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ABSTRACT

Objective: To predict future trends in the incidence of malaria cases 

in the southeast of Iran as the most important area of malaria using 

Seasonal Autoregressive Integrated Moving Average (SARIMA) 

model, and to check the effect of meteorological variables on the 

disease incidence.

Methods: SARIMA method was applied to fit a model on 

malaria incidence from April 2001 to March 2018 in Sistan and 

Baluchistan province in southeastern Iran. Climatic variables such 

as temperature, rainfall, rainy days, humidity, sunny hours and wind 

speed were also included in the multivariable model as covariates. 

Then, the best fitted model was adopted to predict the number of 

malaria cases for the next 12 months.

Results: The best-fitted univariate model for the prediction of 

malaria in the southeast of Iran was SARIMA (1,0,0)(1,1,1)12 [Akaike 

Information Criterion (AIC)=307.4, validation root mean square 

error (RMSE)=0.43]. The occurrence of malaria in a given month 

was mostly related to the number of cases occurring in the previous 

1 (p=1) and 12 (P=1) months. The inverse number of rainy days 

with 8-month lag (β=0.329 2) and temperature with 3-month 

lag (β=-0.002 6) were the best predictors that could improve the 

predictive performance of the univariate model. Finally, SARIMA 

(1,0,0)(1,1,1)12 including mean temperature with a 3-month lag 

(validation RMSE=0.414) was selected as the final multivariable 

model.

Conclusions: The number of malaria cases in a given month can be 

predicted by the number of cases in the prior 1 and 12 months. The 

number of rainy days with an 8-month lag and temperature with a 

3-month lag can improve the predictive power of the model.

KEYWORDS: Malaria; Time series; SARIMA; Forecasting; 

Climate; Iran

1. Introduction

  Malaria is a serious vector-borne disease in the world, particularly 

in the tropical and subtropical regions[1]. It is caused by protozoan 

parasites of the genus Plasmodium, which are transmitted across 

humans by infected female Anopheles mosquitoes[2]. The disease is 

the fifth cause of disability-adjusted life years in children younger 

than 10 years in 2019[3] and remained an important cause of mortality 

and morbidity in many parts of the world where can have negative 

effects on the health and socioeconomic status of the population[4,5]. 

According to the World malaria report 2018, there were 219 million 

cases of malaria globally in 2017 and 435 000 malaria deaths. The 

majority of these cases (92%) were in the African Region, followed 

by the South-East Region with 5% of the cases and the Eastern 

Mediterranean Region with 2%[1].
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Significance
The SARIMA model was applied to predict the number of 
malaria cases and to check the effect of climate on the disease 
incidence. The occurrence of malaria in a given month was 
mostly related to the number of cases occurring in the prior 
1 and 12 months. The number of rainy days with an 8-month 
lag and temperature with a 3-month lag can improve the 
predictive power of the model. 
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  Iran is one of the malaria-endemic countries in the world. In spite 

of successful implementation of malaria control measures that led 

to a significant reduction in the incidence of the disease over the 

last decade[6,7], it has remained a major public health concern in 

Iran. It can be explained by drug resistance[8,9] and the extremely 

genetic polymorphic nature of Plasmodium spp.[10-12]. More than 

90% of malaria cases occur in the southern and southeastern regions 

that share borders with Pakistan and Afghanistan[13]. Sistan and 

Baluchistan province is an endemic area of malaria in Iran with 

an appropriate climate for breeding various malaria vectors[7]. The 

province is susceptible to malaria epidemics due to several factors 

including climate diversity[14].

  Temperature, precipitation, and humidity are important 

meteorological factors associated with the population dynamics of 

malaria vectors which could affect the disease spread[15,16].

  Early detection, prevention, and containment of malaria epidemics 

is one of the four principal components of the WHO’s global malaria 

control strategy[17]. Therefore, developing predictive models is an 

essential part of malaria surveillance that enables policymakers and 

public health staff to predict future incidence of the disease and act 

proactively[18]. Seasonal Integrated Moving Average (SARIMA) 

model[19] is widely used to predict different infectious diseases 

including malaria[20-23]. Some statistical models have been adopted 

for malaria in some regions of Iran[14-16,18-26], but to the best of our 

knowledge, no study had applied SARIMA time series to predict 

malaria incidence in Sistan and Baluchistan province. Therefore, the 

objective of this study was to provide a SARIMA time series model 

for the prediction of malaria incidence in the southeast of Iran, and 

to check if the inclusion of climatic variables enhances the predictive 

power of the model.

