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A B S T R A C T 

In this paper, we present the ant colony optimization algorithm (ACO for short), 

which was used to solve gear box problem design. Biological fundamentals of 

ACO algorithm, as well as method explanation are presented. The pseudo code 

for this algorithm was written using Matlab R2018a software suite. At the end, 

the results obtained by ACO algorithm are compared to the results previously 

obtained by other algorithms.  
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1. INTRODUCTION 

 
In practice, optimization is used to find extreme values, 

either maxima or minima, of functions of single or 

multiple variables. The problems that are considered by 

this area of expertise must be precisely defined using the 

form of mathematical programming. 

 

To this day, several heuristic methods have been 

developed, and many new have been conceived. Each 

and every one of these methods has certain advantages 

and disadvantages. These methods draw inspiration 

heavily from natural processes and events. Examples of 

such methods include genetic algorithm, artificial 

immune system algorithm, ant colony optimization 

algorithm, bee colony optimization algorithm, and many 

others. 

 

In this paper, the ant colony optimization algorithm 

Kurapati and Azarm (2007), which is used for solving 

engineering problems, is applied. The engineering 

problem considered in this paper is that of a gear box 

problem design. The code for this algorithm was written 

in Matlab 2018a software suite.  

 

ACO algorithm was developed by Marco Dorigo (1992). 

This algorithm draws inspiration from the behavior of a 

colony of ants. Ants use pheromone paths or trails as a 

means of orientation, getting from point A to point B by 

traversing the shortest route. Whilst moving, ants mark 

the route through which they pass, leaving a pheromone 

trail behind. If many ants use the same route, the 

pheromone trail will become stronger, making the 

following ants to pick that very route. After each aunt 

traverses its path, the goal function checks the amount of 

pheromones at each point. 

 

2. ANT SYSTEM 

 
The way the ants find food in nature was not known for 

a long time, until it was discovered that when ants find 

food, they leave a trail of pheromones behind them. Other 
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ants, having felt the scent of pheromone, follow the same 

path to food, gather it, and ultimately return to the anthill. 

If the ant senses that a trail of pheromone has a stronger 

scent, that trail will be chosen. This is for two reasons: 

the first being pheromone evaporations, whilst the other 

is that the strength of the scent is directly proportional to 

the number of ants that traversed that path. This means 

that the more ants choose a given path, the bigger the 

probability the other ants will follow.  

 

If, perchance, there is an obstacle on the path that splits it 

into two inequal paths (Figure 1), the ants will not know, 

at first, which of the two paths is shorter. Therefore, there 

is an equal chance that either of the paths will be chosen. 

However, since one of the paths features a shorter path, 

that is where the pheromone trail will grow stronger, 

since the pheromone trail will evaporate faster on the 

longer path. Having sensed that the scent of pheromone 

is stronger on one side, more and more ants choose this 

path, making the rest of ants follow the same path as well. 

 

 

 
Figure 1. Basic ACO concepts (pheromone laying 

and shortest path searching) 

 

An example of choosing between two different paths 

can be numerically represented in time in a different 

manner (Figure 2). In figure 2.1, the existing links 

between cities and their respective lengths are shown. In 

figure 2.2, half of the ants takes the longer path, while the 

other half takes the shorter. In figure 2.3, after the first 

few ants take the shorter road and leave a pheromone trail 

behind, the following ants will most probably take the 

very same trail. If the key elements of the path are 

substituted by points, what this image comes down to is 

a problem that is very similar to the travelling salesman 

problem. 

 

 
Figure 2. Experiment with Argentinian ants 

 

Let us consider the travelling salesman problem. The 

number of cities to be traversed is n, while m is the total 

number of ants in the system, and bi(t) is the number of 

ants in city i at a given moment t. 

 

In general, each and every ant decides at moment t about 

his whereabouts at moment t + 1, and is moved to that 

location in the next iteration of the algorithm. In such 

manner, all ants will pass through all the cities during the 

course of n iterations. In this algorithm, after each of the 

ants moved in the current iteration, the values for 

pheromones are updated by multiplying the old value 

with the evaporation rate ρ, and adding the product to the 

trail of each and that took that route (Equations 1 and 2) 

 

𝜏𝑖𝑗(𝑡 + 𝑛) = 𝜌 ⋅ 𝜏𝑖𝑗(𝑡) + 𝛥𝜏𝑖𝑗                                      (1) 

 

𝛥𝜏𝑖𝑗 = ∑ 𝛥𝜏𝑖𝑗
𝑘𝑚

𝑘=1                                                           (2) 

 

The number of pheromones that an ant adds to a certain 

route is equal to 0 if the ant did not pass through that 

route. If the ant, o the other hand, did take that route, he 

leaves a certain amount of trail that is inversely 

proportional to the length of the tour, as is shown in 

Equation 3. 

