
Impact Factor:

ISRA (India) = 6.317

ISI (Dubai, UAE) = 1.582

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 3.939

ESJI (KZ) = 8.771

SJIF (Morocco) = 7.184

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 26

Issue Article

SOI: 1.1/TAS DOI: 10.15863/TAS

International Scientific Journal

Theoretical & Applied Science

p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)

Year: 2022 Issue: 06 Volume: 110

Published: 03.06.2022 http://T-Science.org

Vadim Andreevich Kozhevnikov

Peter the Great St.Petersburg Polytechnic University

Senior Lecturer

vadim.kozhevnikov@gmail.com

Arkadiy Alexandrovich Loginov

Peter the Great St.Petersburg Polytechnic University

Student

l0gark@ya.ru

DEVELOPMENT OF THE CLIENT PART OF THE MULTIPLAYER

ONLINE GAME ABOUT LABYRINTHS

Abstract: This paper is devoted to researching the theory of mazes and developing a cross-platform game for

mobile and desktop devices. Different algorithms for solving mazes were analyzed and the mathematical basis of the

developed method of drawing mazes using computer graphics was considered.

Key words: solving mazes, mazes drawing, online games, Java, Android, iOS.

Language: English

Citation: Kozhevnikov, V. A., & Loginov, A. A. (2022). Development of the client part of the multiplayer online

game about labyrinths. ISJ Theoretical & Applied Science, 06 (110), 26-34.

Soi: http://s-o-i.org/1.1/TAS-06-110-5 Doi: https://dx.doi.org/10.15863/TAS.2022.06.110.5

Scopus ASCC: 1700.

Introduction

Currently there is a huge variety of games,

including online games. Programming games for

mobile devices is considered one of the most popular

and growing area in development and is distinguished

not by its bulk 3D models or the complexity of

drawing all the textures, but by its original ideas,

dynamism and, of course, the desire spend the user

time interesting and in a quick format.

This article describes the development of an

online game for mobile devices based on the theory of

mazes. The main idea is that users will compete - who

can pass a randomly generated maze faster. Each

player starts the maze in his corner and must get to the

opposite corner faster than his opponent. The players

have one maze, but since the maze is automatically

generated, it may turn out that for one user the path is

more obvious. That's why it was a requirement for the

game to add the ability to use different skills, to restore

the game balance for each user.

The relevance of this work is that now in the app

stores GooglePlay and AppStore there are no games

with the passage of mazes with friends or in

competitive mode. This idea extends the concept of a

very popular theme in games - puzzles, or to be more

precise - the theme of solving mazes.

Problem statement, analysis game

development technologies, analysis of source code

security methods

Since the goal is developing a client part of the

cross-platform online game for mobile devices, as

well as programming the algorithm of bot-opponent,

to be able to play offline, then to achieve this goal it is

necessary to perform the following tasks:

1. Analyze existing applications on similar

topics, identify shortcomings, and formulate the

competitive advantages of the future game;

2. Based on the analysis of competitive

applications, develop a design that will appeal to the

game's target audience;

3. Determine the stack of developing

technologies;

4. Set up data retrieval from the server using

WebSocket;

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
mailto:vadim.kozhevnikov@gmail.com
mailto:l0gark@ya.ru
http://s-o-i.org/1.1/TAS-06-110-5
https://dx.doi.org/10.15863/TAS.2022.06.110.5

Impact Factor:

ISRA (India) = 6.317

ISI (Dubai, UAE) = 1.582

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 3.939

ESJI (KZ) = 8.771

SJIF (Morocco) = 7.184

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 27

5. Design and implement player skills

mechanics;

6. Develop an algorithm for solving the maze,

by a bot-opponent;

7. To ensure the security of the application's

source code;

8. Test the application with a focus group;

9. Publish the application on GooglePlay.

After review existing maze games, it was noticed

that there are currently no apps in the Android and iOS

app stores that combine genres such as racing and

maze solving. Most apps have pre-generated levels

and position themselves as a classic puzzle game. The

disadvantages of existing applications (the games

"Labyrinths and More" by Maple Media, "Labyrinth"

by InfinityGames.io, "Maze" by WEGO Global studio

were considered) are usually outdated design, lack of

control over player movements, large number of ads,

lack of online mode, lack of different game modes.

Therefore, the creation this game is relevant.

