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Abstract 

In this study, a novel optimization problem for simultaneous capacity planning and scheduling in reservation scheduling 
environments is proposed. The problem is important for seasonal reservation systems such as hotel or seat reservations of 
travel agencies, or operation and treatment reservations in health tourism. The objective of the problem is to maximize the 
net profit gained from the processed reservations. To the best of our knowledge, the problem was not previously studied. 
An integer programming model is developed for exact solutions and extensive computational experimentation reveals 
model performance under different scenarios. The results are analyzed, and managerial implications are discussed. 

Keywords: Optimization, Reservation Scheduling, Integer Programming, Time Windows, Capacity Planning. 
Jel Codes: M11, C61, L83. 

Kaynak Maliyetli Dönemsel Rezervasyon Çizelgeleme: Bir Matematiksel Modelleme Yaklaşımı 

Özet 
Bu çalışmada, rezervasyon çizelgeleme ortamlarında eş zamanlı kapasite planlama ve çizelgeleme için yeni bir 
optimizasyon problemi önerilmiştir. Problem seyahat acentelerinin otel ve koltuk rezervasyonları veya sağlık turizminde 
operasyon ve tedavi rezervasyonları gibi dönemsel/sezonluk rezervasyon gerektiren pek çok sistemin optimizasyonu 
açısından önemlidir. Önerilen problemde işlenen rezervasyonlardan elde edilen net kârın maksimize edilmesi 
amaçlamaktadır. Kapasite ve çizelgeleme kararlarını içeren bu çizelgeleme problem hizmet endüstrisinde geniş uygulama 
alanına sahiptir ve bilgimiz dahilinde daha önce incelenmemiştir. Çalışmamızda optimal çözümler için bir tamsayı 
programlama modeli geliştirilmiş ve kapsamlı sayısal deneylerle farklı senaryolar altında model performansı 
ölçümlenmiştir. Deney sonuçları analiz edilerek yönetimsel etkileri tartışılmıştır. 

Anahtar Kelimeler: Optimizasyon, Rezervasyon Çizelgeleme, Tamsayılı Programlama, Zaman Aralıkları, Kapasite 
Planlama. 
Jel Kodu: M11, C61, L83. 

1. INTRODUCTION

Scheduling problems in optimization have a 
large variety, including various task 
characteristics (precedence relations, 
preemption, ready times, time windows, etc.), 
resource characteristics (identical, uniform, 
unrelated) and several objectives (makespan, 
flow time, lateness or tardiness, etc.). It is also a 
well-studied area of optimization due to its 
practical importance and large application 
areas. While the decision maker has the liberty 
of determining the start times of tasks in 
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conventional scheduling, these start times are 
defined as parameters in Interval Scheduling 
(IS). Besides its evident practical importance in 
various manufacturing systems such as 
maintenance scheduling and shift scheduling, 
the IS problem has important applications in 
reservation systems, which can be defined as 
systems in which reservation requests are 
collected and processed for allocating the 
available times of the resources. Some 
examples to reservation systems include airline 
seat reservation, operation room scheduling, 
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classroom scheduling, hotel room reservations, 
etc. 

The decision maker faces two decisions in an IS 
problem; namely, whether to process an 
incoming task (customer, job, reservation etc.) 
and which resource (server, machine, hotel 
room, seat, rental car etc.) to assign to the task 
if it will be processed. In a typical IS 
environment, 𝑚 resources/processors are 
available for serving 𝑛 incoming reservation 
requests / tasks. The start of the time window 
of task 𝑗 is specified by its ready time 𝑟𝑗 , 

whereas the end of the time window is defined 
by its deadline 𝑑𝑗 .  

The ready time and deadline of a task identify 
its reservation interval. A tactical IS problem 
minimizes the total cost ∑ 𝑐𝑘 of the resources 
necessary to serve all tasks at hand. In other 
words, this problem answers the question of 
“What is the optimal number/cost of resources 
required to satisfy all incoming demand?”. On 
the other hand, the operational problem takes 
the number of resources as a given parameter 
of the optimization problem, and finds a subset 
of tasks to serve, so that the resulting total 
profit ∑ 𝑤𝑗  from the served tasks is maximized. 

The IS problem has two classes in literature. If 
the tasks/jobs cannot be delayed to start their 
processing after their ready times, the resulting 
IS problem is named as the Fixed Job 
Scheduling (FJS) problem. On the other hand, if 
the problem includes a time window for each 
task in which it can be started, this 
generalization of the FJS is called the Variable 
Job Scheduling (VJS) problem, or parallel 
machine scheduling with time windows 
(Gabrel, 1995). In VJS, each task entering the 
system at its ready time 𝑟𝑗  should start its 

processing latest on its standby limit 𝑏𝑗(> 𝑟𝑗), 

otherwise it will be lost. Since VJS is a sub-class 
of the IS problem, tactical and operational 
versions of VJS (TVJS and OVJS) are defined 
similarly. These two versions are usually 
handled individually in literature. 

