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Abstract: Dimensionality reduction is the most prominent process in artificial intelligence and data science because 

of using a massive amount of high-dimensional information. In recent days, many dimensionality reduction 

algorithms focused on the harmonic mean-based linear discriminant analysis (HLDA) which was the enhanced 

version of classical LDA. In particular, two different variants such as HLDA and HLDA pairwise (HLDAp) have 

been applied to reduce the high-dimensional data by using the harmonic mean between-class distance. However, its 

computation time complexity was high during the initialization phase since it comprises the matrix Eigen 

decomposition/inverse. Hence this article proposes the Fast HLDA (FHLDA) and FHLDA pairwise (FHLDAp) 

algorithms for reducing the high-dimensional data during classification. In this algorithm, a joint diagonalization 

scheme is introduced instead of Eigen decomposition depending on Taylor expansion for lessening the number of 

iterations in the initialization step to produce the discriminant. It does not a choice to a sweeping task so that every 

element of the Eigenvector matrix at every iteration is calculated to minimize the computation time burden. As well, 

a first-order approximation of the inverse Eigenvector matrix and the complete matrix of Eigenvectors are updated at 

every iteration. On the contrary, the overlap among the samples of dissimilar classes tends to miscategorization. So, 

the optimal discriminant vector is discovered to solve this issue by extending the between-class scatter matrices. 

Finally, the experimental outcomes show that the FHLDA and FHLDAp algorithms achieve 10 % higher average 

accuracy than LDA, ALDA, WLDA, G2DLDA, HLDA, and HLDAp algorithms. 

Keywords: Dimensionality reduction, High-dimensional data classification, LDA, HLDA, Eigen decomposition, 

Joint diagonalization, Taylor expansion. 

 

 

1. Introduction 

As technology has been advanced, massive 

quantities of high-dimensional information will 

become more widely available in the area of 

artificial intelligence. This information involves 

high-resolution photos, data files, genomic 

information, and so on. Nonetheless, high-

dimensional information provides challenges to the 

classification algorithm regarding reliability and 

efficacy. The curse of dimensionality is a 

phenomenon that happens while constructing the 

classifier is affected by a massive quantity of 

features to be decided [1]. Few learning algorithms 

are less prone to this issue because they never focus 

on selecting the feature subsets; however, rather 

utilize the classifier on each accessible characteristic. 

Even if greater the quantity of dimensions has no 

influence on the prediction efficacy, the 

computational cost may be high, so avoiding the 

model from being employed with the high-

dimensional information for several purposes. For 

this perspective, dimensionality reduction 

algorithms have been developed for extracting 

relevant data and attributes which support the 

process of high-dimensional information. 

Typically, dimensionality reduction is essential 

for different purposes such as machine learning, 

object detection, and so on [2]. Many learning 

algorithms have been available to perform high-

dimensional information categorization. Specifically, 

these algorithms were utilized for minimizing the 

size of high-dimensional information by attribute 
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choice, and projection [3].  

Also, such learning was used for ensuring the 

diversity of using classifications, random or fixed 

sample choice schemes like bagging, and AdaBoost. 

But, classical learning algorithms have a few 

challenges: (i) many learning algorithms enhance 

the diversity of classifiers in either the sample space 

or attribute space, and the conversion from sample 

to feature was not reported to enhance the diversity 

of classifications, (ii) many learning algorithms for 

high-dimensional information were achieved by 

instant dimensionality reduction instead of 

expanding the number of attributes for enhancing 

the diversity of classifications before reducing the 

dimensionality, (iii) various learning algorithms 

have been optimized by designing a specific 

objective function rather than using other 

unsupervised learning algorithms like density-based 

clustering [4]. 

The most well-known dimensionality reduction 

algorithms are the principal component analysis 

(PCA), LDA, and independent component analysis 

(ICA) [5, 6]. But, these linear algorithms cannot 

analyze the complicated nonlinear high-dimensional 

information. Standard LDA [7] has a few 

disadvantages: 1) they apply arithmetic mean of 

between-class distances and 2) they do not consider 

a pairwise between-class distance, so few classes 

may overlap with each other in subspace. To combat 

these problems, two different formulations of 

harmonic mean-based LDA: HLDA and HLDAp 

were developed [8] for achieving dimensionality 

reduction by considering the harmonic mean 

between-class distance. But, it has a high 

computation time complexity during the 

initialization phase which involves the matrix Eigen 

decomposition/inverse. 

Therefore in this paper, the FHLDA and 

FHLDAp algorithms are proposed by using the joint 

diagonalization scheme depending on Taylor 

expansion to minimize the iterations during the 

initialization phase for creating the discriminant. 

This algorithm does not an alternative to the 

sweeping process so that each element of the matrix 

of Eigenvectors at every iteration are directly 

computed for reducing the computation time 

complexity. Also, a first-order approximation of the 

inverse matrix of Eigenvectors and the entire matrix 

of Eigenvectors is updated at every iteration. But, 

the overlap among the samples of different classes 

may tend to miscategorization. This problem is 

resolved by finding the optimal discriminant vector 

is obtained by maximizing the between-class scatter 

matrices.  