When researching game development

technologies, the libGDX framework was chosen to

develop this game. LibGDX is a framework for cross-

platform Java game development. Note that it is a

framework, that is, it provides some basic tools

package, but it is not an engine in its pure form. It

differs in those developers can take care of resource

storage and customize animations with code

themselves. Only basic UI components are given. On

the one hand, this slows things down at first because

there is no visual interface for scene editing. On the

other hand, it allows developers to learn game

programming at almost the lowest level and customize

everything as needed for a specific purpose. libGDX

was chosen precisely because of the large amount of

complex and specific logic involved in solving a

maze, its generation, and the development of unusual

game animations that are tied to the maze object. To

meet these requirements, you need a very flexible tool,

which libGDX is.

An important part is the analysis of source code

security techniques, because when developing client

applications, you should always keep in mind the

security of user data and source code. Since the

application is cross-platform, the security for both the

iOS version and the Android version was considered

in detail.

The first thing every developer should do before

publishing his application is to add source code

obfuscation [1]. The most common tool now for code

obfuscation in Android applications and many other

Java-based applications is ProGuard [2]. It is an open-

source command-line tool that compresses, optimizes,

and hides Java code. All ProGuard manipulations with

bytecode can be divided into 3 main categories: Code

shrinking, Optimisation and Obfuscation [3].

Code shrinking – the process of getting rid of

code not used by the application. This process looks

for unused methods, classes, variables and removes

them from the bytecode, but we should not forget that

some things can be triggered by the reflexive

approach. For such cases you should use your own

configuration rules for this process.

Optimization – the process of code optimization,

to improve performance [4]. It does a huge number of

things, each of which makes the code at least a little

bit more productive. For example, if a class has only

one subclass and the base class has never been created,

Proguard combines these classes into one. Also

removes methods which are used once, replacing them

with inline constructs. Replaces enum with integer

constants, removes inline constructs, and more.

Obfuscation – in a broad sense - reducing the

source or executable code of a program to a form that

preserves its functionality, but hinders analysis,

understanding of algorithms and modification during

decompilation.

In this application, communication with the

server side is implemented using WebSocket

technology [5]. It is widely used in modern web

applications, initiated via HTTP, and provides long-

term connections with asynchronous communication

in both directions. To protect the data transmitted over

the network using web sockets was used secure

protocol wss, which works on top of the TLS protocol.

Introduction to Labyrinth Theory

A labyrinth is a structure, in two- or three-

dimensional space, consisting of tangled paths to an

exit [6]. In this paper, we will consider ideal

labyrinths. An ideal labyrinth is a labyrinth without

any loops and consisting of a single connectivity

component. From each point there is exactly one path

to any other point. The labyrinth has exactly one

solution. In computer science terms such a labyrinth

can be described as a spanning tree over a set of cells

or vertices [7].

There are many types of labyrinths, in this work

will be discussed only a few types, namely:

- Orthogonal-Labyrinth;

- Delta-Labyrinth;

- Sigma-Labyrinth.

An orthogonal labyrinth is a maze which is a

standard rectangular grid in which the cells have

passages that intersect at right angles. In the context

of tessellation, it may also be called a gamma maze.

A delta maze is a maze that consists of

intersecting triangles, where each cell can have up to

three passages connected to it.

A Sigma Labyrinth is a labyrinth that consists of

interconnected hexagons, where each cell can have up

to six passages connected to it.

All these mazes are similar in that they are

composed of regular polygons. This idea was applied

to the software architecture to set up a more abstract

visualization of the labyrinth on the screens of

devices.

Impact Factor:

ISRA (India) = 6.317

ISI (Dubai, UAE) = 1.582

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 3.939

ESJI (KZ) = 8.771

SJIF (Morocco) = 7.184

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 28

In addition to the fact that users will be able to

compete, it is necessary to add the ability to play

offline, that is, in the absence of an Internet

connection. In order to keep the concept of a

competitive mode instead of creating levels, it was

decided to implement an opponent bot. There are

several fundamental ways of completing mazes, each

of which has its own features.

Recursive retrieval is an algorithm based on

recursive depth-first search in a graph [8]. This

algorithm will always find a solution, but not

necessarily the shortest one. When choosing the

direction of movement, the usual random is used, and

the cell is marked as passed, if the chosen path turned

out to be a dead end (does not lead to an exit), then the

algorithm recursively returns to the cell where the

choice was made and repeats the action again.