2. Subjects and methods

2.1. Ethical approval

  The study protocol was approved by ethical committee of Tehran 

University of Medical Sciences with registration number IR.TUMS.

SPH.REC-13970270.

2.2. Study area

  Sistan and Baluchistan province, in the southeast of Iran (28.5° 

N, 60.5° E, Figure 1), is the second largest province of Iran with 

an area of 180 726 km² and a population of 2.8 million. The climate 

is relatively hot and dry in most areas but has high humidity in the 

southern coastal regions. Mean temperature ranges from 17 ℃ in 

winter to 32 ℃ in summer, and mean annual precipitation of 58 mm 

range from 0.8 mm per month in summer to 12.3 mm in winter 

months.

2.3. Data collection

  We used the monthly number of confirmed cases of malaria from 

April 2001 to March 2019 that was provided by the Centers for 

Surveillance of Communicable Diseases in Zahedan, Iranshahr and 

Zabol Universities of Medical Sciences. We retrieved the monthly 

meteorological data for the same period from Meteorological Bureau 

of Sistan and Baluchistan province. We gathered monthly average 

temperature (℃), average minimum temperature (℃), average 

maximum temperature (℃), average wind speed, average number 

of rainy days, accumulated rainfall (millimeters), average relative 

humidity (%), and average sunny hours. We considered data from 

April 2001 to March 2018 as training data to fit the model, and kept 

the number of new malaria cases during April 2018-March 2019 as 

the validation data.

2.4. Statistical analysis

  We described number of malaria cases in different months/seasons 

as median (Q1, Q3). Spearman correlation coefficient was used 

to assess the correlation between number of malaria cases and 

meteorological variables. To find the best model fitted to our data 

and to predict the number of malaria cases, we applied SARIMA 

(p, d, q) (P, D, Q)s model using Box-Jenkins approach in which p 

is non-seasonal autoregressive (AR) order, d is the number of non-

seasonal differencing passes, q is non-seasonal moving average 

(MA) order, and P, D, Q are corresponding seasonal orders. In this 

model, s is the seasonal period of the data (12 months in this study). 

  To fit the model, we first used disease trend plot and Box-Cox test 

to check the stationarity in the variance. Because of non-stationarity 

in the variance (θ=0), we used natural log transformed (Ln) of the 

number of malaria cases in the model. Second, Dicky-Fuller test 

was used to evaluate stationarity in the means of series. As the test 

showed stationarity in means (P=0.07), we did not apply any non-

seasonal differencing pass on data (d=0) but to adjust seasonality of 

malaria cases and meteorological variables, first order seasonally 

differencing was applied to the model (D=1).

  Third, we plotted autocorrelation function (ACF) and partial 

autocorrelation function (PACF) plots on stationary data to 

identify possible values of MA (q, Q) and AR (p, P) components, 

respectively. Fourth, we applied likelihood ratio test to estimate 

parameters of SARIMA model. We checked the goodness-of-fit of 

each model, by plotting ACF and PACF plots for residuals to check 

their normality, and using Ljung-box (Q) test for residuals to check 

whether they are white noise with mean of 0 and constant variance. 
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  In the next step, we incorporated meteorological variables into 

the final SARIMA model to check their ability to improve the 

predictive power. To do so, we first removed autocorrelation 

within each individual series via pre-whitening procedure in which 

SARIMA model was applied on each series of meteorological 

variables to remove their seasonal trend. Then, the cross-correlation 

between residuals of models was computed and climatic variables 

significantly correlated with the number of malaria cases were 

checked as potential covariates in multiple SARIMA model. 

Variance inflation factor >5 was considered as collinearity between 

climatic variables. To find the best fitted model, we compared R2, 

the Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) in different SARIMA models, where the highest R2 

and lowest AIC and BIC showed better fitness in the models.

  We finally predicted 12-month number of malaria cases during 

April 2018-March 2019 for selected SARIMA models and compared 

observed and out-of-sample predicted values. The root mean square 

error (RMSE) was computed for both training and validation data as 

an index for validity of predictions in the models. Smaller values of 

this index show better predictive power of the model. The root mean 

square error equals to: 

  
N
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N
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−
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  with Yt  as the observed values, Ŷt as the predicted values at time 

t, and N as the number of observations. We used STATA 12 (Stata 

Corp, College Station, TX, USA) for all statistical analyses and 

considered a two-sided P<0.05 as statistically significant.