As a result, this algorithm can minimize the 

computational time complexity of dimensionality 

reduction for high-dimensional information 

categorization. 

The remaining sections of this paper are 

prepared as follows: Section II discusses the related 

works on dimensionality reduction in different uses. 

Section III explains the FHLDA and FHLDAp 

algorithms and section IV exhibits their efficacy. 

Section V concludes this work and gives the future 

scope. 

2. Literature survey 

The analysis of dimension reduction using the 

deep convolutional neural network (DCNN) and 

improved PCA [9] was proposed. Still, it needs to 

automatically optimize the number of variables to 

improve efficiency. Also, it does not operate 

appropriately and the correlation between the 

variables was poor. 

A new theoretical model of group-oriented 

optimized multiple kernel learning was developed 

[10] to reduce the dimensionality depending on the 

cooperative representation categorization. But, it has 

a high computational difficulty and less robustness 

while the training image distribution was varied 

from the testing images. 

A wide hierarchical sub-network-based neural 

network (Wi-HSNN) with entrance SNN (En-SNN) 

and exit SNN (Ex-SNN) was presented [11] for 

reducing the dimensionality of high-level features 

and categorizing the food patterns. Still, the 

accuracy was not effective. As well, it was not able 

to encode the raw features and create the latent 

space in an unsupervised manner. 

An auto-encoder-based dimensionality reduction 

and categorization were designed [12] based on 

CNN for hyperspectral images. But, it degrades the 

efficiency since it creates blur images while 

increasing the number of images. An enhanced 

hybrid-graph discriminant learning (EHGDL) was 

designed [13] for reducing the dimensionality and 

categorization of hyperspectral images. But, it has a 

high computational difficulty and running time. 

A new hybrid dimensionality reduction forest 

(HDRF) was [14] designed based on ensemble 

pruning for increasing the diversity of a combined 

model from feature and sample space. But, it needs 

to develop an adaptive scheme for optimizing the 

efficiency and pruning rate of the ensemble forest 

algorithm. 

An adapted LDA (ALDA) [15] was developed 

with parameter selection to categorize high-

dimensional medicinal data. But, it needs to enhance 

the efficiency by using various covariance matrices 
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for the K groups. 

An enhanced joint dimension reduction and 

dictionary learning model was developed [16] using 

an auto-encoder to categorize the high-dimensional 

information. But, it was sensitive to the outliers 

because -normalization was less robust to outliers. 

The robustness was also less while considering the 

class imbalanced data distribution. 

A novel dimensionality reduction technique 

called auto-weighted LDA (WLDA) [17], which 

learns the similarity matrix and updates in the 

subspace concurrently so that the neighborhoods 

were analyzed in the optimal subspaces rather than 

the actual space. In addition, an iterative re-

weighted optimization strategy was used to assign a 

small weight to the pairwise points with large 

distances and vice versa. But, it didn’t deal with 

large-scale unlabeled datasets. 

A generalized 2D LDA (G2DLDA) was 

presented [18], which uses a random L-norm to 

estimate the between-class and within-class scatter. 

Also, an effective learning method was developed to 

solve a series of convex problems with closed-form 

solutions. However, it does not consider nonlinear 

scenario. 

3. Scientific contribution of the research 

The above-studied LDA variants have a few 

challenges: i) they consider arithmetic mean of 

between-class distances, and ii) they do not consider 

the pairwise between-class distance and so few 

labels may overlap with every other in subspace. 

Partitioning every label from the overall average 

does not ensure each pairwise class is partitioned. 

Utilizing the arithmetic mean of pairwise between-

class distances is similar to using distances between 

every class mean and overall mean. Also, the 

challenges of arithmetic mean-based between-class 

distance occurred in several other formulations of 

LDA, namely, HLDA [8] and HLDAp [8]. 

These challenges are solved by proposing the 

FHLDA algorithm which considers the harmonic 

mean-based pairwise between-class distance while 

reducing the dimensionality of instances. It can 

increase the classification accuracy while increasing 

the subspace dimension due to the consideration of 

pairwise between-class distance and the utilization 

of harmonic (arithmetic) mean of between-class 

distances. If the subspace dimension reaches few 

values, then the regular increase of subspace 

dimension for the class overlap issue is solved by 

the Taylor expansion-based Eigen decomposition 

and therefore the classification accuracy is increased. 

The details of the FHLDA and FHLDA-pairwise 

(FHLDAp) are presented below section. 

4. Proposed methodology 

In this section, the FHLDA and FHLDAp 

algorithms are explained briefly. The schematic 

overview of these algorithms for dimensionality 

reduction is illustrated in Fig. 1. 

4.1 Fast harmonic linear discriminant analysis 

(FHLDA) 

Consider 𝒳 ∈ ℝ𝓅×𝓃 is the data matrix and 𝒳 =
(𝓍1, … , 𝓍𝓃)  where 𝓅  refers to the data dimension 

and 𝓃 refers to the number of data samples. Also, 𝓀 

is the class index, 𝒸  is the required subspace 

dimension, and 𝐾 is the overall amount of classes. 

Table 1 presents the notations used in this study. 