Deadlock filling is a simple algorithm for

solving a maze that focuses on the maze, is always

very fast, and does not use extra memory [9]. The idea

is to scan the maze in advance, find all dead ends, and

fill passages in the opposite direction until an

intersection is found. It is also necessary to mark,

those intersections to which other dead ends lead. This

algorithm works well for a perfect maze, because

eventually you will find that one solution. For regular

mazes this algorithm will find several solutions, but

for mazes without dead ends it will be useless.

Wall follower is maze solving algorithm which

focuses on the player, always works quickly, and does

not require the use of additional memory. The essence

of the algorithm is that you must always turn in one

direction when choosing a direction, which is very

similar to the way people go through mazes. This

method looks for any solution, not necessarily the

shortest one in the case of a non-ideal maze. The

algorithm will not work when the final goal is in the

center of the maze and there is a closed loop around it,

because the robot will bypass the center and

eventually return back.

Now we describe the mathematical basis of the

labyrinth drawing algorithm. When describing the

algorithm, the following types of mazes will be

considered:

- Orthogonal labyrinth (consists of square-

shaped cells);

- Delta maze (consists of cells shaped like

regular triangles);

- Sigma labyrinth (composed of cells shaped

as regular hexagons).

It is easy to see that all current maze types are a

set of regular polygons. This property of cells was

taken as the basis for the implementation of the

labyrinth drawing algorithm. Namely, the property of

a regular polygon, which says that any regular

polygon can be inscribed into a circle. Accordingly, to

dynamically calculate the size of the cell, it was

decided to count the radii of the circles circumscribed

around the cell.

First of all, it became clear that it is necessary to

know the values of the angles for each type of

labyrinth, namely the angle between the radii that lead

to neighboring vertices (Fig. 1) and the starting angle

from which the calculation of the coordinates of a

particular wall will begin (Fig. 2).

Fig 1. The angle between the radii that lead to neighboring vertices

Fig 2. The starting angle between the abscissa axis and the perpendicular to the zero side of the polygon

Each side has been numbered, the starting angle

is the angle between the abscissa axis and the

perpendicular dropped on the zero side.

The problem with triangular mazes is that two

types of cells must be supported at once. A triangle

whose horizontal side is at the bottom and whose

horizontal side is at the top. Accordingly, the base

starting angle was chosen as -π/2, and the second

starting angle is shifted by π if the sum of the cell

coordinates is odd.

Knowing the starting angle (startA), the angle

between the radii (dα) drawn to the neighboring

vertices and the wall number (number), you can

uniquely determine the angles relative to the

perpendicular to the zero-side using the following

formulas:

Impact Factor:

ISRA (India) = 6.317

ISI (Dubai, UAE) = 1.582

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 3.939

ESJI (KZ) = 8.771

SJIF (Morocco) = 7.184

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 29

𝛼1 = 𝑠𝑡𝑎𝑟𝑡𝐴 + 𝑛𝑢𝑚𝑏𝑒𝑟 × 𝑑𝛼 −
𝑑𝛼

2

𝛼2 = 𝛼1 + 𝑑𝛼

Then it is necessary to calculate the coordinates

of each vertex. To do this, you need to know the radius

of the circle circumscribed around the cell and its

center.

The length of the radius is calculated

dynamically depending on the size of the maze in X

and Y. The basic idea is to divide the corresponding

View size (width or height) by the number of cells on

the same axis. And this idea is slightly different from

the maze implementation. After the X and Y radii

have been found, the minimum of them is taken and

the labyrinth is centered relative to the parent View.

The formulas for calculating the radius of different

types of labyrinths look like this:

1) Orthogonal labyrinth:

𝑟𝑋 =
𝑠𝑐𝑟𝑒𝑒𝑛𝑊𝑖𝑑𝑡ℎ

𝑀 × 𝑥𝐶𝑜𝑒𝑓

𝑟𝑌 =
𝑠𝑐𝑟𝑒𝑒𝑛𝐻𝑒𝑖𝑔ℎ𝑡

𝑁 × 𝑦𝐶𝑜𝑒𝑓

𝑟 = 𝑚𝑖𝑛(𝑟𝑋, 𝑟𝑌)

2) Delta labyrinth:

