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LONGITUDINAL-RADIAL VIBRATIONS OF A CYLINDRICAL SHELL 

 

Abstract: The article solves the problem longitudinal-radial vibrations of a cylindrical shell. To solve the 

problem, we used the refined equations of oscillation of such a shell, derived earlier from the exact three-dimensional 

formulation of the problem and its solution in transformations. An extensive review of works devoted to the study of 

harmonic and nonstationary processes in elastic bodies on the basis of classical and refined Timoshenko type theories 

is given. Four frequency equations are obtained for the main parts of the longitudinal and radial displacements of 

the cylindrical shell. These frequency equations admit, as special cases, frequency equations and a thin-walled shell. 

Based on the solution of the obtained frequency equations, the frequencies of natural vibrations of the shell, including 

the thin-walled one, are determined. On the basis of the results obtained, conclusions were drawn regarding the 

applicability of the studied oscillation equations, depending on the waveform and shell length. In particular, it was 

found that all the considered equations are unsuitable for describing wave processes in short shells, the lengths of 

which are commensurate with the transverse dimensions of the shells. 
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Introduction 

In various fields of science and technology, in 

particular physics and mechanics, researchers try to 

reduce the analysis of the behavior of waves in the 

general case to the analysis of the simplest harmonic 

waves [1]. In this case, the reverse transition, i.e. the 

transition from the characteristics of a harmonic 

process to estimates of the general wave motion in the 

body under consideration with the initial conditions is 

considerably difficult [2]. Despite this, much attention 

is paid to the study of harmonic processes in elastic 

bodies. This desire of researchers is due to the fact that 

already at the intermediate stage of solving the 

problem, it is possible to obtain important data on such 

characteristics of oscillatory systems as phase and 

group velocities, natural frequencies and modes of 

oscillations [3]. Such studies are carried out on the 

basis of refined equations of the Timoshenko type, 

taking into account the transverse shear deformation 

and the inertia of rotation [4]. When constructing new 

theories of shell vibrations, they try to derive refined 

equations of vibrations, taking into account certain 

factors of a physical, mechanical or geometric nature 

[5].  

Depending on the factors taken into account, the 

methods for deriving the equations of oscillation, 
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based on the dynamic theory of elasticity, are divided 

into several directions. The analysis of scientific 

research devoted to the derivation of equations of 

vibration and the development of refined theories of 

deformable solids, in particular, circular cylindrical 

layers, shells and rods, as well as a detailed analysis 

of various directions of this problem are given in 

monographs. In works [6,7], on the basis of the three-

dimensional formulation of problems of the linear 

theory of viscoelasticity, general equations of 

longitudinal and transverse vibrations of viscoelastic 

plates, round rods and cylindrical shells, as well as the 

equations of vibration taking into account the 

environment and friction forces, were derived. The 

anisotropic properties and temperature of the plates 

and rods were taken into account (related theory). On 

the basis of exact equations, approximate equations of 

the type of equations of S.P. Timoshenko and others, 

containing derivatives with respect to coordinates and 

time of a higher order, are obtained. On the basis of 

exact and refined approximate equations, particular 

problems of vibrations of rods, plates and shells are 

solved.  

 In monograph [9], this method was developed 

for a circular cylindrical layer interacting with a 

deformable solid medium and an ideal liquid, taking 

into account the viscoelastic properties of the layer 

material and for various modes of contact between the 

layers and the medium. In it, for the first time, an 

intermediate surface was introduced as the main 

surface that carries information about the oscillation 

of the layer and passes, in limiting cases, to the inner, 

outer or middle surface of the layer, depending on the 

values   of a certain parameter, which has a 

continuous spectrum of values, bounded from above 

and below. 

It should be noted that in the works [5,8], a 

method was developed for deriving the equations of 

vibration, based on the use of general solutions in 

transformations of three-dimensional problems of 

elasticity theory. The method is based on the use of 

integral transformations in coordinate and time, and 

the use of general solutions in transformations of 

three-dimensional problems of elasticity theory with 

the subsequent expansion of these solutions in power 

series for the approximate satisfaction of the dynamic 

conditions specified on the boundary surfaces of the 

considered elastic system [10, 11].  