To the best of our knowledge, capacity planning 
and scheduling in VJS have not been studied 

together. In this study, we combine the 
properties of the tactical and operational 
aspects of the problem to introduce a novel 
model. The Combined Reservation Scheduling 
(CRS) model proposed in this study integrates 
these decisions, assuming profits for tasks and 
fixed resource costs. The objective function of 
the problem is profit maximization for the 
served subset of tasks after the resource costs 
are deducted. 

While the proposed CRS problem can be used to 
determine the capacity and schedule of a 
reservation system, it can also be utilized for 
finding the number additional resources to be 
added into an existing resource pool, as well as 
the resulting optimal schedule. Therefore, 
repeated solutions of the CRS problem through 
seasons can be useful in reservation systems 
showing demand seasonality. 

1.1 Motivation  

The problem defined in this study is relevant 
and applicable to many practical situations. We 
are primarily motivated from the real-life 
problem of a travel agency working with many 
different hotel chains throughout the season 
and bringing tourists from various countries 
via bookings. The reservations are usually 
made in the off-season, and a good deal of hotel 
rooms are pre-reserved by the agency in many 
different hotels. Once taken, the details of each 
reservation request are known and 
deterministic. However, the reservations are 
due to changes and cancellations. In addition, 
many new reservation requests can be made as 
the season approaches.  

In such a volatile and dynamic environment, the 
agency needs to determine how many more 
hotels and hotel rooms should be added to its 
repertoire for taking additional reservations, as 
well as how many of the new reservation 
requests should be met. In such a case, although 
the hotel rooms have similar capacities, their 
costs can have a wide range. Also, different 
profit levels can be obtained from tourist 
groups coming from different countries. Within 
the scope of this problem, the tasks may refer to 
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individual guests as well as tours containing 
groups of people. 

1.2 Contribution  

As to the best of our knowledge, the CRS 
problem defined in this study has not been 
previously studied in literature. The problem 
can be applied to many other reservation 
systems such as health tourism (physical 
therapy, thermal therapy, ocular surgery 
operations, cosmetic surgery operations etc.), 
airline reservations, tour/cruise bookings, as 
well as its many applications in the 
manufacturing environments. As another 
application area for this problem, the airport 
gate assignment problem for passenger planes 
can be considered. In such a problem 
environment, the number of gates to be used 
(out of all available gates with different usage 
costs) and the schedule on each gate can be 
determined by solving the proposed problem in 
this paper. 

The rest of the paper is structured as follows. In 
the next section, related studies are reviewed. 
In Section 3, the CRS problem is defined, 
formulated, and explained in detail. Results of 
the computational experimentation for 
evaluating the performance of the developed 
model are provided in Section 4, along with 
discussions and managerial implications. 
Finally, conclusions and future research ideas 
are elaborated in Section 5. 

2. RELATED WORKS 

The IS problems have several application areas 
in production and service environments. Kroon 
(1990), and Kolen and Kroon (1992) focused on 
the airport gate assignment problem and 
maintenance workforce capacity planning via 
the tactical and operational FJS models. 
Fischetti et al. (1987, 1989, 1992) modeled the 
bus driver scheduling problem through a 
tactical FJS. Kolen and Kroon (1991, 1993) used 
the FJS problem in the context of classroom 
scheduling, also using availability constraints 
for the resources. Even satellite scheduling was 
modeled and solved as an operational FJS 
problem (Wolfe and Sorensen, 2000). 

Circuit board printing (Spieksma, 1999) and 
data packet transfers (Faigle et al., 1999) are 
other interesting applications of the problem. 
Some variations involve eligibility constraints 
(Kroon, 1990; Eliiyi and Azizoglu, 2009), 
operating time restrictions on the resources 
(Fischetti et al., 1992; Eliiyi and Azizoglu, 
2011), or different resource processing speeds 
(Azizoglu and Bekki, 2008). Eliiyi (2013) 
defined problems to handle concurrent 
capacity and scheduling decisions in FJS. The 
study also includes working time constraints 
for the resources. As well as mathematical 
models, heuristic algorithms were also 
presented with their worst-case time 
complexities. Kovalyov et al. (2007) and Kolen 
et al. (2007) reviewed the literature for the FJS 
problem together with its application areas and 
complexity results. 

While the IS problems have been extensively 
considered as FJS in literature, studies on the 
VJS problem are scarce after the original study 
by Gertsbakh and Stern (1978). These authors 
formulated the basic TVJS problem with 
identical resources and proposed an 
approximate solution for the problem. Gabrel 
(1995) used the operational FJS model in the 
context of satellite data transfer scheduling and 
stated that their model and solution approach 
could also be modified for solving OVJS. The 
author dealt with the number-maximizing 
operational FJS problem with identical task 
weights and eligibility considerations. Lower 
and upper bounds for the problem are 
developed and the computational results are 
presented. Extension to the OVJS problem is 
discussed but no computational study is 
reported. 