𝑟𝑋 =
𝑠𝑐𝑟𝑒𝑒𝑛𝑊𝑖𝑑𝑡ℎ

(𝑀 + 1) × 𝑥𝐶𝑜𝑒𝑓

𝑟𝑌 =
𝑠𝑐𝑟𝑒𝑒𝑛𝐻𝑒𝑖𝑔ℎ𝑡

𝑁 ∗ 𝑦𝐶𝑜𝑒𝑓

𝑟 = 𝑚𝑖𝑛(𝑟𝑋, 𝑟𝑌)

3) Sigma labyrinth:

𝑟𝑋 =
𝑠𝑐𝑟𝑒𝑒𝑛𝑊𝑖𝑑𝑡ℎ

(𝑀 + 0.5) × 𝑥𝐶𝑜𝑒𝑓

𝑟𝑌 =
𝑠𝑐𝑟𝑒𝑒𝑛𝐻𝑒𝑖𝑔ℎ𝑡

(𝑁 + 0.5) × 𝑦𝐶𝑜𝑒𝑓

𝑟 = 𝑚𝑖𝑛(𝑟𝑋, 𝑟𝑌)

where M – horizontal maze size, N – vertical maze

size.

The formulas for calculating the radius use some

coefficients xCoef, yCoef, which are responsible for

the ratio of the distance between the centers of the

cells to the radius of the circle circumscribed around

the cell (Fig. 3). They are calculated using primitive

trigonometric formulas from the triangles that make

up the radii of the circles circumscribed around

neighboring cells.

Fig 3. Distances between adjacent circles

To calculate the coordinates along the abscissa

and ordinate axes of a particular vertex, the following

formulas are used:

𝑥 = 𝑐𝑒𝑛𝑡𝑒𝑟𝑋 + 𝑟 × 𝑐𝑜𝑠(𝛼)

𝑦 = 𝑐𝑒𝑛𝑡𝑒𝑟𝑌 + 𝑟 × 𝑠𝑖𝑛(𝛼)

The latter formulas use the coordinates of the

center of the cell (centerX and centerY). The

following formulas are used to calculate the center

basically, and are expanded for each implementation:

𝑐𝑒𝑛𝑡𝑒𝑟𝑋𝑖𝑗 = 𝑗 × 𝑟 × 𝑥𝐶𝑜𝑒𝑓

𝑐𝑒𝑛𝑡𝑒𝑟𝑌𝑖𝑗 = 𝑖 × 𝑟 × 𝑦𝐶𝑜𝑒𝑓

In the case of a triangular labyrinth, the center of

each vertex that stands on a place where the sum of

the indices is odd is shifted additionally vertically by

half of the radius. In the case of a labyrinth consisting

of hexagons, on odd rows the center is shifted

horizontally by 𝑟 × 𝑐𝑜𝑠(
𝜋

6
) .

Software implementation

As noted, the game was developed in Java using

the libGDX framework, which allows you to develop

cross-platform applications, making a simple scalable

design.

To ensure that during the game all the players'

movements were as natural as possible and it was

easier to control the mechanics of movement and

collision of objects, it was decided to use the physics

engine Box2D [10], which allows you to easily add

physical properties of objects in declarative form.

For communication with the network, we chose

the WebSocket network communication protocol,

because it is necessary to keep a constant connection

to the server during the game, to transmit data as

quickly as possible in a convenient format. As the

serialization, the text format of JSON data

representation was chosen, which is notable for its

security and simplicity.

The project consists of several modules, namely:

- Android module;

- iOS module;

- Core module.

The android module contains only the

configuration of the game, as well as the launch of the

application itself for the Android system. There is not

much code in this module, because Java is the

development standard for this system and the Core

module is fully embedded in the application.

The iOS module requires additional

customization of some components because Java does

not compile for iOS in its classic form. In order to

make the application work cross-platform, RoboVM

Impact Factor:

ISRA (India) = 6.317

ISI (Dubai, UAE) = 1.582

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 3.939

ESJI (KZ) = 8.771

SJIF (Morocco) = 7.184

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 30

technology is used, which translates the main iOS

SDK libraries into Java code, allowing you to write

classic native code using Java.

The Core module is basic and describes the main

logic of the application. All screens are reproduced

using the built-in SDK libGDX - Scene2d [11].

Complex components need to be drawn on the screen

using classical methods. The architecture of the

module follows the basic principles of SOLID and is

split into several modules so that the use of different

types of mazes does not complicate the work [12].

The mobile application communicates with the

server using the WebSocket communication protocol.