 

 

 
Figure. 1 Schematic overview of dimensionality reduction using proposed algorithm 
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Table 1. Notations used in this study 

𝒳  Data matrix 

𝓅  Data dimension 

𝓃  Number of data samples 

𝓀  Class index 

𝒸  Required subspace dimension 

𝐾  Overall amount of classes 

𝒢  Conversion matrix to a 𝒸-dimensional 

subspace 

𝒮𝒷   Between-class scatter matrix 

𝒮𝓉  Overall scatter matrix 

𝓃𝓀  Amount of samples in 𝓀   

𝓍𝒾 ∈ 𝓀  Data 𝓍𝒾 belongs to 𝓀  

𝓂𝓀  Average of 𝓀  

𝓂  Average of the whole dataset 

ℬ𝓀ℓ  Between-class scatter matrix for 𝓀 and ℓ 

(𝛼𝓀
′ , 𝛽𝓀

′ )  New discriminant range of 𝓀 

𝜂  Step size 

𝒥1  Objective function 

𝒜, 𝒰  Eigenvectors and diagonal matrices 

�̂�  Predicted matrix 

𝑡  Iteration 

𝒬𝑡  Matrix  

𝛿  Number of iterations to reach the convergence 

rapidly 

𝒵  Updating matrix 

𝒮𝓌  Global mean of within-class 

 

Assume 𝒢 ∈ ℝ𝓅×𝒸 is the conversion matrix to a 

𝒸-dimensional subspace. The between-class scatter 

matrix (𝒮𝒷), within-class scatter matrix (𝒮𝓌), and 

the overall scatter matrix (𝒮𝓉)  are described as 

follows: 

 

𝒮𝓉 = 𝒮𝒷 + 𝒮𝓌    (1) 

 

𝒮𝒷 = ∑ 𝓃𝓀(𝓂𝓀 − 𝓂)(𝓂𝓀 − 𝓂)𝑇𝐾
𝓀=1              (2) 

 

𝒮𝓌 = ∑ 𝓃𝓀𝒲𝓀
𝐾
𝓀=1     (3) 

 

𝒲𝓀 =
1

𝓃𝓀
∑ (𝓍𝒾 − 𝓂𝓀)(𝓍𝒾 − 𝓂𝓀)𝑇

𝓍𝒾∈𝓀        (4) 

 

In Eqs. (2)-(4), 𝓃𝓀  refers to the number of 

samples in 𝓀, 𝓍𝒾 ∈ 𝓀 refers to the data 𝓍𝒾  belongs 

to 𝓀, 𝓂𝓀 refers to the average of 𝓀, and 𝓂 refers to 

the average of the whole dataset. 

 

𝓂𝓀 =
∑ 𝓍𝒾𝓍𝒾∈𝓀

𝓃𝓀
, 𝓂 =

∑ 𝓍𝒾
𝓃
𝒾=1

𝓃
   (5) 

 

A pairwise between-class scatter matrix ℬ𝓀ℓ for 

𝓀 and ℓ as follows: 

 

ℬ𝓀ℓ = (𝓂𝓀 − 𝓂ℓ)(𝓂𝓀 − 𝓂ℓ)𝑇  (6) 

In this FHLDA, the discriminant range of every 

class is determined to obtain the optimal 𝒢. If the 

new discriminant range of 𝓀  is represented by 
(𝛼𝓀

′ , 𝛽𝓀
′ ) , then for given 2 classes 𝓀  and ℓ , their 

discriminant ranges can satisfy the below criteria: 

 
(𝛼𝓀

′ , 𝛽𝓀
′ ) ∩ (𝛼ℓ

′ , 𝛽ℓ
′) = 𝜙, 1 ≤ 𝓀 < 𝑙 ≤ 𝐾 (7) 

 

So, the new linear discriminant criterion is 

defined. For any given data 𝓍, if 𝓏 = 𝒢𝑇𝓍, then, 

 

𝓍 ∈ {
𝓀, 𝓏 ∈ (𝛼𝓀

′ , 𝛽𝓀
′ )

𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒, 𝑂𝑟 𝑒𝑙𝑠𝑒
  (8) 

 

Then, the objective factor of HLDA is defined 

as: 

min
𝒢

𝒥1(𝒢) = ∑ 𝓃𝓀𝓃ℓ𝓀<𝑙
𝑇𝑟(𝒢𝑇𝒮𝓌𝒢)

𝑇𝑟(𝒢𝑇ℬ𝓀ℓ𝒢)
, 

s.t. 𝒢𝑇𝒢 = 𝐼    (9) 

 

The gradient of Eq. (9) is provided as: 

∇𝒥1 ≜
𝜕𝒥1

𝜕𝒢
= 2 ∑ 𝓃𝓀𝓃ℓ𝓀<𝑙

𝒮𝓌𝒢

𝑇𝑟(𝒢𝑇ℬ𝓀ℓ𝒢)
−

2 ∑ 𝓃𝓀𝓃ℓℬ𝓀ℓ𝒢𝓀<𝑙
𝑇𝑟(𝒢𝑇𝒮𝓌𝒢)

(𝑇𝑟(𝒢𝑇ℬ𝓀ℓ𝒢))
2              (10) 

 

Restraint 𝒢𝑇𝒢 = 𝐼  enforces 𝒢  on the Stiefel 

manifold. The differences of 𝒢 on this manifold is 

parallel converse which provides few limits to the 

gradient. The gradient which reserves the manifold 

pattern is, 

 

∇𝒥1 − 𝒢[∇𝒥1]T𝒢             (11) 

 

So, the new 𝒢 is determined as: 

 

𝒢 ← 𝒢 − 𝜂(∇𝒥1 − 𝒢[∇𝒥1]T𝒢)           (12) 

 

In Eq. (12), 𝜂 refers to the step size. Because of 

the truth that the manifold preserving gradient of Eq. 