 

𝛥𝜏𝑖𝑗
𝑘 =

𝑄

𝐿𝑘
                     (3) 

 

In Eq. 3, Q is a constant, while Lkis the length of the tour 

the k-th ant traversed. 

 

The probability of the next step is calculated based on 

Eq. 4: 

 

𝑝𝑖𝑗
𝑘 (𝑡) =

[𝜏𝑖𝑗(𝑡)]
𝛼
⋅[𝜂𝑖𝑗]

𝛽

∑[𝜏𝑖𝑘(𝑡)]
𝛼⋅[𝜂𝑖𝑘]

𝛽                                                (4) 

 

The previous equation is used only for cases where the 

ant has a path to take, meaning his taboo list does not 

contain all of the existing cities. α and β are parameters 

that govern the relationship between the trail and its 

visibility, whilst ηijis the visibility between cities i and j. 
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3. ANT COLONY ALGORITHM 

 
In the initial steps of the algorithm, the cities are to be 

created and placed, as well as initialization of pheromone 

trails is to be performed. After these steps, all of the ants 

are placed. During ant initialization taboo lists are created 

for each ant, and they are placed in their respective initial 

cities. What is to be noted is the fact that each ant has its 

own initial city. Therefore, this city is to be placed in the 

taboo list for that ant. 

 

What followsis iterations during which the ants move. 

After n iterations, taboo lists are full for all the ants, so 

the pheromone trail is updated. The ants are then placed 

anew in a certain initial city, and their respective taboo 

lists are emptied. This cycle of n iterations is repeated 

until user abort, or reaching the upper limit of cycle 

number. 

 

Flow diagram for ant colony optimization algorithm is 

shown in Figure 3. Standard ACO algorithm with its 

basic steps is shown in Figure 4. 

 

 
Figure 3. Flow diagram for ant colony optimization 

algorithm 

 
Figure 4. The pseudo code for Ant Colony 

Optimization 

 

4. GEAR BOX DESIGN 

 
Gear box, shown in Figure 5, that is used in this paper, 

is taken from Kurapati and Azarm (2007), but with three 

goal functions (multicriteria optimization model), as 

described in (Huang et al, 2006). As it is to be seen in 

Figure 5, the problem consists of 7 project variables.  

 
Figure 5. Gear box 

 

The physical meaning of design variables and objective 

and constraint function are given in Table 1. 

 

Table 1. The physical meaning of design variables and 

objective and constraint function 

𝑥1 Gear face width (cm) 𝑔2(𝑋) Contact stress of teeth 

𝑥2 Teeth module (cm) 𝑔3(𝑋) 
Transverse displacement 

of shaft 1 

𝑥3 
Number of teeth of 

pinion 
𝑔4(𝑋) 

Transverse displacement 

of shaft 2 

𝑥4 
Distance between 

bearing 1 (cm) 
𝑔5(𝑋) 

Generated torque 

constraint 

𝑥5 
Distance between 

bearing 2 (cm) 
𝑔6(𝑋) 

Generated torque 

constraint 
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Table 1. The physical meaning of design variables and 

objective and constraint function (continued) 

𝑥6 
Diameter of shaft 1 

(cm) 
𝑔7(𝑋) 

Generated torque 

constraint 

𝑥7 
Diameter of shaft 2 

(cm) 
𝑔8(𝑋) 

Generated torque 

constraint 

𝑓1(𝑋) 
Volume of the gear 

box (cm3) 
𝑔9(𝑋) 

Generated torque 

constraint 

𝑓2(𝑋) Stress of shaft 1 𝑔10(𝑋) Stress of shaft 1 

𝑓3(𝑋) Stress of shaft 2 𝑔11(𝑋) Stress of shaft 2 

𝑔1(𝑋) Bending stress of teeth   

 

The mathematical formulation of the problem is given in 

Eq. (5) – (30). 