All data are serialized in JSON. Thus, data about the

coordinates of the user will be transmitted to the

server, and the server in turn broadcasts this data to

the opponent. To make the coordinates equivalent for

different screen resolutions, a technology is used to

scale the screen to a predetermined size so that the

entire design of the application and the labyrinth itself

looks adaptive.

UI layout in libGDX is not very powerful,

because first of all this framework is designed for

game components development. If native UI

development for Android or iOS has a huge number

of built-in components that can easily reproduce even

the most complex design, here there are only a few

such objects, so many UI components were custom

written in-house.

First of all, it was necessary to think about how

the navigation between the screens of the application

will be implemented and how to store the state of the

screen [13]. For this purpose, the auxiliary abstract

classes SimpleScreen and RootScreen were written,

which described the basic logic for screen

configuration, namely:

- Initializing auxiliary tools;

- Configuring adaptivity;

- Configuring OpenGL;

- Clearing memory;

- Working with the keyboard.

Using the principle of dependency injection each

screen is passed to the ScreenManager object, which

implements the navigation between screens.

To keep the layout simple, we developed a

simple implementation of the Constraint Layout

analog from Android, which allows you to bind screen

components together. It did not consider possible

mathematical operations for stretching and dynamic

determination of object coordinates, but it allowed

writing UI in a much more flexible way.

Since there are many different similar

components in the application design, an auxiliary

class was written in which the styles for the main

elements are described.

To communicate with the server using the

WebSocket protocol, several layers of abstraction

were written over the core solution provided by the

LibGDX package. This allowed the WebSocket

implementation to be substituted into the core module

as needed. This measure was necessary because the

iOS module only allowed to implement the

connection using native methods.

It was almost impossible to write a WebSocket

implementation for iOS using native methods. In

order to achieve this, we decided to use RoboVM

framework, which made it possible to write native iOS

code, using Java [14]. This is achieved by the fact that

inside the framework the bridge of communication

with iOS system is implemented using Objective-C.

However, a very limited number of functions are

available.

After a basic WebSocket implementation for the

iOS platform was written, a bug was discovered that

by default iOS methods do not send a Pong frame, to

a Ping message from a server. As a result, server was

closing the connection after some delay. That's why

Pong message sending was implemented separately.

Once the labyrinth data have been obtained from

the server, it was needed to learn how to display it on

the screen, and give it physical properties in this way,

observing the following requirements:

- Ability to abstractly display all types of

labyrinth;

- Ability to scale on new labyrinth types;

- The corners of the labyrinth walls should not

hinder the player's movement.

First of all, a class was written that contains the

necessary characteristics of cell angles for each type

of labyrinth: orthogonal, delta labyrinth, and

hexagonal labyrinth.

The second step was to write a class with the

following abstract methods, the implementation of

which depends on the specific type of maze:

- Getting the center of a cell by coordinate;

- Calculation of the radius of the circle

circumscribed around the cell, depending on the size

of the labyrinth and the space provided to it;

- Obtaining the ratio of the distance between

the centers of neighboring cells to the radius of the

circumscribed circles.

After that the method of creating a physical

polygon, which consists of maze walls, was

implemented. Its main feature is that the corners of the

maze are small circles with a radius of half the wall

thickness. This was done so that players could

effortlessly pass the joints between the walls and make

turns at high speed.

Since the game is cross-platform, it is necessary

to support control in different ways for different

systems. To do this, the InputController abstraction

was written, and a factory pattern was implemented,

which substitutes the necessary implementation

depending on the environment.

To control from the computer, the arrow keys are

used, which allows the user to conveniently direct the

player in the desired direction, but because of this the

user cannot control the strength of the impulses

Impact Factor:

ISRA (India) = 6.317

ISI (Dubai, UAE) = 1.582

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 3.939

ESJI (KZ) = 8.771

SJIF (Morocco) = 7.184

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 31

transmitted to the player and he moves always at the

same speed.

To control from mobile devices, a joystick was

implemented, which appears in the place where the

user pressed the screen. Thanks to this solution, it is

possible to control the player's speed, which greatly

simplifies the control for experienced users.

To describe the physics of the player's

movement, as well as his interaction with other objects

in the maze, we used the Box2d library. For example,

the player's object was matched with the parameters

of density and friction force in order to make all its

movements on the screen seem real and physical. And

only the walls of mazes are static objects, through

which you cannot pass, and they cannot move.

