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Introduction 

In recent decades, considerable attention in the 

literature has been paid to the study of the deformation 

process of electrically conductive bodies placed in an 

external constant magnetic field under the influence of 

power, thermal and electromagnetic loads 

[1,2,3,4,5,6, 7,8,9,10,11,12,13,14,15,16,17,18,19]. 

Interest in research in this area is associated with 

the importance of a quantitative study and assessment 

of the relationship effects observed between 

mechanical, thermal and electromagnetic processes 

and their practical application in various fields of 

modern technology in the development of new 

technologies, and in the field of microelectronics, 

modern measuring systems, etc. Modern technology 

places great demands on structural elements exposed 

to fields of various natures. This circumstance leads to 

the need to create new calculation methods that fully 

and adequately take into account the properties of real 

materials and the processes occurring in them. 

That is why in recent years, nonstationary 

dynamic problems of electroelasticity and 

electromagneto-elasticity have attracted the attention 

of researchers. At the same time, if in electro-

elasticity, a relatively large number of completed 

results are currently known (for both static and 

dynamic problems), then in electro-magneto-

elasticity, the number of such studies is limited. At 

present, the least studied are the problems of 

nonstationary dynamics of elastic conducting bodies 

under the action of mechanical and electromagnetic 

fields. 

 

I. STATEMENT OF THE PROBLEM. THE 

EQUATIONS OF MAGNETOELASTICITY. 

Let us assume that an electrically conductive 

body is in a magnetic field formed both by an electric 

current in the body itself (internal magnetic field) and 

by a source located at a distance from the body 

(external magnetic field). The body has finite 

electrical conductivity and does not possess the 

property of spontaneous polarization and 

magnetization. We also assume that, in the general 

case, surface currents and external charges are absent. 

Let us present the equations of magnetoelasticity 

for similar bodies in the Euler coordinates [2]: 

equations of motion: 
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𝜕𝑥𝑖
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The following designations are introduced in 

relations (1)-(4): ijt - components of the tensor of 

internal stresses;  iF - components of the vector of 

volumetric mechanical forces;  iF - components of 

the vector of Lorentz volumetric forces; 

, , , ,k k k k kE D H B J  - components of the vectors of the 

intensity and induction of the electric field, the 

intensity and induction of the magnetic field, 

respectively; = + k k e kJ J V - components of the 

density vector of total current; 
kJ - conduction current 

density; e kV - convective current density; e - the 

density of electric charges;  - the density of the 

substance in its current state; 
kV  - components of the 

velocity vector;  
= +
 

k
k

d
V

dt t x
 - total time 

derivative. 

We assume that the geometric and mechanical 

characteristics of the body are such that a version of 

the geometrically nonlinear theory of thin plates in the 

quadratic approximation is applicable to describe the 

deformation process. 

For the considered case of quadratic nonlinearity 

[1, 3, 4], we assume that deformations and shears are 

small in comparison with the angles of rotation of the 

element, and the angles themselves are substantially 

less than unity. 

We also assume that electromagnetic hypotheses 

are fulfilled with respect to the electric field strength 

E


 and the magnetic field strength H


 [1]. 

The elastic properties of the material correspond 

to an anisotropic body, the main directions, the 

elasticity of which coincide with the directions of the 

corresponding coordinate lines. The electro-magnetic 

properties of the material are characterized by tensors 

of electrical conductivity 
ji

 , magnetic permeability

ji
 , dielectric constant ( )3,2,1, =jiji . 

The system of equations of magnetoelasticity 

must be closed by relations connecting the vectors of 

intensity and induction of the electromagnetic field 

and by Ohm's law, which determines the density of 

current conductivity in a moving medium. If an 

anisotropic body is linear with respect to the magnetic 

and electrical properties, then the governing equations 

for the electromagnetic characteristics of the field and 

the kinematic equation for electrical conductivity, as 

well as expressions for the Lorentz forces, taking into 

account the external current in the Lagrange variables, 

is written, respectively, in the following form  [2, 11]: 

HB ji
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= , ED ji


= ,                           (3) 

 BEJFFJ тс

T

ji
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(4)                                                                                                                                     

( ) BBEBJFf jiтс


++= −−  11      (5) 

Thus, (1), (2) with relations (3) - (5) constitutes 

a closed system of nonlinear equations of magneto-

elasticity of current-carrying orthotropic bodies with 

orthotropy of conducting properties. 

