associated to the railway 

transport system, fig.4. This module provides 

information to the maintenance and supervision 

modules. Information intended to the maintenance 

module is necessary for the recovery scheduling. The 

information intended for supervision module, such as 

faulty states and failure causes, is used to predict 

recovery actions. 

 

4.2 Operating time monitoring 
 

In transport system, the traffic duration is by hypothesis 

a variable which depends on the journey to be made. 

The idea is to associate to each railway equipment an 

average journey time.  Monitoring is then based on 

supervision of these times during metro ride. A failure is 

detected if this duration exceeds a fixed threshold. 

 

The tenet is to determine the threshold value noted:   

to optimize the detection time, fig. 5. Indeed, high 

thresholds do not allow detecting failure on time. On the 

other hand low thresholds trigger to many false alarms. 

The purpose of the surveillance approach is to identify 

failures with a minimum delay equivalent to the 

threshold in order to oversight and diagnosis time 

disturbance in the Sahel railway system. The detection 

times will be assessed to minimize false alarms and 

warn catastrophic situations that adversely affect rail 

traffic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Monitoring approach model  based on cycle 

time 

 

5. MONITORING OF THE SAHEL 

RAILWAY NETWORKS 
 

The developed monitoring function is a component of 

an overall monitoring process. Based on the information 

available on its operating modes, it aims to represent the 

sojourn time in the SP-PTN model. The tenet is to 

detect, locate and diagnose failures that may affect 

operational safety the studied transport system. 
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5.1 Effective sojourn time uncertainty 
 

To each sojourn time, two intervals are defined; normal 

and degraded. Beyond these intervals, the system is 

considered as faulty, fig. 6. Therefore, tree time 

intervals are defined: 

• Normal mode Ns = [𝑇𝑚𝑖𝑛
𝑥 , 𝑇𝑚𝑎𝑥

𝑥 ],  

• Degraded interval Ms= [0 , 𝐿𝑚𝑖𝑛
𝑥  [𝐻𝑚𝑎𝑥

𝑥 , 𝐻𝑐
x]  

• and  a faulty interval ] 𝐻𝑐
𝑥 , +, 

with  

𝐿𝑚𝑖𝑛
𝑥  ∶ the minimum travelling time, 

𝐻 𝑚𝑎𝑥
𝑥 : 𝑡he maximum travelling time, 

𝐻𝑐
x:   Crucial time. 

 

As soon as an event « x» occurs beyond the permissible 

limit (x [𝑇𝑚𝑖𝑛
𝑥 , 𝑇𝑚𝑎𝑥

𝑥 ]), the studied transport system 

switches to a degraded mode. If an event « x’» (x’ is 

posterior to x) occurs during its degraded operating 

interval, the system can switches back to normal mode. 

From this instance, two cases can be discerned:  

• x' = x+1; when the task x' is exactly executed 

after task x. In this case there is a false alarm. 

• x"=x; when the task x that caused the transition 

from normal to degraded mode is also the cause 

of the transition to faulty mode,  in  this case 

there  is a real fault detection. 

 

In transport system, there is a normal operating mode, if 

an event “x” belongs to NS interval. Otherwise there is a 

degraded mode. The system is faulty if the upper bound  

𝐻𝑐
𝑥 is exceeded.  

 

 
Figure 6. Operating mode 

 

 

 

 

 

 

 

 

 

 

5.2 System dynamic model 

 
The system dynamic model is created from the control 

model. This graph, fig. 7, represents all system possible 

evolutions. In fact, to each graph state is associated a 

clock.  Each one monitors the journey travel time. In the 

studied transport system, these clocks are always 

initialized at the outset of rail traffic. Lastly, from all the 

states, and considering control clocks activity, a 

dynamic model is created on the basis of the timed 

automaton tool, fig. 7. 

 

For failure detection, this monitoring approach is based 

on the instantaneous comparison between the process 

sensors states and the system behavior. Any behavioral 

deviation will be considered as an anomalous system 

situation. As long as an operation "x", belongs to the Ns 

interval, the monitoring module indicates system normal 

mode. Otherwise, it switches to the degraded/faulty 

mode, fig. 7. At the end of each task, the following 

algorithm is checked: 

If   x [𝑇𝑚𝑖𝑛
𝑥 , 𝑇𝑚𝑎𝑥

𝑥 ], there is a system normal mode. 

 Otherwise  

 if x  [0 , 𝐿𝑚𝑖𝑛
𝑥  [𝐻𝑚𝑎𝑥

𝑥 , 𝐻𝑐
𝑥] , there is a 

degraded mode system. 

Otherwise the system is in failure 

mode. 

 

5.3 Timed automata modelling  

 
Our focus is on the timed automaton as a tool for 

describing the transport system behavior. This section 

introduces a monitoring model based on timed 

automata. The presented model groups all system states 

and makes it possible to take into account the adapted 

operating modes.   