(11) only enforces the restraint 𝒢𝑇𝒢 = 𝐼  to first-

order at each iteration, 𝒢 is get back to the manifold 

using the joint diagonalization scheme. The 

principle of this scheme is to diagonalize a group of 

𝒰 non-defective matrices as: 

 

𝒢(𝓊) = 𝒜𝒟(𝓊)𝒜−1, ∀𝓊 = 1, … , 𝒰            (13) 

 

In Eq. (13), the matrix of Eigenvectors 𝒜 and 𝒰 

diagonal matrices 𝒟(𝓊)  are unknown. Hence, 

assuming that all matrices (𝒢) of size 𝑁 × 𝑁. It is a 

necessity to discover a predicted matrix �̂� such that, 

for each matrix 𝒢(𝓊), �̂�−1𝒢(𝓊)�̂� are as diagonal as 
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promising. The matrix �̂� is predicted iteratively by 

successive updates. At every iteration 𝑡, a matrix 𝒬𝑡 

is determined for reducing the diagonalization 

criterion and the matrix set is updated as: 

 

𝒯𝑡+1
(𝓊)

= 𝒬𝑡
−1𝒯𝑡

(𝓊)
𝒬𝑡, ∀𝑡 = 1, … , 𝛿, ∀𝓊 =

1, … , 𝒰                 (14) 

 

In Eq. (14), 𝒯1
(𝓊)

= 𝒢(𝓊), and 𝛿 is the number of 

iterations to reach the convergence rapidly. So, if 𝛿 

iterations enable to perform the joint diagonalization, 

then �̂� can be equivalent to ∏ 𝒬𝑡
𝛿
𝑡=1 , and each 𝒯𝛿

(𝓊)
 

matrices are diagonal. At every iteration, the 

condition depending on a quadratic measure of 

diagonality is given as: 

 

𝐶(𝒬𝑡) = ∑ ‖𝘡𝑑𝑖𝑎𝑔 {𝒬𝑡
−1𝒯𝑡

(𝓊)
𝒬𝑡}‖

2
𝒰
𝓊=1    (15) 

 

It is vital to compute 𝑁2 elements of the matrix 

𝒬𝑡 at every iteration. In this FHLDA algorithm, 𝒬𝑡 

is decomposed as: 

 

𝒬𝑡 = (𝐼 + 𝒵𝑡)              (16) 

 

In Eq. (16), 𝒵𝑡  is equivalent to 𝘡𝑑𝑖𝑎𝑔{𝒬𝑡} . 

Therefore, the updated data matrices at all iterations 

become: 

 

𝒯𝑡+1
(𝓊)

= (𝐼 + 𝒵𝑡)𝒯𝑡
(𝓊)(𝐼 + 𝒵𝑡), ∀𝓊 = 1, … , 𝒰   (17) 

 

So that the condition (15) focuses only on 𝒵𝑡 , 

and is written as: 

 

𝐶(𝒬𝑡) = �̃�(𝒵𝑡) = 

∑ ‖𝘡𝑑𝑖𝑎𝑔 {(𝐼 + 𝒵𝑡)𝒯𝑡
(𝓊)(𝐼 + 𝒵𝑡)}‖

2
𝒰
𝓊=1           (18) 

 

For simplifying the notations, the index 𝑡  is 

neglected by reducing the past condition. It is 

needed to estimate the condition while performing 

on an analytic form of 𝒵. For this reason, consider 

that it is nearer to the solution and so that ‖𝒵‖ ≪ 1, 

then its first-order Taylor expansion is calculated 

which gives: 

 

(𝐼 + 𝒵)−1𝒯(𝓊)(𝐼 + 𝒵) ≈ (𝐼 − 𝒵)𝒯(𝓊)(𝐼 + 𝒵) 

≈ 𝒯(𝓊) − 𝒵𝒯(𝓊) + 𝒯(𝓊)𝒵 − 𝒵𝒯(𝓊)𝒵 

≈ 𝒯(𝓊) − 𝒵𝒯(𝓊) + 𝒯(𝓊)𝒵          (19) 

 

Further, each matrix 𝒯(𝓊) is decomposed as: 

 

𝒯(𝓊) = 𝛬(𝓊) + 𝒪(𝓊)           (20) 

In Eq. (20), 𝛬(𝓊) = 𝑑𝑖𝑎𝑔{𝒯(𝓊)} , and 𝒪(𝓊) =

𝘡𝑑𝑖𝑎𝑔{𝒯(𝓊)}. Also, assume that it is nearer to the  

solution, each 𝒯(𝓊)  matrix is almost diagonal 

and ‖𝒪(𝓊)‖ ≪ 1. This second estimation yields: 