All movements in the system are non-linear and

are realized by impulses and forces that act on objects

in a certain way. In order to set impulses in Box2d

library, it is necessary to pass a vector object with

values of impulse projections on abscissa and ordinate

axes [15]. It is always necessary to remember about

memory optimization and not to allocate objects in

frequently called methods. For this purpose, each class

of "moving" object has a temporary vector object, to

which certain values are set if necessary. This solution

allows you to allocate less unnecessary memory and

reduce the load on the garbage collector.

The entire code was designed to scale to new

implementations of the various objects in the system,

that's why there is an abstraction for each object.

Obtaining the coordinates of the opponent is one of

the most important parts of the program, and there are

two implementations for it: online and bot. If the user

takes too long to find the game or does not have access

to the Internet, he is automatically offered to compete

with the bot, which logic is on the client.

The basis of the algorithm is set by emulating

communication with the network. This is achieved

using the basic multithreading techniques available in

Java. First, in a separate thread pool, the maze, and the

path, which bot will follow are generated, and then

information about this data is sent to the event listener.

Then the bot starts to send the coordinates of the

opponent to the event listener in a separate thread with

some delay. The delay and speed constants were

calculated empirically by testing on devices with

different power.

The main goal when writing the code for the bot

was to achieve maximum physicality of its

movements, imitating human errors and inaccuracies

in movement with a certain probability. Thus, the

speed of the bot is non-linear and varies within certain

limits.

The bot should not move from cell to cell exactly

evenly, so the movement from one cell to another was

divided into several steps. With each step the bot tends

to the center of the next maze cell, but with some

probability it gets a deviation from the course by a

small number of degrees.

A modified recursive return algorithm was used

to implement the maze solution for the bot. The main

difference from the basic algorithm is that the bot can

detect a dead end ahead of itself with a certain

probability. This modification was added in order to

emulate human attempts to look at the path it is

moving ahead of itself and predict when to change the

direction of its movement. To achieve this, the

recursive pathfinding function returns the length to a

dead end or the end of a maze, as well as a flag about

whether the path is victorious. If the path is victorious,

the bot can also, with a certain probability, either

choose it or make a mistake and go the other way first.

In this way human errors are simulated. The

probability of right and wrong choices depends

exponentially on the length to a dead end or a winning

square.

The game provides the ability to add player skills

that allow the user to interact with an opponent. First,

an abstract PowerUp class was written, which

describes the general logic for all abilities.

Every characteristic power up has a duration and

a cooldown time. Common ability methods include:

- Getting the current status of the ability

(started, in progress, finished);

- Getting the current progress from 0 to 1,

where 0 is the beginning and 1 is the end;

- Getting the current cooldown progress from

0 to 1;

- Drawing with basic geometric shapes or with

complex animations using pre-generated sprites;

- Skill launching.

It was also provided for further development of

the application, namely the addition of monetization

through the purchase of in-game goods. And each

ability has the possibility of a certain number of levels.

At a basic layer, the higher level gives the longer

duration, and the shorter cooldown, but this logic can

be extended for a specific implementation.

Now in the game already implemented 3

different types of abilities, some of which give pluses

to the player, and some add to the difficulty of solving

the maze opponent, namely:

- Darkening the opponent's screen;

- Freezing your opponent;

- Illuminating the right path.

Screen darkening works like this: that after

activating the ability the opponent can only see a small

area of the screen around himself, so he can't view the

path far and he must move at random. The player who

triggered the ability continues to see the entire maze.

To achieve this result, filled rectangles are first

drawn on top of the maze, at some distance from the

opponent on each side. After that the remaining

corners are painted by consecutive drawing of circles.

Freezing the opponent does not allow the

opponent to move for a while. This is accompanied by

an animation of the formation and subsequent

destruction of ice on the opponent's character. In this

Impact Factor:

ISRA (India) = 6.317

ISI (Dubai, UAE) = 1.582

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 3.939

ESJI (KZ) = 8.771

SJIF (Morocco) = 7.184

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 32

case a sprite animation was used, which is different in

that from an image with a large set of frames each time

a new one is cut out, in a predetermined sequence.

Since all skills run for a certain amount of time,

the animation must run gradually, according to the

time of the ability. Therefore, the basic sprite

animation algorithm was adapted as follows:

1. Gets the current progress of the ability action

time;

2. Calculates the frame number that

corresponds to the current progress;

3. Crops the frame with position that was

calculated in the previous step.

