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ABSTRACT 
Missing data is one of the main difficulties in working with fluviometric records. Database 

gaps may result from fluviometric stations components problems, monitoring interruptions and 

lack of observers. Incomplete series analysis generates uncertain results, negatively impacting 

water resources management. Thus, proper missing data consideration is very important to 

ensure better information quality. This work aims to analyze, comparatively, missing data 

imputation methodologies in monthly river-flow time series, considering, as a case study, the 

Doce River, located in Southeast Brazil. Missing data were simulated in 5%, 10%, 15%, 25% 

and 40% proportions following a random distribution pattern, ignoring the missing data 

generation mechanisms. Ten missing data imputation methodologies were used: arithmetic 

mean, median, simple and multiple linear regression, regional weighting, spline and Stineman 

interpolation, Kalman smoothing, multiple imputation and maximum likelihood. Their 

performances were compared through bias, root mean square error, absolute mean percentage 

error, determination coefficient and concordance index. Results indicate that for 5% missing 

data, any methodology for imputing can be considered, recommending caution for arithmetic 

mean method application. However, as the missing data proportion increases, it is 

recommended to use multiple imputation and maximum likelihood methodologies when there 

are support stations for imputation, and the Stineman interpolation and Kalman Smoothing 

methods when only the studied series is available.  

Keywords: Doce river, imputation, missing data. 

Abordagens metodológicas para imputação de dados faltantes de 

vazões médias mensais 

RESUMO 
A falta de dados é uma das principais dificuldades no trabalho com registros 

fluviométricos. As lacunas no banco de dados podem resultar de problemas nos componentes 

das estações fluviométricas, interrupções no monitoramento e falha dos observadores. A análise 
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de séries incompletas gera resultados incertos, impactando negativamente a gestão dos recursos 

hídricos. Assim, a consideração adequada dos dados faltantes é muito importante para garantir 

a qualidade de informação. Este trabalho teve como objetivo analisar, comparativamente, 

metodologias de imputação de dados faltantes em séries temporais de vazões fluviais mensais, 

considerando, em um estudo de caso, o Rio Doce, localizado no Sudeste do Brasil. Os dados 

faltantes foram simulados nas proporções de 5%, 10%, 15%, 25% e 40% seguindo um padrão 

de distribuição aleatória e ignorando os mecanismos de geração de falhas. Foram utilizadas dez 

metodologias de imputação de dados faltantes: média aritmética, mediana, regressão linear 

simples e múltipla, ponderação regional, interpolação spline e Stineman, suavização de 

Kalman, imputação múltipla e máxima verossimilhança. Seus desempenhos foram comparados 

por meio dos indicadores viés, raiz do erro quadrático médio, erro absoluto médio percentual, 

coeficiente de determinação e índice de concordância. Os resultados indicam que para 5% de 

dados faltantes, qualquer metodologia de imputação pode ser considerada, recomendando 

cautela na aplicação da média aritmética. No entanto, à medida que a proporção de dados 

faltantes aumenta, recomenda-se o uso das metodologias imputação múltipla e máxima 

verossimilhança quando houver estações de suporte para imputação, e os métodos de 

interpolação Stineman e suavização de Kalman quando apenas as séries estudadas estiverem 

disponíveis.  

Palavras-chave: dados faltantes, imputação, Rio Doce. 

1. INTRODUCTION 

Knowledge about the water regime in a river basin is fundamental in hydrological studies, 

being an indispensable factor for adequate water-resource management (Moreira, 2006). In this 

sense, Brazilian Law 9,433 (Brasil, 1997), which instituted the National Water Resources 

Policy, indicates, among the management instruments, the National Water Resources 

Information System. In this context, the hydrometeorological monitoring network maintained 

by the National Water Agency (ANA) and the availability of the databases generated in the 

Hydrological Information System (HIDROWEB) become relevant. 

The instrument National Water Resources Information System, however, is still incipient 

in relation to the others, mainly due to the limited number of monitoring stations and the 

incompleteness of the data generated (Fioreze and Oliveira, 2010). The existence of gaps in the 

historical series is due to technical or maintenance problems, non-ideal climatic conditions, 

instrumental failures or device errors during data collection, human error during data entry, 

calibration processes and/or data damage due to malfunction of machines storage, construction 

and organization of hydrometric databases (Gao, 2017; Johnston, 1999; Peña-Angulo et al., 

2019; Tencaliec, 2017; Tucci, 1997). 

According to McKnight et al. (2007), “in general, the term missing data means that some 

type of information about the phenomenon in which we are interested is missing” and, therefore, 

the sample is called incomplete. The analysis of incomplete flow-time series produces negative 

impacts, especially on stochastic decompositions of series, compromising information such as 

trend, stationarity, cycle and seasonality (Box and Cox, 1964).  

As discussed by Roth et al. (1999) and Pigott (2001), the existence of missing values in 

time series generally decreases the capacity and precision of statistical analysis approaches and 

contributes to biased estimates of the relationship between variables, which may cause 

inaccurate assumptions in data set exploration which can negatively impact water resources 

management, for example, in determination of maximum permissible uptake and ecological 

flows, extreme flows estimation, flows forecasting, hydraulic systems designs, among others. 

Due to this fact, the reconstruction of incomplete series and the treatment of missing data must 

be seen as a priority in the data preparation procedure (Hamzah et al., 2020). 
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Because missing data imputation is a useful tool in water-resource management studies 

(Barnetche and Kobiyama, 2006), several authors have worked on the application of techniques 

for imputing missing data in hydrological studies resulting in a variety of methods ranging from 

simple imputation by mean or median to widely used statistical methods such as Regional 

Weighting (Ely et al., 2021); interpolations (linear, quadratic and cubic) (Gyau-Boakye and 

Schultz, 1994, Hamzah et al., 2020); methods based on linear regressions (single and multiple) 

(Kamwaga et al., 2018; Khalifeloo et al., 2015); Self Organizing Map (SOM) and Soil and 

Water Assessment Tool (SWAT) (Kim et al., 2015); to more advanced and robust methods, 

such as different Artificial Neural Network approaches (Canchala-Nastar et al., 2019; 

Elshorbagy et al., 2000; Nkiaka et al., 2016; Starrett et al., 2010; Vega-Garcia et al., 2019); 

machine learning methods (Heras and Matovelle, 2021; Rado et al., 2019); satellite radar 

altimetry and multiple imputation (Ekeu-Wei et al., 2018); combination of regression and 

autoregressive integrated moving average (ARIMA) models called dynamic regression 

(Tencaliec et al., 2015); Singular Spectrum Analysis (SSA) and Multichannel Singular 

Spectrum Analysis (MSSA) (Semiromi and Koch, 2019); among many others. The many 

methods that can be used for hydrological missing data imputation resulted in literature reviews 

as can be seen in Ben Aissia et al. (2017) and Hamzah et al. (2020). 

Ventura et al. (2016) carried out a study to compare statistical methods for filling gaps and 

to verify which method presents better results for meteorological data series. Three weather 

stations located in Porto Alegre, Rio de Janeiro and Manaus cities, in Brazil, were chosen. 