 

𝒯(𝓊) − 𝒵𝒯(𝓊) + 𝒯(𝓊)𝒵 ≈ 

𝛬(𝓊) + 𝒪(𝓊) − 𝒵𝛬(𝓊) + 𝛬(𝓊)𝒵          (21) 

 

Therefore, an alternative to the below estimated 

joint diagonalization condition is defined as: 

 

𝐶𝑎(𝒵) = ∑‖𝘡𝑑𝑖𝑎𝑔{𝒪(𝓊) − 𝒵𝛬(𝓊) + 𝛬(𝓊)𝒵}‖
2

𝒰

𝓊=1

≈ 

�̃�(𝒵)        (22) 

 

Eq. (22) can be rewritten as: 

 

𝐶𝑎(𝒵) = ∑ ∑ (𝒪𝑚𝑛
(𝓊)

+ 𝒵𝑚𝑛𝛬𝑚𝑚
(𝓊)

−𝑁
𝑚,𝑛=1
𝑚≠𝑛

𝒰
𝓊=1

𝒵𝑚𝑛𝛬𝑛𝑛
(𝓊)

)
2

= ∑ 𝑓(𝒵𝑚𝑛)𝑁
𝑚,𝑛=1
𝑚≠𝑛

              (23) 

 

Where 

 

𝑓(𝒵𝑚𝑛) = ∑ (𝒪𝑚𝑛
(𝓊)

+ (𝛬𝑚𝑚
(𝓊)

− 𝛬𝑛𝑛
(𝓊)

) 𝒵𝑚𝑛)
2

𝒰
𝓊=1   

(24) 

 

The minimization of 𝐶𝑎(𝒵)  is similar to the 

minimization of each 𝑓(𝒵𝑚𝑛) separately. To obtain 

the elements of the updating matrix 𝒵, 

 
𝜕𝑓(𝒵𝑚𝑛)

𝜕𝒵𝑚𝑛
= 2 ∑ (𝒪𝑚𝑛

(𝓊)
+ (𝛬𝑚𝑚

(𝓊)
−𝒰

𝓊=1

𝛬𝑛𝑛
(𝓊)

) 𝒵𝑚𝑛) (𝛬𝑚𝑚
(𝓊)

− 𝛬𝑛𝑛
(𝓊)

) , ∀𝑚, 𝑛; 𝑚 ≠ 𝑛         (25) 

 

At last, 𝒵𝑚𝑛 is deduced as: 

 

𝒵𝑚𝑛 = −
∑ 𝒪𝑚𝑛

(𝓊)
(𝛬𝑚𝑚

(𝓊)
−𝛬𝑛𝑛

(𝓊)
)𝒰

𝓊=1

∑ (𝛬𝑚𝑚
(𝓊)

−𝛬𝑛𝑛
(𝓊)

)
2

𝒰
𝓊=1

, ∀𝑚, 𝑛; 𝑚 ≠ 𝑛      (26) 

 

Observe that each iteration comprises only one 

update of matrices �̂�  and 𝒯(𝓊) . The termination 

criterion is given as: 

 
|𝐶(𝒬𝑡)−𝐶(𝒬𝑡−1)|

𝐶(𝒬𝑡−1)
≤ 10−6        (27) 

 

Thus, this scheme gets back 𝒢 to the manifold 

with the reduced computational time complexity. 

Algorithm 1 describes the steps to solve Eq. (9). The 

objective is optimized in an iterative manner. 
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Besides, by extending this FHLDA to multi-class 

categorization issues, it is guaranteed that the 

efficiency of classification is improved by reducing 

the high-dimensional data. 

4.2 Fast harmonic linear discriminant analysis 

pairwise (FHLDAp) 

In several datasets, different classes have 

different within-class covariance and so the global 

mean of within-class 𝒮𝓌  utilized in Eq. (9) would 

vary considerably from every class. But, the mean of 

2 classes is possible to be nearer to every 2 classes. 

So, the utilization of the global mean of within-class 

distances (variances) of each class is a weak 

representation than the utilization of the mean of 2 

class covariances. This pairwise mean is combined 

with the FHLDA of Eq. (9). To do this, the pairwise 

within-class covariance (scatter matrix) of 𝓀 and ℓ 

is defined as: 

 

𝒲𝓀𝑙 =
1

𝓃𝓀+𝓃ℓ
(𝓃𝓀𝒲𝓀 + 𝓃ℓ𝒲𝑙)            (28) 

 

In Eq. (28), 𝒲𝓀  and 𝒲𝑙  are given in Eq. (4). 