Very few studies focused on OVJS in literature. 
Rojanasoonthon et al. (2003), Rojanasoonthon 
and Bard (2005), and Bard and 
Rojanasoonthon (2006) all considered the 
problem for a data relay satellite system and 
provided many interesting application areas. In 
their studies, the tasks have different classes 
and multiple time windows. Task priorities 
were defined such that the high priority tasks 
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were infinitely more important than the low 
priority tasks. The authors used a vehicle-
routing-type formulation to accommodate the 
sequence-dependent setup requirements 
(Rojanasoonthon et al., 2003). 

A dynamic programming-based heuristic and a 
greedy randomized adaptive search procedure 
(GRASP) was proposed for the problem 
(Rojanasoonthon et al., 2003; Rojanasoonthon 
and Bard, 2005). A branch and price algorithm 
for the same problem was developed by Bard 
and Rojanasoonthon (2006), and the 
computational results revealed that the 
developed method was able to solve many 
moderately large instances to optimality. 

Garcia and Lozano (2005) studied OVJS 
problem with two stages in a ready-mix 
concrete manufacturing context. Their problem 
resembles a no-wait flowshop with parallel 
resources and time windows. An ideal start 
time was defined for each task, and the 
objective minimized the total weighted 
deviation from the ideal start times as well as 
maximizing the weight sum of the selected 
tasks. They proposed a tabu search heuristic to 
solve the problem, and the results indicated a 
good performance in terms of time and quality 
of solutions. 

Eliiyi et al. (2009) handled the OVJS problem in 
the context of berth allocation in a container 
port. In their study, two task classes 
represented two different sizes for vessels, and 
the two resource classes corresponded to small 
and large berths for assigning these vessels. 
They proposed an integer programming model 
and proved the problem to be NP-hard. An 
algorithm was designed for generating good 
initial solutions based on constraint-graphs. 
Improvement algorithms including genetic 
algorithm were also developed. The results 
indicate a superior performance of the 
developed heuristic as compared to the genetic 
algorithm. 

The number of resources in a reservation 
system is the most important factor governing 
the potential profit, as it finds the set of tasks 
that can be served. In this respect, the capacity 

plan of a reservation system should be made 
cautiously. Although previous studies use the 
TVJS models for capacity planning in VJS 
environments, the tactical problem 
necessitates deterministic arrivals or long-term 
forecasts of reservations, which may be subject 
to changes, and it ignores possible cancellations 
or new requests during this long planning 
period. 

Consequently, validity and applicability issues 
arise while using TVJS in capacity planning. 
Moreover, capacity planning via TVJS ignores 
the capacity change requirements, which is an 
important issue where seasonal demand 
fluctuations are of concern. The novel model 
developed in this study, which will be 
presented in the next section addresses and 
resolves these drawbacks. 

3. THE COMBINED RESERVATION 
SCHEDULING PROBLEM 

In the reservation problem handled in this 
study, 𝑛 tasks (reservations) are to be served 
on the available resources. The upper bound on 
the number of available resources (e.g., 
available hotel rooms to be rented by the travel 
agency for the whole season) is denoted by 𝑚. 
This number could be limited externally by 
resource availability, or it may be set to a 
sufficiently large value if the number of 
available resources is unlimited, as will be 
explained below. 

Each resource has an associated fixed cost, 𝑐𝑘, 
which may denote its rental fee to the agency 
for the whole season. Each task 𝑗 has a ready 
time denoted by 𝑟𝑗  and a standby time standby 

limit 𝑏𝑗(> 𝑟𝑗),  till which it can wait to be served. 

If the task is delayed/unserved past its standby 
time, it is considered as lost. The standby 
period corresponds to a customer’s specifying 
specific dates for the hotel reservation and 
indicating ±𝑥 days of flexibility for this 
reservation. The processing time (reservation 
duration) and the profit from task 𝑗 are denoted 
by 𝑝𝑗  and 𝑤𝑗 , respectively. 

The following assumptions are valid 
throughout the rest of the paper: All problem 
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parameters 𝑟𝑗 , 𝑏𝑗 , 𝑝𝑗 , 𝑤𝑗 , and 𝑐𝑘 are nonnegative 

integers and deterministic. The deterministic 
parameter assumption is based on the 
following practical fact: Once a reservation 
request is taken, the start and the duration of 
the reservation, as well as the standby limit and 
expected profit are immediately determined 
and fixed. If a reservation request is cancelled 
or altered before it is processed, this can be 
taken as a new reservation request. Due to this 
observation in real-life systems, the parameters 
of the problem can be taken as deterministic 
and updated as necessary.  

Another approach in literature for coping with 
reservation/demand fluctuations is to consider 
each reservation request individually and in an 
online fashion, which results in taking 
perpetual screenshots of the reservation 
system for each incoming request and taking 
decisions dynamically over time. This approach 
has been studied especially in the 
communications network context where 
changes occur very frequently and the planning 
horizons are relatively shorter. (Steiger et al., 
2004; Barshan et al., 2016). In the stochastic 
variant of online interval scheduling problems, 
the job parameters are assumed to follow a 
distribution, whereas in adversarial online 
interval scheduling there is no such assumption 
(Yu and Jacobson, 2020).  