3. Results

3.1. Malaria cases

  From April 2001 to March 2019, a total of 85 378 malaria cases 

including 60 589 indigenous and 24 789 imported cases were 

reported from Sistan and Baluchistan province. During this period, 

Plasmodium vivax and Plasmodium falciparum were the most 

common types of Plasmodium in the area (Appendix Figure 1). In 

addition to seasonal pattern, the disease showed a rising trend since 

2001 until 2009 with a peak in 2003, but it showed a downward 

trend from 2009 onward (Appendix Figure 2).

  The monthly distribution showed that the highest number of malaria 

cases occurred in October with 684 (139, 887) [median (Q1, Q3)] 

cases followed by September with median 648 (117, 912) [median 

(Q1, Q3)] cases, and the lowest number happened in February with 

median 25 (8, 35) [median (Q1, Q3)] cases per month. Transmission 

of malaria is possible in all seasons of the year, but most cases have 

occurred in summer and then in autumn, respectively (Figure 2).

Figure 1. Geographical location of the study area in the southeast of Iran.
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Figure 2. Boxplot of the number of malaria cases in different months 
from 2001 to 2018 in Sistan and Baluchistan province, Iran.
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3.2. The impact of climate on malaria

  Spearman correlation coefficients show that number of malaria 

cases was directly associated with average temperature, maximum 

and minimum temperature, wind speed and sunny hours (P<0.01). It 

was also inversely associated with accumulated rainfall, rainy days 

and relative humidity (P<0.01) (Appendix Table 1). 

  Figure 3A and 3B present the ACF and PACF plots using data from 

2001 to 2018. ACF suggested q≤2 and Q≤1 while PACF revealed 

that p≤1 and P≤2. 

  Various SARIMA models were assessed and the best-fitted 

univariate model was SARIMA (1,0,0)(1,1,1)12 (AIC=307.4, 

BIC=323.7, training RMSE=0.520, validation RMSE=0.484). Some 

selected SARIMA models are depicted in Table 1.

  Coefficients and statistics of the parameters of SARIMA (1,0,0)

(1,1,1)12 have been presented in Table 2 where first-order non-

seasonal and seasonal AR coefficients, and the first-order seasonal 

MA coefficient are significant (P<0.001).
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  The components of the best fitted SARIMA models for 

meteorological variables in pre-whitening phase are shown in 

Appendix Table 2.

  After cross-correlation analysis, we found average temperature 

with a 3-month lag and inverse number of rainy days with an 

8-month lag as the best predictors that can relatively improve the 

predictive performance of the univariate model. Table 3 revealed a 

non-significant reverse relation between mean temperature with a 3- 

month lag and the number of malaria cases, and a significant direct 

association between inverse number of rainy days with an 8-month 

lag and the occurrence of the disease. For identifying the best model 

for prediction, we compared the univariate model with multivariable 

models and SARIMA (1,0,0)(1,1,1)12 including mean temperature 

with a 3-month lag, which had lower RMSE (0.414), was selected as 

the final multiple model. The distribution of residuals of the model 

was normal (Appendix Figure 3) and Ljung-Box test confirmed 

Table 1. Comparison of five candidate univariable SARIMA models, with different values of p, P, q, and Q, for the number of malaria cases in the southeast 

of Iran (April 2001-March 2018).

Models R2 Ljung-Box test
AIC BIC Training RMSE& Validation RMSE#

Statistics P-value
SARIMA(1,0,0)(1,1,1)12 0.90 43.22 0.33 307.4 323.7 0.520 0.484
SARIMA(1,0,0)(2,1,1)12 0.90 41.10 0.42 308.6 328.2 0.519 0.504
SARIMA(1,0,0)(0,1,0)12 0.85 93.44 <0.001 380.6 390.4 0.641 0.770
SARIMA(2,0,0)(0,1,0)12 0.85 83.53 <0.001 379.8 392.8 0.636 0.751
SARIMA(1,0,1)(0,1,0)12 0.85 84.66 <0.001 379.8 392.8 0.636 0.755

AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion; RMSE: Root mean square error. &Calculated for predictions between April 2001 

and March 2018. #Calculated for 12-month predictions between April 2018 and March 2019.