Then, the objective factor of HLDA is modified to: 

 

min
𝒢

𝒥2(𝒢) = ∑ 𝓃𝓀𝓃ℓ𝓀<𝑙
𝑇𝑟(𝒢𝑇𝒲𝓀𝑙𝒢)

𝑇𝑟(𝒢𝑇ℬ𝓀ℓ𝒢)
, s.t. 𝒢𝑇𝒢 = 𝐼 

 (29) 

 

Here, the restraint 𝒢𝑇𝒢 = 𝐼  guarantees the 

columns of solution 𝒢 are linearly independent. This 

Eq. (29) is called FHLDAp. Also, the Stiefel 

gradient descent scheme is used for solving the 

minimization dilemma. The gradient of Eq. (29) is: 

 

Algorithm 1: FHLDA 

Input: Data matrix 𝒳 ∈ ℝ𝓅×𝓃  having 𝓃  data 

samples in 𝓅 -dimensional space; class indicator 

matrix 𝒴 ∈ ℝ𝓃×𝐾, 𝐾 denotes the number of classes; 

subspace dimension 𝒸 

Output: Projection matrix 𝒢 ∈ ℝ𝓅×𝒸 

Initialize 𝒢; 

Determine 𝒮𝓌 and ℬ𝓀ℓ using Eq. (3) & (6); 

Determine the discriminant range of every class 

represented by (𝛼𝓀
′ , 𝛽𝓀

′ ), 𝑖 = 1, … , 𝐾; 

𝒘𝒉𝒊𝒍𝒆(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐸𝑞. (9) 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒) 

 Determine the Stiefel manifold gradient 

using Eq. (11); 

 Update 𝒢 using Eq. (12); 

 Get back 𝒢 to the manifold using the joint 

diagonalization; 

 Execute Algorithm 2; 

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆   

Algorithm 2: Joint diagonalization using 

Taylor expansion 

Begin 

Get all matrices (𝒢) of size 𝑁 × 𝑁; 

Define the termination criterion (𝜖)  and the 

maximum number of iterations 𝛿; 

Initialize �̂�; 

𝑡 = 1; 

𝒘𝒉𝒊𝒍𝒆(𝜖 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 & 𝑡 ≤ 𝛿) 

 𝒇𝒐𝒓(𝑚 = 1: 𝑁) 

 𝒇𝒐𝒓(𝓃 = 1: 𝑁) 

  𝒊𝒇(𝑚 ≠ 𝓃) 

  Calculate 𝒵𝑚𝑛 using Eq. (26); 

  𝒆𝒏𝒅 𝒊𝒇 

 𝒆𝒏𝒅 𝒇𝒐𝒓 

 𝒆𝒏𝒅 𝒇𝒐𝒓 

 Determine 𝒬 = 𝐼 + 𝒵; 

 Determine 𝒬−1; 

 𝒇𝒐𝒓(𝓊 = 1: 𝒰) 

  𝒯(𝓊) = 𝒬−1𝒯(𝓊)𝒬; 

 𝒆𝒏𝒅 𝒇𝒐𝒓 

 �̂� ← �̂�𝒬; 

 𝑡 = 𝑡 + 1; 

 Update 𝜖; 

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

 

Algorithm 3: FHLDAp 

Input: Data matrix 𝒳 ∈ ℝ𝓅×𝓃  having 𝓃  data 

samples in 𝓅 -dimensional space; class indicator 

matrix 𝒴 ∈ ℝ𝓃×𝐾, 𝐾 denotes the number of classes; 

subspace dimension 𝒸 

Output: Projection matrix 𝒢 ∈ ℝ𝓅×𝒸 

Initialize 𝒢; 

Determine ℬ𝓀ℓ and 𝒲𝓀𝑙 using Eq. (6) & (28); 

Determine the discriminant range of every class 

represented by (𝛼𝓀
′ , 𝛽𝓀

′ ), 𝑖 = 1, … , 𝐾; 

𝒘𝒉𝒊𝒍𝒆(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐸𝑞. (29) 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒) 

 Determine the Stiefel manifold gradient 

using Eq. (11); 

   Update 𝒢 using Eq. (12); 

 Get back 𝒢 to the manifold using the joint 

diagonalization; 

Execute Algorithm 2; 

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆  

 

∇𝒥2 ≜
𝜕𝒥2

𝜕𝒢
= 

∑ 2𝓃𝓀𝓃ℓ𝓀<𝑙 [
𝒲𝓀𝑙𝒢

𝑇𝑟(𝒢𝑇ℬ𝓀ℓ𝒢)
− ℬ𝓀ℓ𝒢

𝑇𝑟(𝒢𝑇𝒲𝓀𝑙𝒢)

(𝑇𝑟(𝒢𝑇ℬ𝓀ℓ𝒢))
2]  (30) 

 

After, the natural gradient of Eqs. (11) & (12) are 

used to enforce 𝒢 on the stiefel manifold. 
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Table 2. Data attributes in different datasets 

Data Dimension 

𝓹 

Sample 

Number 𝓷 

Class 

Number 𝑲 

PIE 1024 680 68 

UMIST 644 360 20 

MediaMill 120 6601 74 

Barcelona 48 139 4 

5. Experimental results 

In this section, the efficiency of FHLDA and 

FHLDAp algorithms for dimensionality reduction is 

analyzed by executing them in MATLAB 2017b and 

compared with the classical algorithms: standard 

LDA, ALDA [15], WLDA [17], G2DLDA [18], 

HLDA [8], and HLDAp [8]. The analysis is 

performed on both single-label and multi-label 

classification challenges. In this experiment, 2 

single-label and 2 multi-label datasets are used. 