Failures were simulated in real data series and the performances of four methods were 

compared: simple average, moving average, simple linear regression and multiple linear 

regression. To verify the obtained results, the mean absolute error and the correlation coefficient 

were used. The results showed excellent performance of the multiple linear regression method 

for the variables temperature, humidity and dew point, while the simple average had the best 

result for the variable atmospheric pressure. None of the four methods presented good results 

for the variable solar radiation. 

Nunes et al. (2009) carried out a study with the objective of publicizing the Multiple 

Imputation (MI) method. The authors selected a 470 surgical patient death outcome data set 

and adjusted logistic models to it. Two incomplete data sets were generated, one presenting 5% 

and the other 20% of missing data for the variable albumin. Models were adjusted to the 

complete series, to the series presenting missing data and the series filled by using MI. The 

estimates obtained by the analysis of the series presenting missing data and with the filled series 

were different, mainly for those presenting 20% of missing data. The utilized MI was efficient, 

because the results achieved with the series filled by imputations were close to those obtained 

with the complete series. The results obtained considering series filled by using MI were 

superior to those obtained for series with missing data. 

Junger and Leon (2015) presented an imputation method via Maximum Likelihood (ML) 

that is suitable for multivariate time series using the EM algorithm (Expectation and 

Maximization) under the assumption of normal distribution. The authors used a database related 

with tem PM10 monitoring stations located in São Paulo city, Brazil. Different approaches were 

considered to filter the temporal component. A simulation study was carried out to compare the 

proposed and some frequently used methods of quality and performance. The simulations 

showed that when the amount of missing data was less than 5%, the complete data analysis 

generated satisfactory results, regardless of the mechanism that generated the missing data. 

Imputation quality began to degenerate when missing data proportions exceeded 10%. The 

proposed imputation method presented good accuracy and precision in different configurations 

with respect to the missing observation patterns. Most imputations obtained valid results, even 

under the non-random losses mechanism. 

Sattari et al. (2017) evaluated different methods of imputing missing data in monthly 



 

 

Rev. Ambient. Água vol. 17 n. 2, e2795 - Taubaté 2022 

 

4 Michel Trarbach Bleidorn et al. 

rainfall time series collected at six stations in southern Iran. Imputation methodologies analyzed 

include arithmetic mean, inverse distance interpolation, linear regression, multiple imputations, 

multiple linear regression analysis, non-linear iterative partial least squares algorithm, NR 

method, single best estimator, UK traditional method and M5 decision model tree. Results 

showed that arithmetic averaging method, multiple linear regression method and nonlinear 

iterative partial least squares algorithm perform best. Multiple regression methods provided a 

successful missing precipitation data estimation. Multiple imputation methods produced the 

most accurate results for precipitation data from five dependent stations. Finally, the decision-

tree algorithm is explicit, and therefore it is used when insights into decision making are needed. 

Chen et al. (2019) verified the impact of using different methods for imputing missing data 

in rainfall series on the forecasting hydrological and non-point (H/NPS) pollution performance 

using the Soil and Water Assessment Tool (SWAT) model. Multiple imputation (MI) and 

maximum likelihood methods using expectation-maximization bootstrap algorithm (EMB) 

were considered. Different imputed data sets effects were investigated through a case study in 

the Daning River Basin, Three Gorges Reservoir Region, China. Results indicate that rainfall 

data imputation and H/NPS model performance obtained by EMB algorithm are superior to MI 

performance. Authors highlight the important implications for choosing appropriate imputation 

methods in H/NPS models to solve data scarcity problems for watershed studies. 

Hamzah et al. (2022) evaluated the performance of multiple imputations by chained 

equations (MICE) approach to predicting recurrence in streamflow datasets. To evaluate and 

verify MICE approach effectiveness in treating missing streamflow data, complete historical 

daily streamflow series from 2012 to 2014 were used. Later, MICE methods coupled with 

multiple linear regression (MLR) were applied to restore streamflow rates in Malaysia’s Langat 

River Basin from 1978 to 2016. The best estimation methods are validated with tests such as 

adjusted R-squared (Adj R2), residual standard error (RSE) and mean absolute percentage error 

(MAPE). Findings revealed that the classification and regression tree (CART) method 

combined with MLR outperformed the other approaches tested, with highest Adj R2 value and 

lowest RSE and MAPE values observed regardless of missing conditions. 

Abu Romman et al. (2021) compared ten imputation methods that were used to impute 

rainfall depth data in an arid region of the Mediterranean. Series mean, linear interpolation, 

linear trend, arithmetic mean, normal ratio, inverse distance weighting, linear regression with 

GPCC data, linear regression with satellite data, stepwise multiple linear regression and 

multiple imputation were used for these imputations. The results showed that for intervals 

between 5 and 20% of failures, the stepwise multiple linear regression method produced best 

results with a root mean square error (RMSE) and mean absolute error (MAE) less than 7 and 

2 mm, respectively. This was followed by the Monte Carlo Markov chain expectation-

maximization-based multiple imputation method, which had an RSME and MAE of 1.01 and 

0.08 mm, respectively, when the series had 20% failures. On the other hand, satellite data use 

for imputation was adequate for failures between 10 and 15%. 

Other studies can be highlighted, especially related to medicine and health (Camargos et 

al., 2011; Carreras et al., 2021; Khan et al., 2021; Nunes, 2007; Payrovnaziri et al., 2021), air 

pollution (Choi et al., 2021; Ghazali et al., 2021; Pinto, 2013), engineering, mainly civil and 

traffic (Abdelgawad et al., 2015; Jiang et al., 2021), meteorology (Afrifa‐Yamoah et al., 2020; 

Bier and Ferraz, 2017; Costa et al., 2021; Ferrari and Ozaki, 2014; García-Peña et al., 2014), 

agriculture (Jiao et al., 2016; Nishina et al., 2017; Swenson, 2014), energy (Barbosa et al., 

2018; Pelisson, 2021) and education (Vinha and Laros, 2018). 

Currently, it is unclear in the literature which method is the most appropriate to deal with 

missing value imputation in river-flow time series. Considering this scenario, this research 

evaluates ten imputation techniques, based on single and multiple imputation methods: 

Arithmetic Mean (AM), Median (M), Simple Linear Regression (SLR), Multiple Linear 
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Regression (MLR), Regional Weighting (RW), Spline Interpolation (SPLINE), Stineman 

interpolation (STINE), Kalman Smoothing with (KALMAN), Multiple Imputation (MI) and 

Maximum Likelihood (ML). It is important to emphasize that there are still few studies that use 

MI and ML imputation methodologies dealing with missing value imputation in river-flow time 

series, evidencing the need to develop works analyzing their performance, and these results can 

help sustainable water resource management. In this context, the present research objective is 

to comparatively analyze methodologies for imputing missing data by an application to Doce 

River, Brazil, monthly average fluviometric flow-time series. 