Another assumption of the defined problem is 
that, a task can only be served by a single 
resource without any interruption, i.e. once a 
customer is assigned a room, that room will not 
be changed against the customer’s will during 
the entire duration of the reservation. 

3.1 Integer Programming Model  

In order to be able to formulate a mathematical 
model for this problem, the planning horizon 
(the season) is divided into intervals of unit 
time length, resulting in 𝑇 time intervals as 
{𝑡1, … , 𝑡𝑇}. 𝑃𝑎  is defined as the set of tasks 
available for processing in time interval 
[𝑡𝑎, 𝑡𝑎+1), where 𝑎 = 1, … , 𝑇 − 1. That is; 

𝑃𝑎 = {𝑗|𝑟𝑗 ≤ 𝑡𝑎, 𝑏𝑗 + 𝑝𝑗 − 1 ≥ 𝑡𝑎}. 

We also define set 𝑆𝑗  as the complete set of 

intervals for task 𝑗, i.e., 

𝑆𝑗 = {𝑟𝑗 , … , 𝑏𝑗 + 𝑝𝑗 − 1}. 

The decision variables for the model are 
defined as follows:    

𝑥𝑗𝑘𝑎: {
1, if task 𝑗 is served on resource 𝑘 in time interval 𝑎
0, otherwise

 

𝑦𝑗𝑘: {
1, if task 𝑗 is served on resource 𝑘
0, otherwise

 

𝑧𝑘: {
1, if resource 𝑘 is used

0, otherwise
 

Decision variable 𝑥𝑗𝑘𝑎  takes the value of 1 if task 

𝑗 is served by resource 𝑘 in the time interval 
[𝑡𝑎, 𝑡𝑎+1); that is, the ath time interval. Note that 
this definition might allow a particular task to 
be served by different resources in different 
time intervals. This preemption is avoided 
through the definition of the second decision 
variable, 𝑦𝑗𝑘. This variable takes the value of 1 

if all intervals of a particular task 𝑗 is served on 
resource 𝑘 (by means of constraint 2 in the 
below model). The third decision variable 𝑧𝑘 is 
necessary for calculating the fixed costs of the 
resources. If a resource is utilized for serving 
any task, its corresponding 𝑧𝑘 variable takes the 
value of 1, and its fixed cost becomes active in 
the objective function. 

With these definitions and assumptions, the 
integer programming model for CRS is 
presented below. The model determines the 
capacity level of the system (how many 
resources will be used in total) as well as the 
processed task subset (how many tasks will be 
served) simultaneously. 

CRS: 

Maximize ∑ ∑ 𝑤𝑗𝑦𝑗𝑘
𝑚
𝑘=1

𝑛
𝑗=1 − ∑ 𝑐𝑘𝑧𝑘

𝑚
𝑘=1           (1) 

s.t. 

∑ 𝑥𝑗𝑘𝑎𝑎∈𝑆𝑗
= 𝑝𝑗𝑦𝑗𝑘, 𝑗 = 1, … , 𝑛; 𝑘 = 1, … , 𝑚      (2) 

∑ 𝑦𝑗𝑘 ≤ 1𝑚
𝑘=1 , 𝑗 = 1, … , 𝑛        (3) 

∑ 𝑥𝑗𝑘𝑎𝑗∈𝑃𝑎
≤ 1, 𝑎 = 1, … , 𝑇 − 1;  𝑘 = 1, … , 𝑚     (4) 

𝑝𝑗𝑥𝑗𝑘𝑎 − 𝑝𝑗𝑥𝑗,𝑘,𝑎+1 + ∑ 𝑥𝑗𝑘𝑡 ≤ 𝑝𝑗
𝑏𝑗+𝑝𝑗−1

𝑡=𝑎+2 ,
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𝑗 = 1, … , 𝑛; 𝑘 = 1, … , 𝑚; 𝑎 ∈ 𝑆𝑗

        
(5) 

𝑦𝑗𝑘 ≤ 𝑧𝑘, 𝑗 = 1, … , 𝑛; 𝑘 = 1, … , 𝑚      (6) 

𝑥𝑗𝑘𝑎 , 𝑦𝑗𝑘, 𝑧𝑘 ∈ {0,1},   

  𝑗 = 1, … , 𝑛; 𝑎 = 1, … , 𝑇 − 1; 𝑘 = 1, … , 𝑚 (7) 

The objective function in (1) maximizes the net 
total profit, defined as the total profit obtained 
from serving the reservation subset, minus the 
resource usage/rental fixed costs. Constraints 
(2) ensure that all intervals of a task are 
assigned to the same resource. Constraints (3) 
limit the assignment of a task to at most one 
resource. Constraints (4) guarantee that each 
resource can process at most one task in an 
interval. Constraints (5) assure the continuity 
of a task’s intervals, i.e., if a task is processed, 
each time interval of that task should be 
assigned consecutively to the same resource. 
Constraints (6) ensure that a resource is used if 
any task is processed on it. Finally, constraints 
(7) define the binary structure of the decision 
variables. 