Table 2 summarizes the data attributes. The 2 

single-label datasets are PIE and UMIST whereas 

the 2 multi-label datasets are Barcelona and 

Mediamill. 

The PIE [19] is a face dataset from carnegie 

mellon robotics institute. Totally, it involves 68 

various people and 10 images for every people with 

various poses, various illumination criteria, and 

various expressions. Images were resized to 32×32 

(1024 pixels). UMIST [20] is a dataset of 360 face 

images (sheffield face dataset) taken from 20 people 

of diverse race, gender, and look. Every people 

contain 18 images which are resized to 28×23 (644 

pixels or dimensions). MediaMill dataset [21] 

comprises multi-label data from video object 

recognition issues. It contains 74 classes and 6601 

samples. Barcelona dataset [22] has image moments 

of 139 images with 4 classes: buildings, flora, 

humans, and sky. Every image has a minimum of 

two classes. 

The comparison analysis for both single-label 

and multi-label classification is conducted in terms 

of precision, recall, f-measure and accuracy.  

 

• Precision is the percentage of exactly 

classified classes at true positive (TP) and 

false positive (FP) rates. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

=
𝑁𝑜.𝑜𝑓 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑁𝑜.𝑜𝑓 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑒𝑠+
𝑁𝑜.𝑜𝑓 𝑖𝑛𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

  

 

• Recall is the percentage of exactly classified 

classes at TP and false negative (FN) rates. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

=
𝑁𝑜.𝑜𝑓 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑁𝑜.𝑜𝑓 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑒𝑠+
𝑁𝑜.𝑜𝑓 𝑖𝑛𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

  

 

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  is the percentage between an 

exact classification of classes and the 

overall amount of tests performed. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

 

TP is a solution where the classifier classifies the 

classes as themselves e.g., buildings are classified as 

buildings. True negative (TN) is a solution where 

the classifier classifies the buildings as the sky or 

any other classes. FP is a solution where the 

classifier inexactly classifies the flora as buildings 

or any other classes. FN is a solution where the 

classifier inexactly classifies the sky as any other 

type of class. 

5.1 Single-label classification analysis 

Fig. 2 depicts the precision results for single-

label classification using different algorithms 

executed on PIE and UMIST datasets. It indicates 

that the FHLDA and FHLDAp algorithms attain a 

higher precision than all the other algorithms. For 

the PIE dataset, the precision of FHLDA and 

FHLDAp is 86.1 % and 86.72 %, respectively, 

which are greater than the precision ranges of all 

other algorithms for single-label classification. 

Similarly, for the UMIST dataset, the precision of 

FHLDA and FHLDAp is 85.54 % and 86.1 %, 

accordingly, which are higher than all other 

algorithms. 
 

 
Figure. 2 Comparison of precision for single-label 

classification 
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Figure. 3 Comparison of recall for single-label 

classification 

 

 
Figure. 4 Comparison of accuracy for single-label 

classification 

 

Fig. 3 shows the recall outcomes for single-label 

classification using various algorithms tested on PIE 

and UMIST datasets. It notices that the FHLDA and 

FHLDAp algorithms achieve a better recall 

compared to all other algorithms. For the PIE 

dataset, the recall of FHLDA and FHLDAp is 

79.85 % and 81.52 %, respectively, which are higher 

than the recall of all other algorithms for single-label 

classification. Also, for the UMIST dataset, the 

recall of FHLDA and FHLDAp is 81.45 % and 

82.66 %, accordingly, which are greater than the 

other algorithms such as LDA, ALDA, WLDA, 

G2DLDA, HLDA, and HLDAp. 

Fig. 4 displays the accuracy of different 

algorithms for single-label classification executed 

on PIE and UMIST datasets. It indicates that the  
 

 
Figure. 5 Comparison of precision for multi-label 

classification 

 

 
Figure. 6 Comparison of recall for multi-label 

classification 

 

FHLDA and FHLDAp algorithms accomplish an 

increased accuracy than all other algorithms. For the 

PIE dataset, the accuracy of FHLDA and FHLDAp 

is 83.14 % and 86.72 %, accordingly, which are 

enhanced than the accuracy of all other algorithms 

for single-label classification. Likewise, for the 

UMIST dataset, the accuracy of FHLDA and 

FHLDAp is 85.23 % and 88.42 %, respectively, 

which are enhanced compared to the LDA, ALDA, 

WLDA, G2DLDA, HLDA, and HLDAp algorithms. 

5.2 Multi-label classification analysis 

Fig. 5 exhibits the precision obtained by 

different algorithms for multi-label classification 

tested on Barcelona and Mediamill datasets. It 

analyzes that the FHLDA and FHLDAp can  
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Figure.7 Comparison of accuracy for multi-label 

classification 

 

increase the precision than all other algorithms. For 

the Barcelona dataset, the precision of FHLDA and 

FHLDAp is 85.78 % and 87.01 %, accordingly, 

which are improved than all the other algorithms for 

multi-label classification. Also, for the Mediamill 

dataset, the precision of FHLDA and FHLDAp is 

85.45 % and 86.31 %, respectively, which are 

improved than the LDA, ALDA, WLDA, G2DLDA, 

HLDA, and HLDAp algorithms. 