2. MATERIAL AND METHODS 

2.1. Study Area 

The Doce River watershed, Figure 1, is located in Southeast Brazil, occupying portions of 

Minas Gerais and Espírito Santo states between the parallels 17°45' and 21°15' South latitude 

and the meridians 39°55' and 43º45' West longitude. The Doce River presents 853 km total 

extension and 83,465 km2 drainage area (Coelho, 2007). Of this area, 86% belongs to Minas 

Gerais state and the remaining 14% to Espírito Santo state, being, therefore, a federal dominion 

watershed. 

 
Figure 1. Doce River Watershed. 

2.2. Data 

Six ANA hydrometeorological network Doce River fluviometric stations were considered 

in this work. The monthly flow data was obtained from the HIDROWEB Hydrological 

Information System (Agência Nacional de Águas, 2018). Station-selection criteria were related 

to the existence of consistent historical average monthly flow-time series for at least 20 years, 

according to literature recommendations (Longhi and Formiga, 2011; Sarmento, 2007). 

Historical series stationarity analysis, that verifies mean and variance identity of two 

distinct hydrological series subperiods, utilized Fisher's F and t-Student tests, in order to 

evaluate time series hydrological regime behavior changes, which can be caused by several 

factors, such as reservoir construction upstream of the fluviometric station, water withdrawal 

for irrigation agricultural activities use and even local climate regime changes over time (Sousa 

et al., 2009). For the analysis, the software SisCAH 1.0 - Computational System for 

Hydrological Analysis - was used (Sousa et al., 2009). 

The selected stations are shown in Figure 1. The list of stations considered is presented in 

Table 1, with respective ANA identification codes, identification nomenclature adopted in this 
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study, geographic coordinates and drainage areas. Colatina station is located in Espírito Santo 

state, and the others in Minas Gerais state. After analyzing the available data, the study base 

period 1987 to 2014 was determined. 

Table 1. Selected fluviometric stations information. 

Code ID Station X (m) Y (m) Zone 
Drainage 

Area (km2) 

56425000 E1 Fazenda Cachoeira D'Antas 743325 7766305 23 K 10,100 

56539000 E2 Cachoeira dos Óculos - Montante 764419 7762315 23 K 15,900 

56719998 E3 Belo Oriente 775691 7760371 23 K 24,200 

56850000 E4 Governador Valadares 189099 7753279 24 K 40,500 

56920000 E5 Tumiritinga 221838 7752450 24 K 55,100 

56994500 E6 Colatina 329007 7749346 24 K 76,400 

2.3. Missing data patterns 

According to Silva (2012), the presence of missing data in a database can be characterized 

by observed failure behavior patterns which is of paramount importance to describe missing 

value locations in the series. First, Collins et al. (1991) described and divided the pattern of 

missingness into two groups: general (random) and special patterns. Special patterns including 

univariate missing data, unit nonresponse, and monotone missing data. “Missing general” or 

“random pattern” is where missing data occur in any of the variables in any position. In a 

“special pattern” case, if there is only one variable with missing data while the other variables 

are completely recorded, the pattern is called “univariate missing data”. Additionally, when the 

multivariate pattern is detected, means that the missing values arise in more than one variable; 

if there are missing values on a block of variables for the same set of cases, and the remaining 

of the variables are all complete, the missing data pattern is called “unit nonresponse”; and, the 

pattern is said to be “monotone” whenever observations are ordered and item k is missing, and 

all k + 1,..., n cases are also missing (Collins et al., 1991; Silva, 2012). For the present study, 

the general pattern will be considered, because it assumes that the missing data follow a random 

distribution. 

2.4. Missing data mechanisms 

Little and Rubin (2019) classified three possible ways that data may go missing: Missing 

Completely at Random (MCAR), Missing at Random (MAR) and Missing Not at Random 

(MNAR). As discussed by Hamzah et al. (2020) and Gao et al., (2018), MCAR describes data 

where the gaps are distinct from any of the variables in the dataset. In any event, the missing 

values probably correlated to other observed values, yet not to missing values; in that case, the 

missingness is assumed to be MAR. Missing data which are dependent on the observed value 

is known as MNAR. Missing data can be presented in the form of a probabilistic process that 

describes the association among the measured variables and the probability of missing value. 

For more details about Missing Data Mechanisms, see Little and Rubin (2019); based on these 

authors, missing value in streamflow study is determined as MCAR because the missingness 

episode in streamflow data of an area is not influenced by data in that area or any area. This 

mechanism of missing data is classified as ignorable, that is, there isn't need to model the 

mechanism as part of the estimation process (Allison, 2001). 

2.5. Missing data imputation methods 

The missing data imputation methodologies can be classified in three general classes: 

Single Imputation (SI), Multiple Imputation (MI) and Estimation. The basic principle of SI 

methods is to impute one value to each database missing data and, then, analyze it as if there 
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weren't missing data (McKnight et al., 2007). The MI is characterized by being a method that 

consists of imputing a certain missing data by a data set and, after analyzing it, determining the 

best value to be taken to impute it. The Estimation method consists in estimating parameters 

that govern the missing values distribution from the observed data. For the present study, the 

Maximum Likelihood (ML) methodology will be employed. In addition to this general 

classification and more widely used in the literature to deal with missing data, imputation 

methodologies can also be classified as univariate or multivariate. The first occurs when the 

series itself provides information that can be used by imputation methodology. The second one 

is when it is necessary to use support stations to impute interest series. In this study, AM, M, 

SPLINE, STINE and KALMAN were classified as univariate imputation methods. In turn, 

SLR, MLR, RW, MI and ML are multivariate methods.  

2.5.1. Single Imputation Methods 

Arithmetic Mean (AM) 

This is the most commonly used single imputation technique where the missing values are 

replaced with the mean value of the time series. The mean of a series of values x1, x2, ..., xn is 

given by Equation 1. 

𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1                (1) 

Median (M) 

Median imputation is another simple method often appropriate for highly skewed data 

(Junger and Leon, 2015). This method calculates the median of the variable based on all cases 

that have data for any variable and replaces the series missing values with the median of the 

variable (Kabir et al., 2019). The median of a series of values x1, x2, ..., xn is can be obtained by 

Equation 2 after sorting the dataset in ascending order: 

𝑚(𝑥) = {

𝑥
(

𝑛+1

2
)
                         𝑖𝑓 𝑛 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑥
(

𝑛
2

)
+𝑥

(
𝑛
2+1)

2
          𝑖𝑓 𝑛 𝑎𝑛 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟

         (2) 

Simple (SLR) and Multiple Linear Regression (MLR)  

Imputation with linear regression uses information from complete series to fill the missing 

values of the interest series. It can be of two types: (i) imputation by simple linear regression, 

when the purpose is to predict the dependent series behavior as a function of only one 

independent series (Equation 3) or (ii) imputation by multiple linear regression, when the 

dependent series behavior is a function of more than one independent series (Equation 4). 