3.2 Upper Bound on the Number of 
Resources  

Arkin and Silverberg (1987) solved the tactical 
FJS problem. The resulting value gives the 
minimum number of serving resources to 
handle all tasks in the system, which yields an 
upper bound for the number of resources for 
the operational problem. The maximum 
number of task overlaps is computed as 
Max𝑎{|𝑃𝑎|}, where |𝑃𝑎| is the cardinality of set 
𝑃𝑎 . 

Using these results, the number of resources 
(𝑚) in the model above may be set to a 
sufficiently large value by the following upper 
bounding procedure. First, we pessimistically 
assume that each task has a deadline equal to 
its 𝑏𝑗 + 𝑝𝑗 . That is, each task starts at its ready 

time and ends at its 𝑏𝑗 + 𝑝𝑗 . Then, an upper 

bound on the number of resources is computed 
as 𝑚 = Max𝑎{|𝑃𝑎|}.    

3.3 Computational Complexity   

The CRS problem reduces to the OVJS problem 
when 𝑐𝑘  =  0, ∀𝑘. The OVJS problem is 

reported as NP-hard (Gabrel, 1995). Hence, the 
CRS problem is also NP-hard. 

4. EXPERIMENTATION 

A computational experiment is conducted to 
assess the performance of the mathematical 
model. IBM ILOG CPLEX 12.8 is used for 
obtaining the optimal solutions. A PC 
configuration with Core 2 Duo 2.8 GHz, 4 GB 
memory is used for the experiments. The ready 
times of the incoming reservations are 
uniformly generated between 0 and 200, i.e., 
the season is 200 time units (e.g. days) long and 
the reservation requests occur uniformly 
within this interval. Two levels are considered 
for the processing time parameter 
corresponding to low and higher variability 
cases: 

- 𝑝 =  1 level: processing time chosen 
uniformly between 4 and 10 for each task, 
corresponding to low variability among the 
processing times. 

- 𝑝 =  2 level: processing time chosen 
uniformly between 4 and 20 for each task, 
corresponding to higher variability among 
the processing times. 

Three levels are used for task profits: 

- 𝑤 =  1 level: Each task's profit is equal to 
its processing time. 

- 𝑤 =  2 level: profit chosen uniformly 
between 4 and 10 for each task, 
corresponding to low variability among 
task profits. 

- 𝑤 =  3 level: profit chosen uniformly 
between 4 and 20 for each task, 
corresponding to a higher variability 
among task profits. 

Three levels are set for the cost of resources: 

- 𝑐 =  1 level: cost of resource chosen 
uniformly between 80, 100, 120, 140, 160 
for each resource. 

- 𝑐 =  2 level: equal cost of resources taken 
as 80, low-cost case. 
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- 𝑐 =  3 level: equal cost of resources taken 
as 160, high-cost case. 

As it can be observed from the above 
experimental settings, in 𝑐 =  1 level, the 
lowest cost for a resource is set as 20 times the 
lowest profit of tasks. The highest cost is set as 
twice the lowest due to possible service level 
difference such as luxury packages, price 
promotions or other possible reasons.   

Two levels are considered for the standby 
durations of the tasks (𝑏𝑗  −  𝑟𝑗):  

- 𝑏 − 𝑟 =  1 level: standby duration chosen 
uniformly between 0 and 10 for each task, 
corresponding to low variability. 

- 𝑏 − 𝑟 =  2 level: standby duration chosen 
uniformly between 0 and 20 for each task, 
corresponding to higher variability. 

The inclusion of zero in the uniform 
distribution intervals generalizes our 
experiment to include the FJS problem, since 
the problem becomes FJS when 𝑏𝑗  −  𝑟𝑗 = 0.  

Ten test problems are generated for each of the 
36 experimentation scenarios, with 𝑛 =
 20, 50, 100, 200 tasks. Here, 𝑛 =  20 
corresponds to a small problem and 𝑛 =  200 
corresponds to a very large problem, especially 
when 𝑛 might represent a group of reservations 
in some cases. Therefore, a set of 1440 problem 
instances are generated and solved in total. 

4.1 Results and Discussion   

We discuss the performance of our model using 
the outputs of the optimal solutions. A 1200-
second time limit is imposed on CPLEX for 
obtaining the optimal solutions. For the 
instances that could not be solved to optimality 
within the predetermined time limit, the best 
feasible solution obtained by CPLEX is 
reported. Tables 1 through 3 present the result 
of the computational experiment at three 
different resource cost levels. 

The column Avg. UB corresponds to the upper 
bound on the number of resources, calculated 
as explained in Section 3.2 and averaged over 
10 instances. The values in this column 

represent the necessary number of resources to 
process all incoming reservation requests. The 
other columns compare the average number of 
used resources among the available ones, the 
average percentage of resource utilization for 
the used resources, the percentage of 
processed tasks over all tasks in the system, the 
percentage of processed profit over the total 
potential profit from all tasks, and the model 
solution times from CPLEX. 