Fig. 6 shows the recall of different algorithms 

for multi-label classification executed on Barcelona 

and Mediamill datasets. It observes that the FHLDA 

and FHLDAp algorithms have a higher recall than 

all other algorithms. For the Barcelona dataset, the 

recall of FHLDA and FHLDAp is 84.36 % and 

85.83 %, respectively, which are better than all the 

other algorithms for multi-label classification. 

Similarly, for the Mediamill dataset, the recall of 

FHLDA and FHLDAp is 83.64 % and 84.72 %, 

accordingly, which are greater compared to the LDA, 

ALDA, WLDA, G2DLDA, HLDA, and HLDAp 

algorithms. 

Fig. 7 illustrates the accuracy of various 

algorithms for multi-label classification tested on 

Barcelona and Mediamill datasets. It addresses that 

the FHLDA and FHLDAp algorithms can maximize 

the accuracy compared to all other algorithms. For 

the Barcelona dataset, the accuracy of FHLDA and 

FHLDAp is 85.41 % and 86.01 %, respectively, 

which are larger than all other algorithms for multi-

label classification. Additionally, for the Mediamill 

dataset, the accuracy of FHLDA and FHLDAp is 

83.45 % and 85 %, accordingly, which are larger 

than the LDA, ALDA, WLDA, G2DLDA, HLDA, 

and HLDAp algorithms. 

In addition to these metrics, multi-label 

classification is analyzed based on other few metrics 

such as hamming loss (HL), ranking loss (RL), 1-

error (1-E), coverage (Covg), and mean precision 

(MP). 

 

• HL is used to analyze the number of the 

instance-label set is miscategorized i.e., a 

label not belonging to the instance is 

classified or a label belonging to the 

instance is not classified. 

• RL is used to determine the mean ratio of 

label sets which are reversely sorted for the 

instance. The efficiency is accurate if RL is 

0; the lower the range of RL, the better the 

efficiency. 

• 1-E is used to evaluate how many times the 

top-sorted label is not in the collection of 

appropriate labels for the instance. The 

efficiency is accurate if 1-E is 0; the lower 

the range of 1-E, the better the efficiency. 

• Coverage is used to analyze how far it is 

essential, on the mean, to go down the list of 

labels for covering each appropriate label of 

the instance. The lower the range of 

coverage, the better the efficiency. 

• MP is used to measure the mean ratio of 

labels sorted greater than the other relevant 

label. The efficiency is accurate if the MP is 

1; the higher the range of MP, the better the 

efficiency. 

 

These evaluation metrics results for multi-class 

classification when dimensionality reduction 

algorithms are applied are reported in Table 3.  

From these analyzes, it is noticed that the 

FHLDA and FHLDAp algorithms realize the 

enhanced classification efficiency by reducing the 

high-dimensional data. The HL, RL, 1-E and 

coverage of FHLDA and FHLDAp algorithms are 

efficiently decreased while increasing the MP ranges 

of multi-label classification with the aid of 

dimensionality reduction using classical algorithms. 

6. Conclusion 

In this study, the FHLDA and FHLDAp 

algorithms were presented for dimensionality 

reduction by applying the joint diagonalization 

scheme. This scheme was based on the Taylor 

expansion which decreases the number of iterations 

in the HLDA algorithm during creating the new 

discriminants. In these algorithms, all elements of 

the Eigenvector matrix were determined at all 

iterations to lessen the computational cost.  
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Table 3. Multi-label classification analysis 

Dataset Metrics LDA ALDA WLDA G2DLDA HLDA HLDAp FHLDA FHLDAp 

 

 

Barcelona 

HL 0.394 0.349 0.341 0.333 0.312 0.316 0.268 0.273 

RL 0.281 0.267 0.260 0.249 0.236 0.235 0.194 0.211 

1-E 0.114 0.105 0.093 0.082 0.071 0.075 0.052 0.046 

Covg 2.221 2.215 2.206 2.194 2.150 2.187 2.019 2.005 

MP 0.779 0.792 0.804 0.811 0.895 0.887 0.916 0.928 

 

 

Mediamill 

HL 0.093 0.085 0.079 0.067 0.056 0.057 0.041 0.036 

RL 0.122 0.114 0.108 0.099 0.086 0.090 0.078 0.069 

1-E 0.155 0.142 0.136 0.130 0.121 0.123 0.114 0.105 

Covg 25.64 25.50 25.41 25.29 25.20 25.00 25.06 24.97 

MP 0.646 0.655 0.669 0.683 0.698 0.694 0.712 0.724 

 

Additionally, the first-order approximation of the 

inverse Eigenvector matrix and the entire matrix of 

Eigenvectors was modified at all iterations. Besides, 

the optimized discriminant vector was obtained for 

avoiding the overlap among the samples of diverse 

classes via maximizing the between-class scatter 

matrices. To conclude, the findings revealed that the 

FHLDA and FHLDAp algorithms have higher 

performance on both single-label and multi-label 

classification using different datasets compared to 

all other classical dimensionality reduction 

algorithms. 
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