𝑋 = 𝛽0 + 𝛽𝑌 + 𝜀              (3) 

In Equation 3, X represents the linear regression equation dependent series; β0 a linear 

coefficient vector; β the angular coefficient; Υ the independent station and ε the model 

residuals. As in SLR case, only one independent series is used to adjust the regression, Pearson 

correlation coefficient was used as a criterion for choosing this series and, after the test was 

applied, the station time series that presented highest correlation coefficient with E6, which is 

the interest station, was then chosen to perform imputation. 

𝑋 = 𝛽0 + ∑ 𝛽𝑖𝑌𝑖
𝑛
𝑖=1 + 𝜀              (4) 

In Equation 4, X represents the linear regression equation dependent series; β0 a linear 

coefficient vector; βi the angular coefficients; Υi the independent station and ε the model 
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residuals. For MLR, stations E1, E2, E3, E4 and E5 series were used as independent series to 

fit the regression with E6. 

Regional Weighting (RW) 

Imputation by regional weighting method establishes linear regressions between the station 

that has series with missing data, X, and each neighboring station series, Υ1, Υ1, ..., Υn, 

incorporating distance information (Mello et al., 2017; Pruski et al., 2004). From each linear 

regression performed, a correlation coefficient is obtained for the data to be estimated. Equation 

5 denotes the regional weighting method. 

𝑋 =
1

𝑛
∑

𝑁𝑋

𝑁𝑖

𝑛
𝑖=1 𝐷𝑖              (5) 

In Equation 5, NX and Ni represents the monthly average flows data for the station with 

missing data to be imputed and the order “i” neighboring station monthly average flow, 

respectively (m3.s-1); Di denotes the values observed in the order “i” neighboring stations during 

the month of occurrence in the station with the data to be imputed (m3.s-1); and n is the number 

of neighboring stations considered. 

Spline Interpolation (SPLINE) 

According to Wijesekara and Liyanage (2020), for n + 1 pair of observations                                           

{(ti, xi): i = 0,1, ... n}, the shape of spline is modeled by interpolating between all the pairs of 

observations (ti-1, xi-1) and (ti, xi) with polynomials described in Equation 6. 

𝑥 = 𝑞𝑖(𝑡), 𝑖 = 1,2, … , 𝑛             (6) 

Stineman interpolation (STINE) 

This is an advanced interpolation method where interpolation occurs based on (i) whether 

values of the specified points ordinates change monotonically and (ii) the slopes of the line 

segments joining specified points change monotonically (Turicchi et al., 2020).  

Kalman Smoothing (KALMAN) 

The Kalman filter calculates the mean and variance of the unobserved state, given the 

observations. This filter is a recursive algorithm; the current best estimate is updated whenever 

a new observation is obtained. Kalman Smoothing takes the form of a backwards recursion and 

it can be used to compute a smoothed estimator of the disturbance vector (Wijesekara and 

Liyanage, 2020). 

In the present work, R package imputeTS was used for Spline Interpolation, Stineman 

Interpolation and Kalman smoothing imputations. 

2.5.2. Multiple Imputation 

In an attempt to develop a method that could reflect uncertainty over missing data 

imputations, Rubin (1987) created the MI method, in which each missing value is replaced by 

a set of plausible values representing this uncertainty about the value to be imputed. MI consists 

of the following three steps: (i) m complete databases Υobs, Υmis are obtained through 

appropriate imputation techniques; (ii) separately, m data banks are analyzed by a traditional 

statistical method, as if they were indeed complete data groups; (iii) the m results found in step 

(ii) are combined in a simple and suitable way for obtaining the so-called repeated imputation 

inference. 

In this research, the imputation model used (i) is adjusted by the Bayesian Paradigm: from 

the result of the posterior distribution, a set of random extractions is made for the missing data 

from the observed data, thus obtaining the complete database, that is, multiple imputations are 
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made using the linear regression method (Υ = α + βX), Υ ~ N (Xβ; I σ2), where the response 

variable Υ will be the variable to be imputed for which the parameters are estimated from its 

own posterior distribution. The predicted values for Υobs and Υmis are calculated and, for each 

predicted Υmis, the observed unit with the closest predicted value is sought using it as the value 

to be imputed. The variability between imputations is generated through the steps used to 

estimate β and σ and which are repeated m times; in the next step (ii) Q  of each imputed data 

set is estimated; finally, in step (iii), the m results obtained can be combined using the rules 

proposed by Rubin (1987). The idea is that from each analysis the estimates for the parameter 

of interest Q are obtained, that is, Qi for i = 1,2,3 ..., m. According to Schafer (1999), Q can be 

any scalar measure to be estimated, such as mean, correlation, regression coefficient or odds 

ratio. Then, the combined estimate will be the average of the individual estimates                                  

𝑄̅ =
1

𝑚
∑ 𝑄̂𝑖

𝑚
𝑖=1 . For the combined variance, the variance is first calculated within the 

imputations 𝑈̅ =
1

𝑚
∑ 𝑈𝑖

𝑚
𝑖=1  and the variance between imputations 𝐵 =

1

𝑚−1
∑ (𝑄̂𝑖 − 𝑄̅)

2𝑚
𝑖=1 . 

Then, the total variance, which is the combined variance, will be  𝑇 = 𝑈̅ + (1 +
1

𝑚
) 𝐵. 

The literature standardizes m = 5 imputations, a value that, as indicated by Nunes (2007) 

emerged from the researcher’s experiences. MI is implemented in the mice R software library, 

developed by Buuren and Groothuis-Oudshoorn (2010). 

2.5.3. Maximum Likelihood 

The ML method’s basic principle is to choose as an estimation of parameters those values 

that, if true, would maximize the probability of observing what was actually observed (Allison, 

2001). The parameters estimation is performed by maximizing the likelihood function, which, 

in most cases, can't be performed analytically. It is necessary to employ numerical methods, 

such as the EM algorithm. This maximization method is very popular when the data considered 

in the estimation aren't complete (Allison, 2001). 

The EM algorithm is an iterative procedure consisting of two steps repetition: Estimation 

(E) and maximization (M). The process begins with mean vector and covariance matrix 

estimation by using only the complete data. According to Junger and Leon (2015), being 

𝒙𝑡, (𝑡 = 1, … , 𝑚), the 𝑡𝑡ℎ  random vector 𝑿 realization, with multivariate normal distribution 

and 𝑚 components not observed.  The vector 𝒙𝑡 can be arranged in such a way that the 𝑚 

missing components are placed in the first positions, that is, 𝒙𝑡 =

(𝑥𝑡1, … , 𝑥𝑡𝑚, 𝑥𝑡(𝑚+1), … , 𝑥𝑡𝑝)
𝑇
, and represented as 𝒙𝑡 = (𝒙𝑡1, 𝒙𝑡2)𝑇. Consider B windows with 

different covariance regimes over time. The estimation of the mean vector at the instant 𝑡 and 

window b, (b = 1, …, B), can be partitioned following the same configuration as that 

corresponding to 𝒙𝑡 components, according to equations 7 and 8. 

