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Introduction 

Creating reference materials that determine the 

most accurate pressure distribution on the airfoils 

surfaces is an actual task of the airplane aerodynamics. 

 

Materials and methods 

The study of air flow around the airfoils was 

carried out in a two-dimensional formulation by 

means of the computer calculation in the Comsol 

Multiphysics program. The airfoils in the cross section 

were taken as objects of research [1-27]. In this work, 

the airfoils having the names beginning with the letter 

L were adopted. Air flow around the airfoils was 

carried out at the angles of attack (α) of 0, 15 and -15 

degrees. Flight speed of the airplane in each case was 

subsonic. The airplane flight in the atmosphere was 

carried out under normal weather conditions. The 

geometric characteristics of the studied airfoils are 
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presented in the Table 1. The geometric shapes of the 

airfoils in the cross section are presented in the Table 

2. 

 

Table 1. The geometric characteristics of the airfoils. 

 

Airfoil name Max. thickness Max. camber 
Leading edge 

radius 

Trailing edge 

thickness 

LA203A 15.73% at 34.3% of the chord 5.48% at 46.0% of the chord 3.0242% 0.0% 

LDS-2 11.97% at 34.9% of the chord 2.16% at 45.0% of the chord 1.0915% 0.0% 

LI-CA-CO 7.3% at 25.0% of the chord 7.3% at 40.0% of the chord 0.8042% 0.9% 

LINDNER1 5.92% at 20.0% of the chord 6.16% at 40.0% of the chord 1.4329% 0.25% 

LINDNER2 6.65% at 20.0% of the chord 6.88% at 50.0% of the chord 0.7091% 0.4% 

Lippisch 301 G 9.8% at 25.0% of the chord 10.05% at 30.0% of the chord 1.4012% 0.3% 

LISSAMAN 7769 10.98% at 30.0% of the chord 4.43% at 30.0% of the chord 1.4998% 0.0% 

LNV109A 12.99% at 23.5% of the chord 5.97% at 31.5% of the chord 3.4968% 0.0% 

LNV203A 15.73% at 34.3% of the chord 5.48% at 46.0% of the chord 3.0235% 0.0% 

LOCKHEED C-141 BL0 12.99% at 40.2% of the chord 1.09% at 64.5% of the chord 1.6191% 0.1096% 

LOCKHEED C-141 BL113,6 12.64% at 40.2% of the chord 1.12% at 64.5% of the chord 1.5382% 0.1234% 

LOCKHEED C-141 

BL426,57 
10.99% at 40.2% of the chord 1.32% at 50.0% of the chord 1.1663% 0.1854% 

LOCKHEED C-141 

BL610,61 
10.77% at 40.2% of the chord 1.54% at 50.0% of the chord 1.5044% 0.2188% 

LOCKHEED C-141 

BL761,11 
10.51% at 40.2% of the chord 1.8% at 50.0% of the chord 1.6226% 0.2546% 

LOCKHEED C-141 

BL958,89 
10.0% at 40.2% of the chord 2.32% at 45.1% of the chord 2.1456% 0.3249% 

LOCKHEED C-5A BL0 13.12% at 40.0% of the chord 0.73% at 85.0% of the chord 1.0842% 0.2578% 

LOCKHEED C-5A BL1256 10.78% at 40.0% of the chord 1.43% at 30.0% of the chord 1.5955% 0.2013% 

LOCKHEED C-5A BL488.2 11.55% at 40.0% of the chord 1.22% at 70.0% of the chord 1.0667% 0.22% 

LOCKHEED C-5A BL576 11.1% at 40.0% of the chord 1.4% at 65.0% of the chord 1.0637% 0.219% 

LOCKHEED C-5A BL758.6 11.05% at 40.0% of the chord 1.35% at 60.0% of the chord 1.1819% 0.222% 

LOCKHEED L-188 ROOT 13.99% at 41.3% of the chord 2.0% at 51.7% of the chord 1.9032% 0.28% 

LOCKHEED L-188 TIP 11.99% at 41.3% of the chord 2.66% at 51.7% of the chord 1.4116% 0.24% 