Illuminating the correct path allows the user to

see several nearby cells of the path to victory. The

constant of the number of illuminated cells depends

on the level of the ability. This ability is good because

it allows the user to find the exit even if the screen

darkening ability was used on him.

To implement this ability, it is first necessary to

find the correct path to the end of the labyrinth. In this

case, as well as with the bot, the recursive return

method was used as the algorithm for solving the

maze. Also, as with any other animation, it is

necessary that the path is highlighted gradually,

depending on the current progress of the ability action.

This animation changes the transparency of the

color so that the path disappears and appears

smoothly. In order not to allocate a lot of unnecessary

memory, the color array is generated in a static

application context.

Approbation and testing

When the user enters the application, he sees the

main screen of the app with the following menu items

(Fig 4.):

- Play;

- Choose skin;

- Settings.

Also a randomly generated labyrinth is displayed

on the main screen each time.

Fig 4. Main application screen with different types of mazes.

The user can pick the color of his character from

the preselected options. All colors have been chosen

so that the player is perfectly visible on the screen.

Once the user has chosen his color and entered

his nickname in the text box, he can start the game. He

is given several types of game to choose from (Fig. 5):

- Play online (the opponent is selected

automatically);

- Play with friend;

- Play with bot.

In the case of the game online and the game with

the bot further are the same steps, namely the loading

screen appears, during which the maze is loaded, the

initialization of the resource and all other preparatory

work.

In the case of choosing the game with a friend,

the user is shown his unique code and invited to enter

the code, which is shown on the friend's screen. After

entering the code on one of the devices the game

process begins and then it does not differ from the

format of the game online or with a bot.

Fig. 5. The sequence of screens after the start of the game

For testing the game, it was decided to use the

testing method with the help of a focus group. The first

step was to publish the application on Google Play in

internal testing. A minor number of users were invited

Impact Factor:

ISRA (India) = 6.317

ISI (Dubai, UAE) = 1.582

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 3.939

ESJI (KZ) = 8.771

SJIF (Morocco) = 7.184

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 33

by mail in order to test the application for bugs and to

fix the most global ones before a larger testing.

After internal testing, the app was published into

beta testing with link access. A Google form was

designed for users to collect feedback and understand

where the game should be improved, what users

lacked, what users pay more attention to during the

game.

After analyzing the results of the survey, it was

decided to add a learning system to the game in the

first place, in the form of videos or hints for the first

games. Many users could not intuitively understand

how certain skills work. In the future, an ability store

will be added, as well as a player inventory, so that

you can always clearly see how and why to use certain

power-ups.

Conclusion

We have developed a mobile and desktop

application of the game. In the course of the work, to

achieve the set goal, the following tasks were

completed:

- The games available on Google Play and the

App Store with a similar theme – maze walkthroughs

- were analyzed. Currently, we found that there is no

game that allows you to compete with other players in

real time, and there is no opportunity to play against a

bot. All games are aimed at passing specific levels,

which are compiled in advance by the developers;

- Developed a design that contains a

harmonious color scheme, thoughtful UX for the user,

so that it was clear how to play, and what are the

possibilities of the game;

- Different methods for developing cross-

platform games were analyzed and based on this

analysis, a framework for Java, LibGDX, was chosen.

The choice was explained by the flexibility of this

framework, as well as by the specificity of the

application, which was difficult to overlap with other

solutions;

- Connected to a remote web server using

WebSocket technology. Written our own wrapper

over the basic implementation provided by the

LibGDX library package to setup iOS support for the

application;

- Based on the analysis of competitive

applications and other games, we developed abilities

for characters that set the interest of the game and

make it more dynamic. The structure of abilities was

designed in such a way as to allow you easily expand

the set of available abilities;

- An opponent bot algorithm was implemented

to play without an Internet connection. This was a

necessary requirement, because the concept of the

application does not include levels, and you need to be

able to play even in places remote from the Internet;

- The application was tested by a focus group,

information was gathered for its further development.

After that the first version of the game was uploaded

to Google Play. Before the app was published all the

source code was obfuscated with the Proguard tool.

There were also configurations for automatic code

optimization.

At the moment we are working on publishing the

application to AppStore and alternative platforms for

publishing Android applications. Also, we are

considering the idea of monetizing the application

based on the addition of in-app purchases.