𝜇𝑡 = [
𝜇𝑡1

𝜇𝑡2
]               (7) 

∑ =𝑏  [
𝚺̃𝑏11 𝚺̃𝑏12

𝚺̃𝑏21 𝚺̃𝑏22

]              (8) 

The imputation algorithm consists of (i) replace the missing values for estimates values; 

(ii) estimate the normal model parameters 𝜇 and 𝚺 and each univariate time series 𝜇𝑡 level; (iii) 

re-estimate the missing values considering just the updated parameters and each time series 

level. This process is repeated until the estimated values stop to vary (Junger and Leon, 2015). 

Junger and Leon (2015) report that initial estimates 𝜇0 and 𝚺̃0 are, respectively, the mean vector 

and the sample covariance matrix, considering only the observed data. In iteration (𝑘 + 1) of 
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the step E for the EM algorithm, the missing values are imputed as the conditional mean to the 

observed values and the parameters estimated in the previous interaction appropriated using 

equation (9), with the contributions to covariance estimated by Equations 10 and 11. 

𝒙̃𝑡1
(𝑘+1)

= 𝐸 [𝑿𝑡1|𝒙𝑡2, 𝜇𝑡
(𝑘)

, 𝚺̃𝑏
(𝑘)

] = 𝜇𝑡1
(𝑘)

+ 𝚺̃𝑏12
(𝑘)

𝚺̃𝑏22
(𝑘)−1(𝒙𝑡2 − 𝜇𝑡2

(𝑘)
)        (9) 

𝒙𝑡1𝒙𝑡1
𝑇̃

(𝑘+1)
= 𝐸 [𝑿𝑡1𝑿𝑡1

𝑇 |𝒙𝑡2, 𝜇𝑡
(𝑘)

, 𝚺̃𝑏
(𝑘)

] = 𝚺̃𝑏11
(𝑘)

− 𝚺̃𝑏12
(𝑘)

𝚺̃𝑏22
(𝑘)−1𝚺̃𝑏21

(𝑘)
+ 𝒙̃𝑡1𝒙̃𝑡1

𝑇     (10) 

𝒙𝑡1𝒙𝑡2
𝑇̃

(𝑘+1)
= 𝐸 [𝑿𝑡1𝑿𝑡2

𝑇 |𝒙𝑡2, 𝜇𝑡
(𝑘)

, 𝚺̃𝑏
(𝑘)

] = 𝒙̃𝑡1𝒙̃𝑡2
𝑇         (11) 

According to Junger and Leon (2015), in step M the 𝜇𝑏 and 𝚺𝑏  reviewed maximum 

likelihood estimates are computed, considering implicit the interaction index (𝑘 + 1),  𝜇𝑏 =

∑
𝒙̃𝑏𝑡

𝑛𝑏

𝑛𝑏
𝑡=1  and 𝚺̃𝑏 = ∑

𝒙𝑏𝑡𝒙𝑏𝑡
𝑇̃

𝑛𝑏

𝑛𝑏
𝑡=1 − 𝜇𝑏𝜇̃𝑏

𝑇. The 𝜇𝑏 estimate is used only for 𝚺̃𝑏 calculation. 

Junger and Leon (2015) emphasize the need to use additional models to estimate the 

contribution of the time component for each univariate series, that is, µt value. The temporal 

trajectory of the series considered in this study was modeled with use of cubic non-parametric 

splines because, according to the same authors, this trajectory was the one that presented the 

best performance in relation to the regression models and ARIMA (Autoregressive Integrated 

Moving Average) models for air pollution time series missing data imputation. 

Therefore, consider that µt can be estimated by a smooth function gj with  j = 1, ..., p. The 

curve gj, in turn, is estimated in such a way that the functional 𝑆(𝑔𝑗) = ∑ [𝑋𝑡 − 𝑔(𝑣𝑘)]2 +𝐾
𝑘=1

𝜆 ∫ (𝑔′′)2𝑏

𝑎
𝑑𝑥 be minimized. The points v1, v2, ..., vk, ordered in the interval [a, b], are the nodes 

and λ is the curve smoothing parameter (Junger and Leon, 2015). This results in a natural cubic 

spline (Green and Silverman, 1993). Each variable XJ has its level given by µjt = g(Xjt). 

In this paper, the EM algorithm proposed by Junger (2008) was used, which makes use of 

the mtsdi platform in the R software, which was implemented by the author. 

2.6. Performance Indexes 

For the performance evaluation of different missing data, imputation methods in effecting 

the estimates were employed as can be seen below (Equations 12, 13, 14, 15 and 16). 

BIAS  

1

𝑁
∑ (𝑥𝑖 − 𝑥̃𝑖)

𝑁
𝑖=1             (12) 

Root Mean Square Error (RMSE)  

1

𝑁
√∑ (𝑥𝑖 − 𝑥̃𝑖)2𝑁

𝑖=1             (13) 

Mean Absolute Percentage Error (MAPE) 

1

𝑁
∑ |

𝑥𝑖−𝑥̃𝑖

𝑥𝑖
| × 100𝑁

𝑖=1             (14) 

Coefficient of Determination (R2) 

1

𝑁
∑

∑ [(𝑥𝑖−𝑥̅)(𝑥̃𝑖−𝑥̅̃)]𝑁
𝑖=1

𝜎̂(𝑥𝑖)𝜎̂(𝑥̃)
𝑁
𝑖−1            (15) 
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Concordance Index (𝑑2) 

1 − [
∑ (𝑥𝑖−𝑥̃𝑖)2𝑁

𝑖=1

∑ (|𝑥𝑖−𝑥̅|+|𝑥̃𝑖−𝑥̅|)2𝑁
𝑖=1

]           (16) 

The BIAS measure quantifies underestimation and overestimation estimates with respect 

to the average observations (Bier and Ferraz, 2017; Junger, 2008); RMSE and MAPE are 

accuracy estimates measures. In equations 12-16, 𝑁 represents the number of missing data in 

the modeled data set, 𝑥𝑖 the observed data, 𝑥̃𝑖 the imputed data, 𝑖 = 1, … , 𝑚, 𝑥̅ the observed 

values mean and 𝑥̅̃ the imputed data mean (Pinto, 2013). 

2.7. Application 

From the Doce River monthly average flow-time series, an algorithm was created to 

simulate five incomplete data banks, with 5%, 10%, 15%, 25% and 40% missing data. The 

routines for simulating the missing data percentages, imputations and analyzes were 

implemented by using the R software (R Development Core Team, 2018). The website for that 

software access is http://www.r-project.org. 

3. RESULTS AND DICUSSION 

For a better understanding of the studied average monthly flow variable, each station’s 

descriptive statistics are presented in Table 2. It's observed that, during the study period, the 

monthly average flow rates ranged from 162.48 m3.s-1 in E1 to 797.77 m3.s-1 in E6. These values 

represent the lowest and highest average monthly flows, considering all stations. A high 

standard deviation and coefficient of variation values can be observed, an aspect that allows us 

to conclude that the means aren't representative, a fact that, according to Bayer et al. (2012), 

can be associated with the large data intra-annual variability, indicating a seasonal component. 