The system states are determined on the following 

operating modes: 

• The degraded and normal functioning modes 

are similar (same set of states-arcs), only delays 

will be stretched to the upper limit "𝐻𝑐
𝑥"of the 

degenerative interval Ms.  Whereas the failure 

mode will be considered as a global failure 

state. 

• Each operating time " x " exceeding the upper 

bound noted 𝐻𝑐
𝑥 ' will generated a switching of 

the studied system to the failure mode  

• From a degraded state, the system may revert to 

the normal mode, if the operational time is 

inside the normal functioning interval. 
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Figure 7. System dynamic model 

 



Proceedings on Engineering Sciences, Vol. 04, No. 3 (2022) 337-348, doi: 10.24874/PES04.03.011 

 

 343 

 
Finally, bearing in mind these conditions, two states 

( i and j) can be considered, fig. 8. 

− From each state “i” in normal mode, the 

system may transit to the next state in normal 

or degraded mode. The system can reach this 

state either from a degraded mode state,      

fig. 8a. 

− From each state “j” in degraded mode, the 

system can switch either to the next state in 

normal (resp. degraded or faulty) mode when 

the travelling time exceeds a critical value, 

fig. 8b. This same j state can be accessed 

either from the analogous normal mode state 

if the travelling time exceeds the 

corresponding value 𝑇𝑚𝑎𝑥
𝑥  or from the 

preceding degraded mode state. 

−  

 

 

 

 

 

 

 

 

 

a) i represents a normal mode state 

 

 

 

 

 

 

 

 

 

         b) j represents a degraded mode state 

Figure 8. Switching between the functioning modes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

5.4. Implementation of the monitoring model 

 
The recommended surveillance system is consists of a 

set of monitoring subsystems which operate 

permanently. These subsystems involve the supervision 

of the sensors states and the operating durations, fig. 9. 

 

6. ILLUSTRATIVE EXAMPLE: 

SIMULATIONS AND VALIDATION 
 

To assist the supervisor in recognizing traffic 

disruptions and alert travelers claims, an application of 

the dynamic monitoring approach to a railway network 

linking Mahdia and faculty stations is depicted, fig. 10. 

The tenet is the checking of a time constraint noted “A” 

by monitoring the travelling and staying time between 

metro stations. Let us take the example of the time 

constraint linking two events E1 (metro departure from  

Mahdia railway station: place p1) and E6 (arrival of 

metro to  faculty stand: place p6), fig. 10.  If the time 

constraint is checked, the functioning mode is claimed 

normally. Otherwise there is a traffic disruption. In this 

case study, the constraint “A” is defined as                   

𝐿𝑚𝑎𝑥
𝑥   A𝐻𝑚𝑎𝑥

𝑥 . 

 

According to SP-TPN, fig.10, the minimum travel 

duration ( 𝐿𝑚𝑖𝑛
𝑥 ) between the two railway stations is 696 

s whereas the maximum is (𝐻 𝑚𝑎𝑥
𝑥 ) is 984s. 

 

In the case of the metro's late departure from Mahdia 

station (departure at 05:26:55 see table 1), the global 

time constraint “A” is violated. This “D” delay 

disturbance (D= 105 seconds) occurring in p6 may imply 

a traffic disruption and lead to a degenerative mode. 
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Figure 10. Monitoring of the time constraint on railway network Mahdia-faculty station 

 

Table 1.  Planned  and measured times  

 

6.1 Simulation of the monitoring approach 

 
In the SP-TPN model, marks represent the metro 

position and the transitions firing correspond to metro 

crossing times.  The fig. 11 shows the metro position in 

the Sahel railway network (Y axis) over time (X-axis). 

The graph represents the metro positions dispersions. 

The dispersal rises due to the late departure of train 

from Mahdia station. Thus, the simulation illustrates 

that a metro, during its circulation, can have gaps 

reflected in failure and temporal disturbances in the 

operating times. These delays are depicted by a tokens 

scattering, fig. 11. 

 

 

 

 

 

 

 
Figure 11.  Mark Circulation in the places (Y-axis) with 

time (X-axis) 

 

6.2 Construction of the system dynamic model 
 

To build the system dynamic model, from the SP-TPN, 

fig. 10, to each graph state is assigned a clock set 

required to track the activities duration. In the studied 

railway network, to each transport and parking operation 

is allocated a clock.  

Station Planned time Real time 

T(k) 
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If a transport activity has not started or finished, no 

associated clock is assigned. The clocks are initialized at 

the beginning of each supervised activity. To create the 

transport system dynamic model, the procedure below is 

followed: 

In studied railway, each metro is assigned a clock “YM” 

for the tracking of the journeys and parking times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This clock is reset at each arrival in the metro station 

and restarted at each subway departure, fig. 12.  For 

example at the initial state noted (1), the clock “YM ” is 

initialized to check the parking time at the Mahdia 

station; if  YM falls within the normal interval N1,        

fig. 12, there is a normal operating mode. This refers in 

the SP-TPN model to a residence time "q1" belonging to 

the static interval IS1. This procedure is performed to all 

dynamic model states, based on automaton timed tool, 

fig. 12. 
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Figure 12. Timed automaton model for transport operations between Mahdia-faculty stations 
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Figure 13. Monitoring model of the studied rail transport network 
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6.3 Monitoring model 
 

In order to create a monitoring model from the dynamic 

model (corresponding to the normal functioning mode) 

and taking consideration of the degraded operation 

mode, the procedure is  to extend the journey duration 

to the time intervals noted M previously defined.          