An essential and successful application of this 

method to problems of dynamics was obtained in [12-

13]. In them, the general equations of vibrations of 

circular cylindrical shells and rods are obtained taking 

into account the interacting viscous fluid and the 

rotation of the rod. The essence of the method is to 

study the constructed solutions under various types of 

external influences and to find out the conditions 

under which the displacements or their "main parts" 

satisfy simple oscillation equations, and to find an 

algorithm that allows calculating the approximate 

field values from the field of these "main parts" 

displacements and stresses in any section for an 

arbitrary moment in time.  

In the works of the authors [14,15], equations of 

oscillation of circular cylindrical viscoelastic shells 

and layers interacting with a liquid were developed. 

The developments were carried out without the use of 

additional hypotheses and prerequisites of a physical 

or mechanical nature, from which it is possible to 

obtain the known classical and refined equations of 

oscillation. An algorithm is proposed that makes it 

possible to unambiguously determine the stress-strain 

state of points of an arbitrary section of the system 

under consideration from the values of the sought 

functions using the field of the sought functions.  

The analysis of vibrations of elements of 

engineering structures, such as rods, plates and shells 

on the basis of both classical (Kirchhoff-Love) and 

refined (Timoshenko type) theories is carried out at 

the present time. At the same time, in most of such 

studies, the tendency to take into account the inertia of 

rotation, transverse shear deformation, as well as the 

multilayer structure prevails [16,17]. In addition, 

attention is paid to taking into account the rheological, 

in particular, the viscoelastic properties of the material 

[18, 19], as well as the interaction of structures with 

deformable media such as a viscous fluid [20] or 

dispersive waves [21]. The issues of studying natural 

frequencies and natural modes of vibrations of rods, 

plates and shells have also not lost their relevance. 

Proof of this statement can be found in publications 

where the problems of influence on the frequency 

characteristics of violations of the boundary forms 

[22] and the conduct of biharmonic [23] and 

frequency analyzes [24,25] are discussed.  

Within the framework of this article, a circular 

cylindrical elastic shell is considered. The task is to 

study its harmonic longitudinal-radial oscillations on 

the basis of classical and refined theories. To carry out 

a comparative analysis of the numerical values of the 

frequencies of natural longitudinal-radial oscillations 

of an elastic cylindrical shell, obtained according to 

the equations proposed by the authors, according to 

the equations of the classical Kirchhoff-Love theory, 

on the basis of the refined theories of Hermann - 

Mirski (of the SP Timoshenko type) and 

Khudoinazarov Kh. As one of the equations of the 

refined theories, the refined oscillation equations 

developed by the authors [14, 15] are taken. 

 

Methods.  

In a cylindrical coordinate system ( )zr ,, , we 

investigate natural longitudinal-radial vibrations of a 

circular cylindrical elastic shell, freely supported on 

the ends. The shell with length l  has an interior and 

exterior radii, ,1r 2r  respectively. The direction of the 

coordinate axes, radii and displacements are shown in 

Fig. 1. It is believed that the shell is not exposed to 
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external influences and its surfaces are also free from 

external forces. 

In article [14], general equations of oscillation of 

a circular cylindrical shell were developed, and then 

they were generalized in [15] to the case of interaction 

of a circular cylindrical layer with a viscous fluid. To 

solve the problem, we assume that the terms 

responsible for the effect of the interacting fluid are 

equal to zero and the shell surfaces are free from 

external loads. Then, in the indicated equations, we 

pass to the dimensionless variables by the following 

formulas 
*

0,0, rr UU = ;  *
1,1, rr lUU = ;  *

0,0, zz lUU = ; 

*
1,1, zz UU = ; *lzz = ;  *lrr = ;   *t

b

l
t = . 