It is also noted that the observed extreme monthly average flow values, maximum and 

minimum, were 3,528.32 and 41.58 m3.s-1, at Stations E6 and E1, respectively. The first was 

registered on January 12, 2013, while the second was observed on October 1, 2014. 

The fluviometric stations’ monthly average flow distributions present positive asymmetry 

values ranging from 1.79 to 2.04. For kurtosis, the variation was from 3.24 to 4.63. The mean 

values are greater than the respective median and mode values, and the data distribution values’ 

degree of concentration is classified as leptokurtic, according to Fonseca and Martins (2011). 

Figure 2 shows the six stations’ average monthly flow-time evolution. As can be observed, 

the time series present intra-annual variability pattern, with floods periods followed by drought 

periods, which characterizes seasonality property, already indicated by the descriptive statistics 

and confirmed in Pinto et al. (2015) studies for E6 monthly mean flows and by Bleidorn et al. 

(2018) studies, for minimum monthly flows for all stations considered in this study. It's relevant 

to note that both studies suggest a seasonal component with a 12-month period, with a flood 

period from November to May, and drought period from June to October. 

Table 2. Average monthly flow variable descriptive measures. 

Descriptive measures E1 E2 E3 E4 E5 E6 

Mean (m3.s-1) 162.48 214.60 325.18 524.07 646.85 797.77 

Median (m3.s-1) 132.74 171.45 256.43 395.25 499.78 554.74 

Standard Deviation (m3.s-1) 92.34 129.15 204.40 345.43 418.09 604.33 

Coefficient of Variance (%) 56.83 60.18 62.85 65.91 64.63 75.75 

Minimum Value (m3.s-1) 41.58 52.49 81.63 112.20 131.03 194.20 

Maximum Value (m3.s-1) 616.22 827.27 1,219.04 2,051.50 2,391.05 3,528.32 

Kurtosis 4.03 3.58 3.80 3.50 3.24 4.63 

Asymmetry 1.79 1.74 1.77 1.78 1.77 2.04 
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Figure 2. Fluviometric stations average monthly flow time series. 

According to the Fischer F and t-Student tests, the time series under study are 

homogeneous, that is, they do not present variances and mean changes over time, considering 

five-year analysis periods. This fact is important to validate studied stations’ data consistency. 

The imputation methods considered in this work require that the data follow a Normal 

distribution; however, according to Shapiro and Wilk (1965) and Bera and Jarque (1981) tests, 

the data normality null hypothesis is rejected. According to Junger (2008) and Sabino et al. 

(2014), environmental data, commonly, do not follow Normal distribution. Thus, statistical 

tests are performed to check the application of a transformation that could stabilize the variance 

of the observations. In the case under study, the smoothing parameter λ was estimated, as 

suggested by Box and Cox (1964) to define the type of transformation. According to Reisen et 

al. (2008), often the transformation not only stabilizes the variance but also improves the data 

distribution approximation to the Normal distribution. Thus, all imputations were performed 

using the natural logarithm transformation in order to improve the approximation with the 
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Normal distribution and to stabilize the variance. The imputed data was back transformed for 

subsequent analysis.  

Linear Pearson correlation coefficients for the average monthly flows r between stations 

under study indicate a highly homogeneous distribution, because among the pairs of stations 

the lowest value was 0.9240, as shown in Table 3. This condition was expected, because the 

stations E1 and E6 present the highest distance between stations identified in the study area, 

which suggests that better performance can be achieved by using the multivariate imputation 

methods (SLR, MLR, RW, MI and ML). 

Table 3. Average monthly flow data: Pearson 

correlations between stations. 

 E1 E2 E3 E4 E5 E6 

E1 1      

E2 0.9875 1     

E3 0.9797 0.9869 1    

E4 0.9604 0.9698 0.9897 1   

E5 0.9419 0.9524 0.9762 0.9928 1  

E6 0.9240 0.9368 0.9616 0.9782 0.9794 1 

In order to validate the missing data imputation methods considered in this study, the E6 

database underwent 1000 replications for each failure ratio. Table 4 shows the performance-

indicator means for the missing data imputation methods. In general, there is a decreasing 

imputation quality gradient presented by the performance indexes (PI) because of missing data 

increase. The SI (AM, M, SLR, MLR and RW) methods showed considerably low BIAS values 

and high RMSE and MAPE values in relation to SI (SPLINE, STINE e KALMAN) and mainly 

to multivariate attribution (MI and ML) methods. SI (AM, SLR, MLR and RW) methods 

showed a considerable increase in BIAS when missing data proportion increased, making 

imputed series underestimated in relation to observed one. M showed a similar behavior, 

however, with lower intensity. The increase in bias values was observed to a lesser extent for 

SI methods (SPLINE, STINE and KALMAN) and mainly for MI and ML, suggesting a small 

imputed data variance loss in relation to observed ones. In addition, the methods that lost most 

quality for R2 and d2 indicators were SI (AM, M, SLR, MLR and RW) followed by SI (SPLINE, 

STINE and KALMAN) and with little loss for MI and ML.This confirms MI and ML methods 

good performance, being that the last corroborates with the efficiency proven by Junger (2008) 

and reforced by Burger et al. (2018). 

Both AM and M methodologies are central tendency measures. However, the second is a 

better alternative for variables that do not follow a Normal distribution, that is, the median better 

represents the central tendency of a distribution that presents large deviations from the Normal 

distribution (McKnight et al., 2007; Pinto, 2013). Therefore, for variables that do not follow a 

Normal distribution, such as the river average flow rate, under study, the imputation 

methodology by AM is not efficient, especially for faults above 5% even under natural 

logarithm transformation. This conclusion was also found in Pinto (2013), where the 

detrimental effect of this method on the imputation of the variable PM10 (Inhalable Particulate 

Matter with aerodynamic diameter less than 10 µm) is reduced only in samples with a small 

percentage of missing data (5%). The efficiency of the imputation methodology by M decreases 

slightly for faults above 10%. Hence, this method is not indicated for these situations. 
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Table 4. Performance indicators for missing data imputation methodologies. 