Lockheed-Georgia C-5A 13.12% at 40.0% of the chord 0.73% at 85.0% of the chord 1.083% 0.258% 

LOCKHEED-GEORGIA 

SUPERCRITICAL 
10.0% at 32.0% of the chord 1.46% at 16.0% of the chord 0.9893% 0.3% 

Lockheed-

Georgia/NASA/Blackwell 
10.0% at 32.0% of the chord 1.46% at 16.0% of the chord 0.9893% 0.3% 

lrn1007 7.27% at 39.8% of the chord 5.9% at 44.6% of the chord 0.216% 0.0% 

 

Note: 

LA203A (Douglas/Liebeck LA203A high lift airfoil); 

Lippisch 301 G (A. Lippisch (Germany)); 

LISSAMAN 7769 (Lissaman 7769 human powered aircraft airfoil); 

LNV109A (Douglas/Liebeck LNV109A high lift airfoil); 

LOCKHEED L-188 ROOT (Lockheed L-188/P-3 root airfoil NACA 0014 -1.10 40/1.051 Cli=.3 a=.8); 

LOCKHEED L-188 TIP (Lockheed L-188/P-3 tip airfoil NACA 0012 -1.10 40/1.051 Cli=.4 a=.8); 

Lockheed-Georgia C-5A (Transonic wing airfoil); 

LOCKHEED-GEORGIA SUPERCRITICAL (Lockheed-Georgia/NASA/Blackwell rotorcraft airfoil); 

Lockheed-Georgia/NASA/Blackwell (Rotorcraft airfoil); 

lrn1007 (RN(1)-1007 low Reynolds number airfoil). 

 

Table 2. The geometric shapes of the airfoils in the cross section. 
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Results and discussion 

The calculated pressure contours on the surfaces 

of the airfoils at the different angles of attack are 

presented in the Figs. 1-26. The calculated values on 

the scale can be represented as the basic values when 

comparing the pressure drop under conditions of 

changing the angle of attack of the airfoils. 

26 airfoils of the LOCKHEED, LNV, 

LINDNER, etc. series were considered. All airfoils 

had camber of the various value. Thus, all airfoils 

were asymmetrical. 

The drag was determined from the calculated 

pressure contours on the leading edge of the airfoils. 

The lower the calculated pressure on the edge, the 

better the aerodynamic characteristics of the airplane 

wing. Positive pressure occurs on the leading edge 

during horizontal flight. The change in the pressure 

values varies within 0.17 kPa. The slight change in 

pressure does not give an idea of the more favorable 

airfoil configuration. Therefore, the lift to drag ratio 

of the airplane wing can be determined from the 

pressure distribution area. However, the minimum 

pressure value (6.42 kPa), and hence the drag 

coefficient, was determined for the LOCKHEED C-

141 BL958,89 airfoil, and the maximum pressure 

value (6.59 kPa) was determined for the LINDNER2 

airfoil. 

With an increase in the contact area of the airfoils 

with air flows, positive pressure increases and 

negative pressure arises on the leading edge and on the 

upper and lower surfaces. This happens under 

conditions of the airplane maneuvers. The maneuvers 

are climb and descent of the airplane. In this case, the 

maximum value of negative pressure was determined 

on the leading edge of the airfoil. The maximum and 

minimum values were identified after analyzing the 

calculated pressures values on the leading edge. 

Pressure of -68.1 kPa acts on the LINDNER2 airfoil 

at the positive angle of attack, and pressure of -67.6 

kPa acts on the LDS-2 airfoil at the negative angle of 

attack, which is the highest value of pressures of all 

calculated values. The minimum pressures values of -

27.3 kPa and -6.04 kPa were determined for the 

LNV109A and lrn1007 airfoils at the positive and 

negative angles of attack, respectively. Thus, the 

LNV109A and lrn1007 airfoils have the best 

aerodynamic properties. 

Let us consider these airfoils in detail. The 

values of the maximum camber of both airfoils are the 

same and are about 6% relative to the chord length. 

However, under conditions of the airplane climb, the 

drag decreases with the large radius of the leading 

edge of the airfoil. This phenomenon is provided by 

the airfoil with the small radius of the leading edge 

during the airplane descent. 