And for ease of writing, omitting the asterisks 

above the values in what follows, we obtain 
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 - Poisson's ratio of the layer material; a  - the speed 

of propagation of longitudinal waves in the shell 

material. The boundary conditions of the problem of 

natural vibrations of a cylindrical shell with free 

feathering of its ends at 0=z  and lz = , where l  is 

the length of the shell, will have the form [9] 

0
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Note that conditions (2) are written on the basis 

of expressions for the displacement values determined 

by the formulas 
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1
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r
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4

),,( zzz U
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Thus, the problem of natural longitudinal-radial 

vibrations of an elastic circular cylindrical shell is 

reduced to solving equations (1) under boundary 

conditions (2), which satisfy the series term by term. 
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,....3,2,1,0=m  . Putting these series into the system of 
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In order for system (4) to have a nonzero solution, it 

is necessary that its main determinant, composed of 

the coefficients of the unknown functions ( )tU mi ,  and 

( )tW mi ,  ( )2,1=i , be equal to zero. Denoting this 

determinant by 1  and introducing the following 

notation 
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Expanding this determinant by the elements of 

the third row, we get 

3423313213111 2 AAAqAq mm  +++=  

where  ( ) i
i

i DA 3
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3 1
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−= is an algebraic complement, 

iD3  are minors of the third row elements ia3 .  

The resulting expression for the determinant can 

be rewritten as  
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Putting into (6), the values of the differential operators 

1  and 2  by formulas (4), we finally obtain 
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Hence, each of the functions ( ),,0 tU m  ( ),,1 tU m

( ),,0 tW m  and ( )tW m,1  must satisfy the equation 

( ) ,01 = tm                             
(8) 

where  ( )−tm  is any of the above functions. Then, 

based on (3), the displacements rU  and zU  must 

satisfy the same equation. 

In equation (8), we put ( ) t
mm eAt  =  and 

obtain the following frequency equation 
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The obtained equation is general for both the 

layer and the shell. To obtain a simpler frequency 

equation for the shell in the expressions for the 

coefficients iа , it is sufficient to take ( ) 0ln 12 =rr . In 

this case, the coefficients )6,1( =iai take the form: 
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The equation in (9) takes the following form: 
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For a comparative analysis, let us calculate the 

frequencies of natural longitudinal-radial oscillations 

of an elastic circular cylindrical shell based on the 

oscillation equations of various theories. As such 

theories, we will take the classical Kirchhoff-Love 

theory [6] and the refined theories of Herman-Mirsky 

[4] and Fillipov-Khudoinazarov [5]. The 

corresponding frequency equations have the 

following forms: 

Fillipov-Khudoinazarov 
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Kirchhoff-Love 
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R -radius of the middle surface, h -shell thickness, 

Tk -Tymoshenko correction coefficient. 

Results and Discussions.  

Frequency equations (9) - (13) were solved 

numerically using the MAPLE application programs 

with the following geometric data of the shell 

1,0;1,1;0,1 21 === hrr . Poisson's ratio was taken to be 

.2,0=  The Timoshenko coefficient was taken to be 

5/6. Table 1 shows the numerical values of the shell 

frequencies depending on the values of the waveforms 

calculated on the basis of equations (9) and (10). In 

Fig. 2, based on the obtained numerical values, the 

dependences of the frequency ω on the waveform γm 

are plotted. Table 2 shows the numerical values of the 

shell frequencies depending on the values of the 

waveforms calculated on the basis of equations (11) - 

(13). In Fig. 3, on the basis of the obtained numerical 

values, the dependences of the frequency ω on the 

waveform γm are plotted according to the classical and 

refined equations of various theories. On the given 

Tables 1, 2 it can be observed that the real parts of the 

roots of the frequency equations, except for the 

Hermann-Mirsky equations, are negative. From the 

physical meaning of the problem on the basis of the 

Hurwitz criterion [26] it follows that the roots of the 

frequency equations (respectively, cubic and 

quadratic equations with respect to 2 ) must be 

purely imaginary. 