𝐹(𝑋) = {𝑓1(𝑋), 𝑓2(𝑋), 𝑓3(𝑋)},                                     (5) 

having: 

𝑓1(𝑋) = 0.7854𝑥1𝑥2
2 (

10𝑥3
2

3
+ 14.9334𝑥3 − 43.0934)

− 1.508𝑥1(𝑥6
2 + 𝑥7

2) + 
+7.4777(𝑥6

2 + 𝑥7
2) + 0.7854(𝑥4𝑥6

2 + 𝑥5𝑥7
2),              (6) 

𝑓2(𝑋) =
𝐴1

𝐵1,
                      (7) 

𝑓3(𝑋) =
𝐴2

𝐵2,
                   (8) 

𝐴1 = √(745𝑥4𝑥2
−1𝑥3

−1) + 1.69 × 107,                      (9) 

𝐵1 = 0.1𝑥6
3,                 (10) 

𝐴2 = √(745𝑥5𝑥2
−1𝑥3

−1) + 1.575 × 108,              (11) 

𝐵2 = 0.1𝑥7
3,                  (12) 

with constraint functions: 

𝑔1(𝑋) = 27𝑥1
−1𝑥2

−2𝑥3
−3 − 1 ≤ 0,               (13) 

𝑔2(𝑋) = 397.5𝑥1
−1𝑥2

−2𝑥3
−2 − 1 ≤ 0,              (14) 

𝑔3(𝑋) = 1.93𝑥2
−1𝑥3

−1𝑥4
3𝑥6

−4 − 1 ≤ 0,              (15) 

𝑔4(𝑋) = 1.93𝑥2
−1𝑥3

−1𝑥5
3𝑥7

−4 − 1 ≤ 0,              (16) 

𝑔5(𝑋) = 𝑥2𝑥3 − 40 ≤ 0,               (17) 

𝑔6(𝑋) = 𝑥1𝑥2
−1 − 12 ≤ 0,                   (18) 

𝑔7(𝑋) = 5 − 𝑥1𝑥2
−1 ≤ 0,                (19) 

𝑔8(𝑋) = 1.9 − 𝑥4 + 1.5𝑥6 ≤ 0,               (20) 

𝑔9(𝑋) = 1.9 − 𝑥5 + 1.5𝑥7 ≤ 0,               (21) 

𝑔10 =
𝐴1

𝐵1
− 1300 ≤ 0,                (22) 

𝑔11 =
𝐴2

𝐵2
− 850 ≤ 0,                (23) 

Whilst the variables are subjected to following 

constraints: 

2.6 ≤ 𝑥1 ≤ 3.6,                 (24) 

0.7 ≤ 𝑥2 ≤ 0.8,                 (25) 

17 ≤ 𝑥3 ≤ 28,                 (26) 

7.3 ≤ 𝑥4 ≤ 8.3,                 (27) 

7.3 ≤ 𝑥5 ≤ 8.3,                 (28) 

2.9 ≤ 𝑥6 ≤ 3.9,                 (29) 

5.0 ≤ 𝑥7 ≤ 5.5,                 (30) 

 

The results of ACO algorithm are obtained in code 

written for Matlab R2018a software suite and are given 

in Table 2 and Table 3. 

 

Table 2. Comparative results for gear box design 

optimization 

Design 

variables 

WNNC 
(Huang et 

al, 2006) 
 

FMO 
(Huang et 

al, 2006) 
 

H-CS-FA 
(Martinez et 

al, 2009) 
 

ACO 

x1 3.58 3.58 3.59 3.58 

x2 0.71 0.70 0.70 0.70 

x3 21.5 23 17 21 

x4 7.90 7.36 8.26 7.83 

x5 8.07 8.14 8.00 8.04 

x6 3.54 3.45 3.90 3.83 

x7 5.43 5.40 5.50 5.47 

 

Table 3. Comparative results for goal functions for gear 

box design optmization problem 
Goal 

funtion 

WNNC 
(Huang et 

al, 2006) 
 

FMO 
(Huang et 

al, 2006) 
 

H-CS-FA 
(Martinez et 

al, 2009) 
 

ACO 

𝑓1(𝑋) 3412.1 3425 3356.4753 4124.9 

𝑓2(𝑋) 829.4 879.8 698.4919 735.03 

𝑓3(𝑋) 754.7 797.6 754.9155 766.79 

 

Based on obtained results, shown in Table 3, the 

conclusion can be drawn that ACO algorithm gives better 

results for 𝑓2(𝑋) and 𝑓3(𝑋) than FMO and WNNC 

algorithms. The best results for all the three goal 

functions are obtained by using the H-CS-FA algorithm. 

However, it is mentioned in the paper that the standard 

deviation which was obtained was pretty high, meaning 

that the algorithm could have, at some point, fallen into 

the trap of a local minimum.  

 

5. CONCLUSION 

 
In this paper, the results obtained using the ACO 

algorithm are presented and compared to existed optimal 

results present in literature. 

 

The gear box design were described in detail using 

mathematical formulation and figures, while the results 

were shown in tables. By further development of this 

algorithm, this method can be modified and improved in 

order to obtain better results. 
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