The Avg. # used column represents the number 
of used resources in the solution, out of the 
available number of resources indicated by the 
upper bound. These values are averaged over 
10 problem instances of the same experiment 
setting. For example, in Table 1, for 𝑛 =  50, 
𝑏 − 𝑟 =  1, 𝑤 =  1 and 𝑝 =  2, while all 
incoming reservation requests in the system 
could be processed with nine resources, the 
best solution used only two resources on the 
average. 

The Avg. % util. (resource load / length of the 
season) is the resource utilization percentage 
during the season [0, 200]. For example, in 
Table 1, for 𝑛 =  50, 𝑏 − 𝑟 =  1, 𝑤 =  1 and 
𝑝 =  2, the solutions used only 47% of the two 
resources. 

The average percentage of processed tasks (% 
tasks processed) computed as ∑ 𝑥𝑗𝑘

𝑛
𝑗=1 𝑛⁄ , and 

the average percentage of processed profit (% 
profit processed) computed as 
∑ 𝑤𝑗𝑥𝑗𝑘

𝑛
𝑗=1 ∑ 𝑤𝑗

𝑛
𝑗=1⁄  for the CPLEX solutions 

constitute the next columns. The percentage of 
processed profit can be seen as an indicator of 
how much of the potential gain could be 
obtained with the optimal solutions. For the 
same example above, it seems that with the 
CPLEX solution 41% of the tasks are processed, 
corresponding to 42% of the potential profit. 
Note that, for this example, the average 
percentages of tasks and profits are very close 
to each other. This is since every task's profit is 
equal to its processing time at the 𝑤 =  1 level 
of the profit parameter. The percentages differ 
for other settings where the processed profit 
percentage becomes higher than processed 
task percentage. 
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Table 1: Results for 𝑐𝑘~𝑈{80,100,120,140,160}, ∀𝑘. 

n b-r w p Avg. UB 
Avg. # 
used 

Avg. % 
util. 

% tasks 
processed 

% profit 
processed 

Solution Time 
(sec.) 

20 

1 

1 
1 4 1 45 75 76 4 

2 5 1 60 61 65 159 

2 
1 4 1 43 74 77 2 

2 5 1 27 31 32 10 

3 
1 4 1 43 75 80 3 

2 5 1 52 62 69 31 

2 

1 
1 5 1 53 89 89 7 

2 5 1 65 68 70 273 

2 
1 4 1 52 91 92 2 

2 5 1 52 55 59 144 

3 
1 5 1 50 86 90 4 

2 5 1 63 69 76 50 

50 

1 

1 
1 8 2 66 75 75 1200 

2 9 2 47 41 42 1200 

2 
1 8 2 66 69 73 1200 

2 9 1 31 19 20 1164 

3 
1 7 2 61 83 88 1200 

2 10 2 55 42 46 1200 

2 

1 
1 10 2 67 67 68 1200 

2 10 1 33 18 18 1200 

2 
1 9 1 66 65 69 1200 

2 10 1 31 22 24 1200 

3 
1 9 2 62 78 83 1200 

2 11 1 34 26 29 1200 

100 

1 

1 
1 12 1 28 16 16 1200 

2 15 0 0 0 0 1200 

2 
1 12 1 29 19 21 1200 

2 15 1 3 1 1 1200 

3 
1 13 2 33 29 31 1200 

2 14 0 10 2 2 1200 

2 

1 
1 15 1 39 21 22 1200 

2 19 0 4 1 1 1200 

2 
1 16 1 50 26 28 1200 

2 19 1 5 4 4 1201 

3 
1 14 2 40 36 39 1200 

2 16 1 5 3 3 1200 

200 

1 

1 
1 21 0 0 0 0 1200 

2 21 0 0 0 0 1200 

2 
1 22 0 2 1 1 1202 

2 22 0 0 0 0 1202 

3 
1 19 3 10 7 7 1200 

2 18 0 0 0 0 1200 

2 

1 
1 26 0 16 3 3 1203 

2 28 0 0 0 0 1207 

2 
1 26 1 4 1 1 1206 

2 28 1 4 1 2 1204 

3 
1 26 1 11 3 4 1200 

2 26 0 0 0 0 1200 
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Table 2: Results for 𝑐𝑘 = 80, ∀𝑘. 

n b-r w p Avg. UB 
Avg. # 
used 

Avg. % 
util. 

% tasks 
processed 

% profit 
processed 

Solution Time 
(sec.) 