The obtained numerical values of the roots of the 

equations show that in reality such results follow from 

all equations, except for the Hermann-Mirsky 

equation (Table 2) up to a certain value of the 

 

 

Table 1 

      

γm Equation  (9) 

 

 Equation (10) 

 

  ω1 ω2 ω3 ω1 ω2 

0,1 

 

Д 

М 

0 

±0,1624 

0 

±2,3557 

0 

±19,9508 

0 

±1,0539 

0 

±0,1549 

0,3 

 

Д 

М 

0 

±0,4837 

0 

±2,3659 

0 

±19,9511 

0 

±1,0539 

0 

±0,4647 

0,5 

 

Д 

М 

0 

±0,8062 

0 

±2,3859 

0 

±19,9517 

0 

±1,0539 

0 

±0,7745 

0,7 

 

Д 

М 

0 

±1,1287 

0 

±2,4154 

0 

±19,9527 

0 

±1,0844 

0 

±1,0539 

0,9 

 

Д 

М 

0 

±1,4512 

0 

±2,4542 

0 

±19,9539 

0 

±1,3942 

0 

±1,0539 

1,1 

 

Д 

М 

0 

±1,7736 

0 

±2,5019 

0 

±19,9554 

0 

±1,7041 

0 

±1,0539 

1,3 

 

Д 

М 

0 

±2,0961 

0 

±2,5578 

0 

±19,9572 

0 

±2,0139 

0 

±1,0539 

1,5 

 

Д 

М 

0 

±2,4186 

0 

±2,6214 

0 

±19,9594 

0 

±2,3237 

0 

±1,0539 

1,7 

 

Д 

М 

0 

±2,6921 

0 

±2,7411 

0 

±19,9619 

0 

±2,6336 

0 

±1,0539 

1,9 Д 0 0 0 0 0 
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 М ±2,7694 ±3,0636 ±19,9647 ±2,9434 ±1,0539 

2,1 

 

Д 

М 

0 

±2,8526 

0 

±3,3861 

0 

±19,9679 

0 

±3,2533 

0 

±1,0539 

2,3 

 

Д 

М 

0 

±2,9412 

0 

±3,7086 

0 

±19,9714 

0 

±3,5631 

0 

±1,0539 

2,5 

 

Д 

М 

0 

±3,0347 

0 

±4,0311 

0 

±19,9753 

0 

±3,8729 

0 

±1,0539 

 

 

 

Table 2 

 

 Equation  

 (9) 

Equation  

Kirchhoff-Love 

Equation  

Hermann-Mirsky 

Equation  

Filippov-

Khudoynazarov 

γm ω1 ω2 ω3 ω1 ω2 ω1 ω2 ω3 ω1 ω2 ω3 

0,1 

 

Д 

М 

0 

±0,1 

0 

±2,3 

0 

±19,9 

0 

±0,01 

0 

±0,16 

0 

±0,04 

0 

±0,24 

0 

±0,97 

0 

±0,25 

0 

±1,9 

0 

±3,21 

0,3 

 

Д 

М 

0 

±0,4 

0 

±2,3 

0 

±19,9 

0 

±0,08 

0 

±0,50 

0 

±0,04 

±0,04 

±0,74 
 0,04 

±0,74 

0 

±0,77 

0 

±2,0 

0 

±3,23 

0,5 

 

Д 

М 

0 

±0,8 

0 

±2,3 

0 

±19,9 

0 

±0,24 

0 

±0,84 

0 

±0,07 

±0,39 

±0,89 
 0,39 

±0,89 

0 

±1,28 

0 

±2,0 

0 

±3,27 

0,7 

 

Д 

М 

0 

±1,1 

0 

±2,4 

0 

±19,9 

0 

±0,47 

0 

±1,18 

0 

±0,12 

±0,57 

±1,05 
 0,57 

±1,05 

0 

±1,79 

0 

±2,0 

0 

±3,33 

0,9 

 

Д 

М 

0 

±1,4 

0 

±2,4 

0 

±19,9 

0 

±0,79 

0 

±1,52 

0 

±0,19 

±0,73 

±1,21 
 0,73 

±1,21 

0 

±2,14 

0 

±2,3 

0 

±3,40 

1,1 

 