Table 2. Coefficients and parameters of the SARIMA (1,0,0)(1,1,1)12 model to predict the number of malaria cases in the southeast of Iran (April 2001-

March 2018).

Parameters Coefficient Standard error 95% CI Z statistics P-value
Non seasonal AR (1) 0.721 0.528 0.618, 0.825 13.67 <0.001
Seasonal AR (1) 0.064 0.119 -0.170, 0.298 0.53 <0.001
Seasonal MA (1) -0.877 0.125 -1.124, -0.631 -6.98 <0.001
Constant -0.208 0.033 -0.273, -0.143 -6.27 <0.001
Sigma 0.502 0.026 0.450, 0.554 19.05 <0.001

SARIMA: Seasonal autoregressive integrated moving average. AR: Autoregressive coefficient. MA: Moving average coefficient.

Table 3. Characteristics of different multivariable SARIMA models including meteorological variables to predict the incidence of malaria in the southeast 

of Iran (April 2001 to March 2018).

Model Coefficient P-value AR (1) SAR (1) SMA (1) R2 Ljung-Box test portmanteau
AIC BIC

Training 

RMSE&

Validation 

RMSE#Statistics P-value

SARIMA(1,0,0)(1,1,1)12 - - 0.722 0.064 -0.877 0.90 43.22 0.33 307.4 323.7 0.520 0.484
SARIMA(1,0,0)(1,1,1)12 including:
  Temperature lag 3 months -0.002 6 0.19 0.740 0.055 -0.999 0.90 38.44 0.54 301.7 317.9 0.525 0.414
  1/Rainy days at lag 8 months  0.329 2 0.01 0.730 0.051 -1.000 0.90 44.53 0.28 303.5 323.1 0.511 0.579

AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion, RMSE: Root mean square error; AR: Autoregressive coefficient; SAR: Seasonal 

autoregressive coefficient. *Statistically significant (P-value<0.05). &Calculated for predictions from April 2001 to March 2018. #Calculated for 12-month 

prediction during April 2018-March 2019.

Table 4. Predicted numbers of malaria cases during April 2018-March 2019 in the southeast of Iran, calculated from two different SARIMA (p,d,q)

(P,D,Q)12 models.

Months Observed numbers
SARIMA(1,0,0) (1,1,1)12 SARIMA(1,0,0)(1,1,1)12+temperature with 3-month lag

Predicted number 95% CI Predicted number 95% CI
April 18    2     4.8 -     4.6 2.60, 8.15
May 18   13   13.0 3.32, 50.98   13.1   8.04, 21.44
June 18   12   17.4 8.13, 37.42   15.8   9.88, 25.56
July 18   12   16.7 7.32, 38.11   14.8   9.19, 24.03
August 18   11   23.5 9.52, 58.00   19.9 12.62, 31.53
September 18   21   38.5 12.72, 116.73   30.6 20.00, 46.94
October 18   27   39.6 12.47, 126.26   33.8 22.22, 51.47
November 18   26   29.5   5.88, 148.79   24.8 15.99, 38.65
December 18   18   10.2 1.53, 68.90     9.8   5.89, 16.43
January 19     0     3.0 0.85, 10.87     3.0 1.66, 5.55
February 19     2     2.6           0.94, 7.34     2.9 1.60, 5.37
March 19     4     3.0 0.84, 11.18     4.3 2.45, 7.74
Total 148 201.8 - 177.4 -
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that residuals are white noise with zero mean and constant variance 

(P=0.54). 

  The comparison between the predicted and observed monthly 

number of malaria cases of both univariate and multiple models 

are presented in Table 4. Figure 4 shows the observed numbers 

and predicted values for malaria cases from 2010 to 2018 and 

out-of-sample predictions in 2019 applying SARIMA (1,0,0)

(1,1,1)12+temperature with the 3-month-lag model. Finally, as 

illustrated in Appendix Figure 4, we predicted the number of malaria 

cases for the next Iranian year (April 2019-March 2020) in Sistan 

and Baluchistan province. We predicted that totally, about 174 cases 

of malaria would occur in this province during April 2019 to March 

2020. Among them, about eight cases would occur in first three 

months of 2020.