20 

1 

1 
1 4 1 49 79 79 3 

2 5 1 57 67 69 220 

2 
1 4 1 44 81 83 2 

2 5 1 58 65 70 12 

3 
1 4 1 45 80 85 4 

2 4 1 54 63 68 71 

2 

1 
1 5 1 51 91 91 3 

2 5 1 69 75 75 377 

2 
1 5 1 51 90 92 4 

2 5 1 63 71 75 92 

3 
1 5 1 52 90 92 5 

2 6 1 62 71 76 335 

50 

1 

1 
1 8 2 61 84 84 1200 

2 9 3 58 66 67 1200 

2 
1 7 2 61 81 84 1200 

2 9 1 60 46 50 1200 

3 
1 8 2 58 83 89 1200 

2 10 3 54 62 68 1200 

2 

1 
1 9 2 66 73 74 1200 

2 10 1 47 26 27 1200 

2 
1 8 2 64 72 76 1200 

2 11 1 36 22 24 1200 

3 
1 8 2 63 86 90 1200 

2 10 1 42 33 37 1200 

100 

1 

1 
1 12 3 52 61 61 1200 

2 15 1 17 7 8 1200 

2 
1 12 3 59 59 62 1200 

2 15 0 17 5 6 1200 

3 
1 12 4 49 64 68 1200 

2 15 3 39 22 26 1200 

2 

1 
1 16 1 37 26 25 1199 

2 19 1 13 7 8 1200 

2 
1 15 2 49 43 46 1200 

2 18 0 9 4 4 1200 

3 
1 15 3 42 47 52 1200 

2 18 2 28 16 19 1200 

200 

1 

1 
1 21 1 35 11 12 1200 

2 27 0 0 0 0 1200 

2 
1 19 3 49 32 35 1200 

2 27 1 2 1 1 1200 

3 
1 21 2 37 18 21 1200 

2 28 0 0 0 0 1200 

2 

1 
1 27 0 0 0 0 1202 

2 31 0 0 0 0 1200 

2 
1 28 0 6 1 1 1201 

2 31 0 2 1 1 1200 

3 
1 27 0 0 0 0 1200 

2 32 0 0 0 0 1200 
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Table 3: Results for 𝑐𝑘 = 160, ∀𝑘. 

n b-r w p Avg. UB 
Avg. # 
used 

Avg. % 
util. 

% tasks 
processed 

% profit 
processed 

Solution Time 
(sec.) 

20 

1 

1 
1 4 0 0 0 0 0 

2 5 0 7 7 6 5 

2 
1 4 0 0 0 0 0 

2 4 0 0 0 0 0 

3 
1 4 1 44 78 81 3 

2 5 0 16 19 20 8 

2 

1 
1 5 0 0 0 0 0 

2 6 1 58 55 56 161 

2 
1 4 0 0 0 0 0 

2 6 0 0 0 0 0 

3 
1 4 1 54 92 95 3 

2 6 1 50 57 62 72 

50 

1 

1 
1 7 1 78 52 54 1200 

2 9 1 81 33 32 1200 

2 
1 7 1 72 55 60 1200 

2 9 0 8 5 5 1116 

3 
1 7 2 64 69 76 1200 

2 9 1 69 42 48 1200 

2 

1 
1 9 1 41 28 28 1200 

2 10 0 0 0 0 1200 

2 
1 10 1 75 56 62 1200 

2 11 0 0 0 0 1200 

3 
1 8 1 68 67 75 1200 

2 11 1 46 25 29 1200 

100 

1 

1 
1 13 1 49 17 17 1200 

2 15 0 8 5 4 1200 

2 
1 12 1 53 23 26 1200 

2 15 0 0 0 0 1200 

3 
1 12 2 57 55 62 1200 

2 15 1 10 7 8 1200 

2 

1 
1 15 0 0 0 0 1200 

2 18 0 0 0 0 1200 

2 
1 16 1 40 17 19 1200 

2 19 0 0 0 0 1200 

3 
1 14 2 49 36 42 1200 

2 18 0 4 2 2 1200 

200 

1 

1 
1 21 0 7 1 1 1200 

2 27 0 0 0 0 1200 

2 
1 20 1 25 11 13 1200 

2 26 1 4 2 2 1201 

3 
1 20 2 36 24 27 1200 

2 26 0 0 0 0 1200 

2 

1 
1 26 0 0 0 0 1200 

2 31 0 0 0 0 1200 

2 
1 26 0 0 0 0 1200 

2 32 0 0 0 0 1200 

3 
1 26 0 0 0 0 1201 

2 33 0 0 0 0 1200 
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For 𝑛 =  20, CPLEX found the optimal solutions 
for all instances. Many of the problem instances 
with 𝑛 =  50 or more tasks could not be solved 
optimally by CPLEX within the 1200-second 
time limit, which is an indicator of the difficulty 
of the optimization problem. On the other hand, 
best feasible solutions are obtained for these 
instances. 

It can be observed from Table 2 and Table 3 that 
the optimal solutions are obtained faster for 
high resource costs than for lower ones. This 
result is expected, because more tasks can be 
processed if the resource costs are low, leading 
to a higher number of solution alternatives. The 
same trend is valid for longer standby 
durations and longer processing times, as the 
increase in these parameters also result in an 
increased number of feasible solutions. Varying 
levels of profits obtained from the reservations 
do not seem to affect the solution times. 
However, the solution times increase with 
increasing number of tasks expectedly, as the 
problem size grows considerably when the 
number of tasks is high. 