Additionally, various ideas for improving the game

mechanics, adding different skills, and other user

interaction with the game are being considered.

References:

1. (n.d.). Android Developers. Shrink, obfuscate,

and optimize your app. Retrieved 29.05.2022

from

https://developer.android.com/studio/build/shrin

k-code#optimization

2. Ozkan, C., & Bicakci, K. (2020). Security

analysis of mobile authenticator applications.

Paper presented at the 2020 International

Conference on Information Security and

Cryptology, ISCTURKEY 2020 - Proceedings,

18-30. (Date of access: 29.05.2022)

3. (n.d.). Kak rabotat s Proguard v Android. [in

Russian]. Retrieved 29.05.2022 from

https://habr.com/ru/post/415499/

4. (n.d.). Obfuskaciya kak metod zaschity

programmnogo obespecheniya. [in Russian].

Retrieved 29.05.2022 from

https://habr.com/ru/post/533954/

5. (n.d.). The WebSocket Protocol. Retrieved

29.05.2022 from

https://datatracker.ietf.org/doc/html/rfc6455

6. (n.d.). Lists of Maze generation methods, Maze

solving methods, and classes of Mazes in

general. Retrieved 29.05.2022 from

http://www.astrolog.org/labyrnth/algrithm.htm

7. (n.d.). Baeldung – Algorithm to Generate a

Maze. Retrieved 29.05.2022 from

https://www.baeldung.com/cs/maze-generation

8. (n.d.). Maze solving Algorithm for line following

robot and derivation of linear path distance from

nonlinear path. Retrieved 29.05.2022 from

https://arxiv.org/pdf/1410.4145.pdf

https://developer.android.com/studio/build/shrink-code#optimization
https://developer.android.com/studio/build/shrink-code#optimization
https://habr.com/ru/post/415499/
https://habr.com/ru/post/533954/
https://datatracker.ietf.org/doc/html/rfc6455
http://www.astrolog.org/labyrnth/algrithm.htm
https://www.baeldung.com/cs/maze-generation
https://arxiv.org/pdf/1410.4145.pdf

Impact Factor:

ISRA (India) = 6.317

ISI (Dubai, UAE) = 1.582

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 3.939

ESJI (KZ) = 8.771

SJIF (Morocco) = 7.184

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 34

9. (n.d.). Pathfinding in Strategy Games and Maze

Solving Using A* Search Algorithms. Retrieved

29.05.2022 from

https://www.scirp.org/journal/paperinformation.

aspx?paperid=70460

10. (n.d.). Box2D. Retrieved 29.05.2022 from

https://box2d.org/

11. (n.d.). LIBGDX. Guide. Retrieved

29.05.2022 from

http://www.libgdx.ru/p/guide.html

12. (n.d.). Pyat’ osnovnyh principov dizaina klassov

(S.O.L.I.D.) v Java. [in Russian]. Retrieved

29.05.2022 from

https://javarush.ru/groups/posts/osnovnye-

principy-dizajna-klassov-solid-v-java

13. (n.d.). Tutorial po libGDX – sozdanie

polzovatelskogo interfeisa. [in Russian].

Retrieved 29.05.2022 from

https://habr.com/ru/post/143517/

14. (n.d.). Deploying your libGDX game to iOS in

2019. Retrieved 29.05.2022 from

https://medium.com/@bschulte19e/deploying-

your-libgdx-game-to-ios-in-2019-

8d3796410d82

15. (n.d.). Box2d i Libgdx. [in Russian]. Retrieved

29.05.2022 from

https://habr.com/ru/post/161977/

https://www.scirp.org/journal/paperinformation.aspx?paperid=70460
https://www.scirp.org/journal/paperinformation.aspx?paperid=70460
https://box2d.org/
http://www.libgdx.ru/p/guide.html
https://javarush.ru/groups/posts/osnovnye-principy-dizajna-klassov-solid-v-java
https://javarush.ru/groups/posts/osnovnye-principy-dizajna-klassov-solid-v-java
https://habr.com/ru/post/143517/
https://medium.com/@bschulte19e/deploying-your-libgdx-game-to-ios-in-2019-8d3796410d82
https://medium.com/@bschulte19e/deploying-your-libgdx-game-to-ios-in-2019-8d3796410d82
https://medium.com/@bschulte19e/deploying-your-libgdx-game-to-ios-in-2019-8d3796410d82
https://habr.com/ru/post/161977/