When investigating the deformation of a circular 

orthotropic plate in a magnetic field, we refer it to a 

cylindrical coordinate system zr ,, , so that the 

middle plane of the plate is connected with the polar 

coordinate system and the center of the plate is at the 

origin. 

Consider an annular plate in a one-dimensional 

statement along the spatial coordinate r ; suppose that  

,0/ =  ,0=v ,0=rE ,0=B ,0=S ,0=H

,0=F ,0=

F ),(rhh =  where S– is the shear 

force, −v is the circular displacement. 

An account for the diagonal form of the electrical 

conductivity tensors, the complete system of 

equations, which makes it possible to describe the 

geometrically nonlinear model of the 

magnetoelasticity of orthotropic annular plates, 

consists of [1, 6, 7]: 

equations of magnetoelasticity 
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expressions for deformations 
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elasticity relations 
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In (6) - (8), the following notations are taken: 

,rr  = ,  r= ;rr ee   = ,r − is 

Poisson's ratios; ,re −e are Young's moduli; ,u

−w are the displacements;  ,rN −N are the 

tangential forces; ,rM −M are the bending moments; 

−rQ is the generalized shear force; ,r −  are the 

main curvatures of the middle surface of the plate; 

,rN −

rB are the known values of the tangential 

components of the magnetic induction on the surfaces 

of the plate. 

The components of the Lorentz force are as 

follows: 
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III. NUMERICAL EXAMPLE. ANALYSIS 

OF ELECTROMAGNETIC EFFECTS.  

Consider a nonlinear magnetoelasticity problem 

on the stress-strain state of an annular plate of variable 

stiffness under the action of unsteady magnetic field 

and arbitrary mechanical load. The plate is elastic 

orthotropic, made of material with finite electrical 

conductivity, located in an external magnetic field 

with strength vector
0H


. The plate is a conductor of a 

uniformly distributed external electric current of 
СТrJ


 

density. Let the magneto-statics problem for the 

unperturbed state be considered as solved, that is, the 

vectors of the magnetic induction of the initial state 

for the outer and inner regions are known.  

We investigate the stress-strain state of a 

metallic boron/aluminum annular plate of constant 

thickness h , inner radius 0r , outer radius 1r , under 

the influence of the normal component of mechanical 

load 
ZP  and an external magnetic field with a given 

vector of magnetic induction .)(eB

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The solution to the problem is determined over 

time interval sec10 2−= , the integration step over 

time is taken as sec101 3−= t  at one hundred points 

of integration over the length of the shell. The 

maximum values are obtained at time step 

sec105 3−=t . Fig. 1 shows the graphs of deflection 

change ( )rw  depending on the radial coordinate of the 

plate at time point sec105 3−=t  for three values of 

magnetic induction. Graphs 31  correspond to 

magnetic induction 1. 1.00 =zB ; 2. 2.00 =zB ;  3.

5.00 =zB , respectively. 

 

 
Figure 1. Graphs of deflection changes in time )(tw  for the values of the normal component of external 

magnetic induction 

 

Analyzing the numerical results obtained, it can 

be seen that with an increase in the values of normal 

component of external magnetic induction, the 

deflection of the plate increases. 
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IV. CONCLUSION. 

The article deals with the coupled problem of 

magnetoelasticity for a flexible orthotropic 

conductive annular plate taking into account the 

anisotropy of the conductive properties.  A solution 

was obtained for the nonlinear problem of 

magnetoelasticity of an annular plate taking into 

account anisotropic electrical conductivity.  

The analysis of the results obtained allows us to 

evaluate the influence of the normal components of 

magnetic induction on the stress state of a flexible 

orthotropic annular plate. Based on the results 

presented, the magnetoelastic nonlinear problem for a 

conductive annular plate must be considered in a 

coupled form. 
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