Faults PI AM M SPLINE STINE KALMAN SLR MLR RW M1 ML 

5% 

BIAS 0.0169 0.0098 0.0001 0.0004 0.0001 0.0187 0.0214 0.0169 0.0001 <0.0001 

RMSE 0.0084 0.0077 0.0045 0.0039 0.0039 0.0049 0.0057 0.0043 0.0020 <0.0001 

MAPE 0.3870 0.3725 0.1939 0.1649 0.1684 0.2877 0.3305 0.2598 0.0999 0.0737 

R 0.9668 0.9719 0.9905 0.9927 0.9927 0.9889 0.9850 0.9913 0.9982 0.9990 

d2 0.9829 0.9856 0.9952 0.9963 0.9963 0.9941 0.9920 0.9954 0.9991 0.9995 

10% 

BIAS 0.0667 0.0221 0.0001 0.0007 0.0001 0.0703 0.0762 0.0671 0.0002 <0.0001 

RMSE 0.0154 0.0111 0.0066 0.0057 0.0057 0.0124 0.0138 0.0117 0.0028 <0.0001 

MAPE 1.0273 0.7502 0.4083 0.3397 0.3473 1.0846 1.1748 1.0350 0.2010 0.1489 

R 0.8974 0.9425 0.9800 0.9851 0.9850 0.9404 0.9273 0.9469 0.9963 0.9979 

d2 0.9452 0.9698 0.9898 0.9924 0.9923 0.9653 0.9577 0.9693 0.9982 0.9989 

15% 

BIAS 0.1504 0.0413 0.0002 0.0014 0.0003 0.1540 0.1623 0.1498 0.0003 <0.0001 

RMSE 0.0246 0.0142 0.0085 0.0072 0.0072 0.0220 0.0236 0.0211 0.0035 <0.0001 

MAPE 2.2230 1.1391 0.6391 0.5228 0.5347 2.3717 2.4979 2.3092 0.3054 0.2247 

R 0.7811 0.9080 0.9675 0.9764 0.9763 0.8469 0.8268 0.8575 0.9944 0.9968 

d2 0.8754 0.9505 0.9834 0.9879 0.9878 0.9022 0.8892 0.9087 0.9972 0.9984 

25% 

BIAS 0.4099 0.0929 0.0004 0.0020 <0.0001 0.4152 0.4284 0.4101 0.0005 <0.0001 

RMSE 0.0475 0.0196 0.0120 0.0099 0.0100 0.0456 0.0477 0.0448 0.0047 <0.0001 

MAPE 6.1715 1.9624 1.1655 0.9337 0.9602 6.4132 6.6123 6.3317 0.5232 0.3852 

R 0.5245 0.8285 0.9357 0.9548 0.9542 0.6210 0.5986 0.6290 0.9900 0.9944 

d2 0.6966 0.9033 0.9668 0.9764 0.9759 0.7204 0.7050 0.7254 0.9949 0.9971 

40% 

BIAS 1.0423 0.2412 0.0001 0.0032 0.0003 1.0485 1.0652 1.0423 0.0008 0.0002 

RMSE 0.0921 0.0297 0.0174 0.0140 0.0141 0.0909 0.0931 0.0901 0.0070 <0.0001 

MAPE 15.8970 3.8042 2.1929 1.6855 1.7512 16.1982 16.4453 16.098 0.9293 0.6654 

R 0.2729 0.6580 0.8655 0.9087 0.9062 0.3686 0.3539 0.3723 0.9781 0.9885 

d2 0.5526 0.7902 0.9289 0.9511 0.9489 0.5617 0.5557 0.5635 0.9888 0.9941 
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In the hydrology area, the idea of using a single imputation method to recover the missing 

value (mainly AM and M) is widely used by several authors, as can be seen Ben Aissia et al. 

(2017); Gao et al. (2018); Kabir et al. (2019); Norliyana et al. (2017) and Rahman et al. (2017) 

works. However, despite the method’s simplicity the researchers agree that reconstructing the 

missing value using the same “number” does not reflect the variation that would likely occur if 

the variables were observed. The real numbers possibly differ from those imputed. Thus, the 

variation of those same variables is underestimated. 

SLR methodology presents better results in relation to MLR according to all performance 

indicators and regardless of the number of failures. MLR involves more independent variables 

to predict an adjustment model and, theoretically, its complexity results in a higher efficiency 

than the corresponding SLR. However, for the SLR methodology, an algorithm was developed 

in which the independent station was taken as a function of the correlation coefficient r higher 

value and, thus, alternate stations were candidates according to the replication progress. For the 

imputation methodology via MLR, based on the correlation coefficient r (which assumed values 

greater than 0.924 between the station pairs), all the other stations (E1, E2, E3, E4 and E5) were 

considered as adjusted model independent variables, for the dependent variable E6. This 

justifies the better performance of SLR over MLR in this study. The imputation methodology 

via RW, which is widely used in hydrological variables series imputation studies, showed 

superior efficiency than the corresponding to other SI (AM, M, SLR and MLR) methods only 

for the 5% failure rate and presented less efficiency than those corresponding to SI (SPLINE, 

STINE and KALMAN) in addition to MI and ML methods, independently of the missing data 

percentage. 

Oliveira et al. (2010) concluded that the MLR method showed, according to the 

performance indexes BIAS, MAE and r, the best results in annual rainfall faults imputation for 

six stations located in the state of Goiás, Brazil, followed by vector regional combined with 

multiple potential regression (MPR), RW, regional vector combined with multiple linear 

regression, regional weighting based on linear regression, regional vector combined with 

regional weighting and, lastly, regional vector method. This result corroborates those found by 

(i) Ventura et al. (2016), that, considering BIAS, MAE and r, verified the superiority of the 

MLR method for temperature, relative humidity and dew point meteorological variables, 

considering Manaus, Rio de Janeiro and Porto Alegre Brazilian cities stations series; (ii) those 

found by Mello et al. (2017) that, according to the MAE, for precipitation series corresponding 

to eight rainfall stations located in Santa Catarina state, Brazil, the MLR method was the one 

that presented the best performance, followed by  RW, regional weighting based on linear 

regressions and, finally, SLR; and (iii) those found by Bier and Ferraz (2017) who concluded 

that, for average compensated temperature for meteorological stations located in Rio Grande 

do Sul state, Brazil, the MLR and the RW methods were the most adequate for missing data 

estimates, whereas for precipitation there was no method that could be considered best. 

According to the same authors, this was due to the fact that neighboring stations’ precipitation 

data was less correlated if compared to average temperature compensated data, generating 

estimates less related to the observed series and presenting larger estimative errors. 

Low BIAS, RMSE and MAPE values and high R² and d2 values confirm univariate single 

imputation methods (SPLINE, STINE and KALMAN) good performance, however, inferior to 

MI and ML multiple multivariate imputation methods. Additionally, it is possible to verify a 

slight superiority of imputation quality via ML methodology in relation to MI, regardless of 

missing data proportion. Figures 3 and 5 show the simulated results for 5 and 40% missing data 

proportions and Figures 4 and 6 show a visual comparison between observed and imputed data. 

This comparison shows good performance by all methodologies for the 5% missing data 

proportion. Therefore, for this smaller data failure percentage, any imputation methodology 

could be assumed without causing significant changes in the time series characteristics. Thus, 
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caution is suggested in the use of AM, even for small failure proportions. However, for the 40% 

proportion, the analysis shows SI methods (SPLINE, STINE and KALMAN) good performance 

and superiority of MI and ML methods, while for other SI methodologies (AM, M, SLR, MLR 

and RW) imputed data variability underestimation is notable. Therefore, it can be concluded 

that the use of such methodologies is not recommended to carry out imputation with high 

percentages of missing data, as the time series characteristics can be extremely altered. 

 
Figure 3. Average monthly flow time series for the E6 station, considering 5% missing data. 