Fig. 13, presents the monitoring model of the studied 

railway network.  

 

This is accomplished by applying the commutation 

criterion between the three system operating modes. 

Referring to the technical specification of the monitored 

transport system, a threshold tolerance margins  are 

set for each trip time. 

 

Note: 

To keep the graph as straightforward as possible, the 

following simplifications have been made:  

- the clocks assignments corresponding to each 

transition are recorded in the destination state after 

crossing. 

- the simultaneous crossing of two transitions is 

presumed to be not physically possible. 

 

In this monitoring model, all initial situations are 

depicted, fig. 13.  

 

These situations represent the system's state at the 

beginning of the railway traffic (state 1). 

 

From this state in normal mode, if an event “x” occurs 

during the normal operation interval, the system 

switches to the state (2) in the same mode, otherwise the 

system shifts to the state (1') of the degraded mode. The 

clock “Yx” continue to count the activity duration. From 

this state in degraded mode noted (1'), if an event arrives 

before the duration end, the system proceeds in 

degraded mode (state (2')). Otherwise, the system 

switches to faulty mode and required maintenance 

intervention. 

 

6.4 Monitoring approach validation 
 

The main objective of this section is to illustrate how the 

SP-TPN model, after identification, simulates the Sahel 

Tunisian railway network in nominal and degraded 

modes (with and without disturbances). Thus a temporal 

study based on simulation is intended. In this etude, 

marks represent the metro position and the transitions 

firing correspond to metro passage times. This study is 

spread over a period of 30 days and the main results have 

been reported in fig. 14. This figure, reports the 

distribution of the trains departure times in various 

railway stations, for March month simulated period, 

without threshold tolerance margins. It can be noticed 

that the passage times dispersion reflects successive 

disturbances appearance. 

 

As shown in figure 14, the dispersion rises with time: 

The dispersal is weak in the morning since the traffic 

ceases at night (see the histogram of the metro passage 

times at Mahdia station, transitions t1, fig. 14, up). 

 

 

Figure 14. Passage times of metro at transitions t1 (up) 

and t6 (down ) 

 

In order to mitigate false alarms and prevent 

catastrophic situations that affect rail traffic, the 

dynamic monitoring approach is implemented and a set 

of simulations with a threshold tolerance margins i 

(associated to each journey time) for the month of 

March has been gathered. The outcomes are shown in 

Fig. 15. Thus, from this figure it is straightforward to 

check that proposed surveillance strategy leads to 

satisfactory results since it allows minimizing detection 

times and prevents false alarms arising from temporal 

disturbances. 
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Figure 15. Passage times of  metro  at transitions t1 (right), t6 (left) with consdering threshold tolerance margins  

 
7. CONCLUSION  

The main objective of our study is to conceive a 

monitoring system able to detect, pinpoint and diagnosis 

any failure affecting railway traffic as soon as possible. 

A threshold tolerance margins related to the operating 

time is introduced in order to contribute to the railway 

traffic safety. 

 

The paper novelty is the developments of a monitoring 

model, supported by a set of process sensor states. The 

acquired approach is focused on the monitoring of travel 

operating time. In this framework, the system dynamic 

model, extracted from the control model, is used for 

failure detection. The application to a real transportation 

network highlights the significance of the surveillance 

procedure. 

 

The system dynamic model is carried out using the 

timed automaton tool, which is well fitted for operating 

time monitoring. The developed dynamic model 

provides the focus of our monitoring strategy. The tenet 

is to detect and locate failures that may affect the 

system's performance, safety and security. 

 

It has been shown that the detection of traffic 

disturbance is made by the acquaintance of the effective 

sojourn time which represents travel and parking time in 

the considered networks. 

 

Suggested further work 

 

As further research, we are currently developing with 

the engineers of the railway company a set of 

algorithms for computation and the optimization the 

tolerance thresholds. Further research with TNRC 

engineers  is focused on incorporating maintenance and 

repair strategy issues into the presented supervision 

approach. 

 

A second perspective that seems a priority is the 

diagnostic function as the monitoring model is restricted 

to the alarms detection and optimization. 

 

It would be interesting to extend the presented 

monitoring approach to other challenges, such as the 

supervision of city transport networks, to mitigate 

disruptions in the bus operating time. As further work, 

we aim to develop a dynamic monitoring approach for 

rail transport systems, without forecasting the recovery 

time. 
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