Figure 3. Autocorrelation (A) and partial autocorrelation (B) functions based on the seasonally differenced, in-transformed number of malaria cases from 2001 to 
2018 in Sistan and Baluchistan province, Iran; Autocorrelation suggests q≤2, Q≤1, and partial autocorrelation suggests p≤1 and P≤2.
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Figure 4. (A) observed and predicted number of malaria cases from 2010 to 2019, (B) out-of-sample predictions for April 2018-March 2019 in the 
southeast of Iran, applying SARIMA(1,0,0)(1,1,1)12+temperature with 3-month lag.
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4. Discussion

  The results of this study showed that malaria in Sistan and 

Baluchistan province had a significant decreasing trend during 2001 

to 2019, which could be due to improving preventive interventions 

such as the distribution of insecticide-treated mosquito nets and 

indoor and outdoor spraying[27], early detection tools, especially 

the use of rapid diagnostic tests, effective vector control, and proper 

implementation of modern malaria control programs[7]. 

  Our study showed that the number of autochthonous malaria cases 

in Sistan and Baluchistan province starts to increase from May 

and reaches its peak in September and October, and then declines 

and reaches its lowest level in February. The main malaria vectors 

in Sistan and Baluchistan province are primarily Anopheles (An.) 

culicifacies and An. stephensi[28]. An. culicifacies has two main activity 

peaks in Sistan and Baluchistan province; the main peak occurs 

in June and the second in October[29,30]. It takes two weeks for 

Anopheles mosquitoes to complete their life cycle[31]. Incubation 

period of Plasmodium parasite may last 8-22 days in the mosquito’s 

body[32] and 12-14 days in the human host[33]. It seems that during 

the first peak, Anopheles mosquitoes have ample time to generate a 

large population of infectious vectors, leading to an increase in the 

number of malaria cases in the following months. 

  This study also indicated that the occurrence of the disease was 

possible in all seasons of the year, but the least transmission occurred 

in winter. It confirms that the main vectors of malaria in this area are 

active almost all year long, and are able to transmit the disease[29,31-33].

  In this study, SARIMA (1,0,0)(1,1,1)12 model as univariate and 

SARIMA (1,0,0)(1,1,1)12 including mean temperature with a 

3-month lag as multivariable model were selected for the prediction 

of the number of malaria cases in Sistan and Baluchistan province 

while the latter had predictions closer to the observed number of 

malaria cases. It seems that the model could provide an acceptable 

prediction in Sistan and Baluchistan province.

   Ostovar et al. in Hormozgan province, southern Iran[23], Breit et 
al. in Sri Lanka[34] and Abeku et al. in Ethiopia[35] used ARIMA 

model for predicting malaria cases. Ebhuoma et al. in Kwazula-

Natal, South Africa, suggested the SARIMA (0,1,1)(0,1,1)12 as the 

best model for predicting malaria[36]. Wangdi et al. in Bhutan[31] and 

Kumar et al. in New Delhi[16] selected ARIMA (2,1,1)(0,1,1)12 and 

ARIMA (0,1,1) (0,1,0)12 to forecast malaria, respectively.

  In our study, mean temperature with a 3-month lag showed a 

reverse relationship with the number of malaria cases. The optimum 

temperature for Anopheles mosquitoes is 20 ℃ to 30 ℃. At these 

temperatures, the Anopheles can live long enough to acquire and 

transmit the parasite[37]. Increasing the temperature to above 30 ℃ 

has negative effects on the mosquitoes' growth and reduces the 

propagation rate of Plasmodium in the vector's body[38], leading 

to reduced ability of mosquitoes to transmit the disease, which 

decreases the number of malaria cases consequently.

  In the study of Ostovar et al. in Hormozgan province, the 

temperature with a 2-month lag had a negative relationship with 

malaria cases[23], while Mohammadkhani et al. in Sistan and 

Baluchistan province[26] and Haghdoost et al. in Kahnooj in the 

southeast of Iran[39] reported that the temperature with a 1-month lag 

was directly related to malaria cases. This delay is reported as one 

month in China[38,40] and Bhutan[31], and two months in Tibet[41].

  Applying a relatively long period of time and including a variety of 

climatic variables in the prediction model of the disease were among 

the strengths of the present study. On the other hand, we were unable 

to include some factors such as socio-economic factors, population 

movement, immunity status, sanitation condition, implementation of    

malaria control programs and ecological factors in the model which 

could be considered in future studies about this disease.

  Malaria showed a decreasing trend in the southeast of Iran as one of 

the traditional endemic areas of the disease in the region. SARIMA 

time series model including climatic variables was able to forecast 

the number of malaria cases with relatively good accuracy in this 

region. 
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