 

Figure 4. Observed (black line) and imputed (red line) average monthly 

flows time series for the E6 station, for each imputation methodology, 

considering 5% missing data. 
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Figure 5. Average monthly flow time series for the E6 station, considering 40% 

missing data. 

 

Figure 6. Observed (black line) and imputed (red line) average monthly flows time series for the 

E6 station, for each imputation methodology, considering 40% missing data. 
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Table 5 shows relative difference results between the quality indicators used in imputation 

methods evaluation in this study for Doce River flow series in a scenario where missing data 

percentage increased from 5% to 40%. As can be seen, all methodologies tested in this study 

showed a loss of quality with the missing data proportion increase and, based on that, the table 

was organized in order to order the methodologies compared in this study from the one with 

greatest to the least loss of quality according to indicators used. From this, we can conclude 

that, in cases where there are support stations for imputation, the best methodologies for 

imputing missing data in flow data are the multivariate ones MI and ML, while, in cases where 

there are no support stations for imputation, the best options of imputation methodologies to be 

used are the univariate ones Kalman Smoothing and Stineman interpolation.  

Table 5. Relative difference in the imputation method quality when failures 

increased from 5% to 40%. 

Imputation Methodology BIAS RMSE  MAPE R2 d2 

AM -98.38% -90.88%  -97.57% -71.77% -43.78% 

MLR -97.99% -93.88%  -97.99% -64.07% -43.98% 

SLR -98.22% -94.61%  -98.22% -62.73% -43.50% 

RW -98.38% -95.23%  -98.39% -62.44% -43.39% 

M -95.94% -74.07%  -90.21% -32.30% -19.83% 

SPLINE 0.00% -74.14%  -91.16% -12.62% -6.66% 

KALMAN -66.67% -72.34%  -90.38% -8.71% -4.76% 

STINE -87.50% -72.14%  -90.22% -8.46% -4.54% 

MI -87.50% -71.43%  -89.25% -2.01% -1.03% 

ML -50.00% 0.00%  -88.92% -1.05% -0.54% 

Based on these results, it can be said that, multivariate MI and ML methodologies 

application in river flow rates missing data imputation, confirmed their good performance, 

already proven for imputations considering other variables (Junger, 2008; Pinto, 2013; Nunes 

et al., 2010; Vinha and Laros, 2018), as occurred in cases of application univariate 

methodologies KALMAN and STINE whose good performance had also been confirmed to 

handle missing data in exchange rate data (Burger et al., 2018). Therefore, it is suggested that 

both methodologies should be taken as quality references for fluviometric variables missing 

data imputation, especially the ML. Lastly, Table 6 shows the main advantages and 

disadvantages for each methodology evaluated in the present study. 

In this way, fluviometric monitoring and historical series data consistency as well as the 

adequate missing data treatment are fundamental for water-resource studies and projects, 

turning possible adequate water-resource use planning, river basin management, flow 

forecasting, industrial and agricultural public supply, navigation, basic sanitation, water 

concession and granting, academic studies and water use conflicts resolution. 

4. CONCLUSIONS 

Reliable flow series are essential for studies related to water resources. However, 

incomplete series can result even from the operation of large monitoring networks with data 

quality control. This fact indicates the importance of techniques that allow imputation of 

missing data. However, these techniques have been little used in hydrological studies. In this 

study, it was verified that, for the Doce River flow series, the multiple imputation and maximum 

likelihood methodologies, considered as references in the imputation of missing data for series 
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involving several environmental and social variables, performed better than those most 

commonly utilized. It was also concluded that the improvement in the results of the imputations 

in relation to the others increases as the flow series present greater proportions of the missing 

data. 

Table 6. Advantages and disadvantages for each methodology evaluated in the present study. 

Methodology Advantages Disadvantages 

AM Easy to implement Decreases data variability 

M Easy to implement Decreases data variability 

SLR 
Requires additional variables with an 

acceptable correlation 

In situations under and overestimation 

conditions, the variability of the data 

decreases 

MLR 
Requires additional variables with an 

acceptable correlation 

In situations under and overestimation 

conditions, the variability of the data 

decreases 

RW 
Requires additional variables with an 

acceptable correlation 

Requires additional variables that have 

acceptable correlations. Tends to 

underestimate data variability 

SPLINE 

It’s a nonlinear approach. Provides a 

“smooth” interpolant. Doesn’t usually 

get “wiggly” like higher-order 

polynomial interpolation can 

Has a limited ability to predict oscillations 

from univariate data. Requires a bit more 

work than linear interpolation to 

implement 

STINE 

Produces a imputation known to be 

robust against sporadic outliers and 

performs better than spline 

interpolations, where abrupt changes 

are observed; 

Solves the non-monotonic problem of 

linear and spline interpolation 

Is not as smooth method as the linear and 

spline methods 

KALMAN 

It avoids the influence of possible 

structural breaks during the missing 

values estimation 

Assumes a large knowledge of 

probabilistic theory, specifically Gaussian 

conditional properties of random 

variables, which may limit its study and 

application scope 

MI 

Incorporates the uncertainty in each 

database generated, reducing the 

standard error of the final imputed 

values 

Requires statistical knowledge and 

computational sophistication 

ML 
Because is based on available data, 

extracts information from its behavior 

Requires statistical knowledge and 

computational sophistication 

Simulations showed that, for 5% missing data, all the imputation methods present good 

performances. For this small missing data proportion, statistical efficiency is not compromised. 

Even so, for this missing data amount, the arithmetic mean methodology, which presents the 

worse results, should be avoided. The imputation method quality begins to become different for 

proportions above 10%. The arithmetic mean, simple and multiple linear regression and 

regional weighting imputation methodologies may be considered limited, even though the last 

three methods are multivariate and under the condition that the stations showed high 
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homogeneity among them. Therefore, multivariate methods that consider the single imputation 

principle were not efficient. On the contrary, univariate methodologies Spline interpolation, 

Stine interpolation and Kalman Smoothing being single methods showed good results in 

imputation at high proportions of missing data. Also, multiple imputation and maximum 

likelihood multivariate methods were shown to be more robust and accurate for missing data 

treatment of the variable under study, being recommended for failure imputation procedures. 

For this, it is fundamental that the variables’ data present homogeneity among them. Therefore, 

such methods are recommended for the proper treatment of missing data, which allows us to 

guarantee quality in imputed time series, thus being able to subsidize the planning and control 

of water resources. 

The method of imputation by multiple linear regression can be improved, since the 

adjustment of ni < 5 neighboring stations were based on the correlation coefficient and, 

according to the replication progress of replication, it is possible that one or more stations do 

not present a qualified correlation coefficient. As for multiple imputation, it is concluded that 

its efficiency can be increased as an ideal m imputation value is established for the variable 

under study, considering different proportions of missing data. Therefore, it is recommended 

that future studies be developed because the procedure efficiency is related to the number of m 

databases generated and, in general, the higher the percentage of missing values, the greater is 

m. It is also recommended that studies be developed regarding the imputation of missing data 

for river flows in daily and monthly series. 
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