4.2 Managerial Implications 

It can be observed by comparing the number of 
used resources in Tables 2 and 3 that, as the 
costs of resources increase, the decision of 
capacity expansion is negatively affected. 
Conversely, higher resource costs bring higher 
utilization values. This result is expected from a 
managerial point of view. If the profits to be 
obtained from the reservations are 
predetermined and cannot be changed, more 
costly resources should be avoided while 
determining the seasonal capacity. However, if 
somehow a net profit is to be gained even with 
the utilization of higher-cost resources, then 
high utilization rates of these resources would 
further justify their usage. 

While the optimal resource utilization 
percentages are around 50% in solutions of the 
small instances, the values decrease down to 
around 20% for the larger instances. This is 
partly due to the fact that these instances 
cannot be solved optimally within the given 
time limit and best feasible solutions by CPLEX 

are reported. Many of the solutions for the 
larger instances include a zero objective 
function value, and the corresponding resource 
utilization is therefore also zero. The reason for 
these “do-nothing” decisions by the model can 
be explained as follows. 

Due to the higher number of overlapping task 
alternatives in larger instances, a denser 
packing is awaiting to be served by the 
available resources. However, as one 
reservation request is served, as it occupies a 
time interval in the planning horizon, and other 
requests within this horizon cannot be served. 
Since the model has to search for all such 
alternative schedules for the larger instances to 
find the optimal solution, and since doing 
nothing (scheduling no reservation and adding 
no resource into the system) is a feasible 
solution, it is reported as the best solution 
within the given time limit.  

Another observation from Tables 2 and 3 is that 
the “do-nothing” solution is preferred more 
when the resource costs are high. Especially for 
instances with higher number of jobs and lower 
profits, the optimal decision of adding no extra 
capacity to the available resource pool (hence 
using no resources and serving no reservation 
requests) is economically justified.  

Due to the tactical nature of the CRS problem 
involving the decisions of capacity increase or 
expansion, it can be thought that the decision 
makers might be willing to tolerate relatively 
longer processing times. Based on this 
reasoning, one can argue that longer times 
should be allowed for CPLEX to find the optimal 
solution. However, further experimentation 
revealed that even 1-hour and 2-hour limits did 
not change the results obtained by CPLEX for 
the large instances of the problem. As stated 
before, this is evidence to the highly 
combinatorial nature and the NP-hardness of 
the problem structure. This issue can also be 
seen as an indication for the need of heuristic 
solutions for the problem. 

The model developed in this study brings a 
deterministic solution to a problem, which can 
present itself in a dynamic environment. In a 
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problem environment where the demand and 
cancellations occur instantaneously and are to 
be priced dynamically, the optimization 
approaches in literature typically offer policy-
based solutions for coping with the dynamic 
nature of the problem. This is done mainly in 
two stages, where demand forecasting is done 
in the first stage and a trade-off between cost 
and pricing is considered in the second stage to 
establish a capacity-demand balance. Although 
this approach can yield more realistic 
parameter values for the problem, it requires 
the use of highly nonlinear models and the 
tractability decreases drastically. Due to this 
reason, online and rule-based approaches are 
used more often. The assumption of 
deterministic parameters in our model 
provides tractability and ease of use. In a 
problem environment where the demand and 
cancellations occur instantaneously and are to 
be priced dynamically, repetitive solutions of 
the proposed model will be necessary. 
Therefore, fast and high-quality solutions can 
be of great use from a practical perspective. An 
efficient and effective decision as to how much 
to expand capacity in a given period, and how 
to schedule the incoming requests on the 
expanded resource pool can be very valuable in 
this respect. 

5. CONCLUSION 

In this study, we introduce the Combined 
Reservation Scheduling (CRS) problem for 
determining the capacity and the schedule of a 
reservation system simultaneously. The 
motivation of the problem is defined, many 

application areas are identified, and the related 
literature is reviewed.  

An integer programming formulation is 
proposed for the problem, and the problem is 
shown to be NP-hard. We evaluate the 
performance of the developed model through 
extensive computational experimentation. It is 
observed that the computational times for the 
optimal solutions increase with growing 
number of tasks in the system. On the other 
hand, optimal solution performance does not 
seem to deteriorate as much with growing 
number of resources.  

As to the best of our knowledge, the CRS 
problem has not been previously studied in 
literature. For this reason, the model developed 
in this study is intended to initiate further 
studies. The computational results reveal that 
the problem is very difficult to optimize and 
obtaining solutions for large instances of the 
problem take too long to be practical for the 
decision makers. Therefore, some fast and 
effective heuristic approaches that exploit the 
structural characteristics of the problem are 
required to obtain good and efficient solutions 
for the large instances.  

In addition, focusing on metaheuristic 
approaches and nature-inspired heuristics for 
the problem may prove to be worthy, as the 
problem has a high practical importance. 
Obtaining high-quality solutions to large 
instances of this problem can be very valuable 
for the decision makers in relevant sectors such 
as tourism, transportation and logistics, health 
logistics, and manufacturing.  
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