The LINDNER2 and LDS-2 airfoils (where high 

pressure occurs) have the opposite geometric 

parameters compared to the geometric parameters of 

the LNV109A and lrn1007 airfoils. 

 



Impact Factor: 

ISRA (India)        = 6.317 

ISI (Dubai, UAE) = 1.582 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 3.939  

ESJI (KZ)          = 8.771 

SJIF (Morocco) = 7.184 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

Philadelphia, USA  104 

 

 

α
 =

 0
 d

eg
re

es
 

 

α
 =

 1
5
 d

eg
re

es
 

 

α
 =

 -
1
5
 d

eg
re

es
 

 

Figure 1. The pressure contours on the surfaces of the LA203A airfoil. 
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Figure 2. The pressure contours on the surfaces of the LDS-2 airfoil. 
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Figure 3. The pressure contours on the surfaces of the LI-CA-CO airfoil. 
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Figure 4. The pressure contours on the surfaces of the LINDNER1 airfoil. 
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Figure 5. The pressure contours on the surfaces of the LINDNER2 airfoil. 
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Figure 6. The pressure contours on the surfaces of the Lippisch 301 G airfoil. 
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Figure 7. The pressure contours on the surfaces of the LISSAMAN 7769 airfoil. 
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Figure 8. The pressure contours on the surfaces of the LNV109A airfoil. 
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Figure 9. The pressure contours on the surfaces of the LNV203A airfoil. 
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Figure 10. The pressure contours on the surfaces of the LOCKHEED C-141 BL0 airfoil. 
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Figure 11. The pressure contours on the surfaces of the LOCKHEED C-141 BL113,6 airfoil. 
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Figure 12. The pressure contours on the surfaces of the LOCKHEED C-141 BL426,57 airfoil. 
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Figure 13. The pressure contours on the surfaces of the LOCKHEED C-141 BL610,61 airfoil. 
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Figure 14. The pressure contours on the surfaces of the LOCKHEED C-141 BL761,11 airfoil. 
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Figure 15. The pressure contours on the surfaces of the LOCKHEED C-141 BL958,89 airfoil. 
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Figure 16. The pressure contours on the surfaces of the LOCKHEED C-5A BL0 airfoil. 
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Figure 17. The pressure contours on the surfaces of the LOCKHEED C-5A BL1256 airfoil. 
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Figure 18. The pressure contours on the surfaces of the LOCKHEED C-5A BL488.2 airfoil. 
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Figure 19. The pressure contours on the surfaces of the LOCKHEED C-5A BL576 airfoil. 
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Figure 20. The pressure contours on the surfaces of the LOCKHEED C-5A BL758.6 airfoil. 
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Figure 21. The pressure contours on the surfaces of the LOCKHEED L-188 ROOT airfoil. 
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Figure 22. The pressure contours on the surfaces of the LOCKHEED L-188 TIP airfoil. 
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Figure 23. The pressure contours on the surfaces of the Lockheed-Georgia C-5A airfoil. 
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Figure 24. The pressure contours on the surfaces of the LOCKHEED-GEORGIA SUPERCRITICAL airfoil. 
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Figure 25. The pressure contours on the surfaces of the Lockheed-Georgia/NASA/Blackwell airfoil. 
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Figure 26. The pressure contours on the surfaces of the lrn1007 airfoil. 
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Conclusion 

The calculation results make it possible to 

compare the aerodynamic characteristics of the 

airplanes wings of the various configurations. Since 

the large drag on the leading edge reduces the 

aerodynamic characteristics of the airplane wing, the 

purpose of this study was to determine and analyze the 

airfoils that are subjected to minimal pressures during 

horizontal flight and maneuvers of the airplane. 

According to this indicator, some airfoils were 

identified (LINDNER2, LDS-2, LNV109A and 

lrn1007). After comparing these airfoils, it was 

concluded that the maximum camber of the airfoil 

during the airplane maneuvers should vary in the 

range from 3% to 6% relative to the chord length, and 

the radius of the leading edge during climb and 

descent of the airplane should be at least 3.5% and 

0.2%, respectively. These geometric parameters of the 

airfoils improve the aerodynamic characteristics of the 

airplane. 
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