Д 

М 

0 

±1,7 

0 

±2,5 

0 

±19,9 

0 

±1,18 

0 

±1,85 

0 

±0,27 

±0,87 

±1,39 
 0,87 

±1,39 

0 

±2,21 

0 

±2,8 

0 

±3,50 

1,3 

 

Д 

М 

0 

±2,0 

0 

±2,5 

0 

±19,9 

0 

±1,64 

0 

±2,19 

0 

±0,35 

±1,02 

±1,56 
 1,02 

±1,56 

0 

±2,29 

0 

±3,3 

0 

±3,60 

1,5 

 

Д 

М 

0 

±2,4 

0 

±2,6 

0 

±19,9 

0 

±2,19 

0 

±2,53 

0 

±0,43 

±1,16 

±1,75 
 1,16 

±1,75 

0 

±2,39 

0 

±3,7 

0 

±3,85 

1,7 

 

Д 

М 

0 

±2,6 

0 

±2,7 

0 

±19,9 

0 

2,82 

0 

2,87 

0 

±0,51 

±1,31 

±1,94 
 1,31 

±1,94 

0 

±2,50 

0 

±3,8 

0 

±4,36 

1,9 

 

Д 

М 

0 

±2,7 

0 

±3,0 

0 

±19,9 

0 

3,21 

0 

3,52 

0 

±0,59 

±1,45 

±2,13 
 1,45 

±2,13 

0 

±2,62 

0 

±4,0 

0 

±4,88 

2,1 

 

Д 

М 

0 

±2,8 

0 

±3,3 

0 

±19,9 

0 

3,54 

0 

4,30 

0 

±0,67 

±1,60 

±2,32 
 1,60 

±2,32 

0 

±2,75 

0 

±4,1 

0 

±5,39 

2,3 

 

Д 

М 

0 

±2,9 

0 

±3,7 

0 

±19,9 

0 

3,88 

0 

5,16 

0 

±0,75 

±1.74 

±2,51 
 1.74 

±2,51 

0 

±2,89 

0 

±4,3 

0 

±5,90 

2,5 

 

Д 

М 

0 

±3,0 

0 

±4,03 

0 

±19,9 

0 

4,22 

0 

6,09 

0 

±0,82 

±1,89 

±2,71 
 1,89 

±2,71 

0 

±3,03 

0 

±4,4 

0 

±6,42 
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Fig.1. Comparison of natural frequencies theories   

(9) and (10). 

Fig.2.Comparison of natural frequencies of 

vibrations according to different longitudinal- 

radial according to equations. 

 

 

parameter m and at certain values of the transverse 

dimensions of the shell. As for the Hermann-Mirsky 

equations, such results can be obtained for separate 

values of the Timoshenko coefficient ,1Tk  which 

is impossible in principle. 

 

Conclusions 

From a comparison of the numerical results 

obtained by equations (9) and (10), it follows that in 

the case of equation (9) we have six frequency values, 

and for the equation for the shell four frequencies. 

When passing from equation (9) to equation (10) for 

the shell, two frequencies are lost. The obtained 

numerical results, at 

;2,0;1,0;1,1;0,1 21 ==== hrr ,
6

5
=Tk  are shown 

in Table 2 and presented in the form of curves in Fig. 

3. From Table 2 and Fig. 3 the following conclusions 

follow: 

- the Hermann-Mirsky equation does not obey 

the Hurwitz criterion and gives imprecise results. 

More accurate results can be obtained that are 

consistent with the Hurwitz criterion only at certain 

values of the Timoshenko correction coefficient .Tk  

This conclusion completely coincides with the same 

conclusion of work [9];  

from the graphs in Fig. 2 and Fig. 3 it follows that 

equations (1) describe well the wave process, like 

equations (11), in long shells ( ml  ) regardless of 

the values of the number m , i.e. with sufficiently low 

and high forms of wave formation; 

- equations (1) are suitable for solving dynamic 

problems in shells of medium length with sufficiently 

low waveforms; 

- these equations are unsuitable for describing 

wave processes in short shells, the lengths of which 

are commensurate with the transverse dimensions of 

the shells ml  . 
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