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Abstract: This paper introduces the location choice under spillovers game: A number of 
firms choose from among a number of alternative locations. A firm’s payoff at some 
location is the sum of two factors: Its location-specific idiosyncratic payoff; and the 
positive spillover it receives, which is a function of the number of firms choosing the 
same location. The spillover function is location-specific and monotonically increasing. 
This game form can be viewed as an extension of the classic “battle of sexes” game. It 
can also be used to model real-life game-theoretic situations with network effects, such 
as when app users choose from alternative social media or instant messaging apps. In 
our main result, we show that the location choice under spillovers game is a potential 
game, and hence, it always admits a Nash equilibrium in pure strategies. We also show 
that: A Nash equilibrium outcome need not be Pareto efficient. An outcome that is 
Pareto efficient need not be a Nash equilibrium. And a Nash equilibrium is not 
necessarily a strong equilibrium. 
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1. Introduction 

The spatial huddling of firms in the same business is a common phenomenon. New York City and 
London are home to many financial businesses. Silicon Valley in the U.S. is home to the world's largest high-
tech corporations. Hollywood, which serves as the center of the U.S. film industry, is home to many film 
studios. In a similar vein, small businesses in a city also often spatially come together and serve from the 
same location. Furniture stores come together in furniture bazaars, textile firms operate from textile districts, 
and auto mechanics congregate in auto industrial zones. 

Although laws and regulations may play a role, the force that drives the huddling of the firms in the 
same business is often positive spillovers. In Silicon Valley, high-tech firms learn from one another—for 
instance, when employees switch between jobs. In Hollywood, film producers benefit from having access to 
various film sets and a multitude of sector employees of all sorts. And if we take the furniture bazaar example: 
People who want to buy furniture value variety. In a furniture bazaar, dozens of furniture stores are huddled 
together, and buyers can see a great many choices in a short while and without incurring travel expenses to 
multiple locations. Therefore, a furniture bazaar acts as a “magnet” for furniture buyers, and thus it benefits 
all the stores in it. 
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 With above applications in mind, we introduce in this paper a game form that studies the firms’ 
location choices under spillovers. Specifically, we consider the following game form: There are 𝑛 firms that 
choose from among 𝑚 alternative locations. Firms’ choices are driven by two factors. First, due to positive 
spillovers, firms value “huddling”: If 𝑠 firms choose location 𝑗, each of these firms receives a payoff of 𝑓𝑗(𝑠) 

units, where 𝑓𝑗 is the monotonic positive spillover function associated with location 𝑗. Second, firms have 

idiosyncratic location preferences: When firm 𝑖 chooses location 𝑗, it receives an idiosyncratic location payoff 
of 𝑥𝑖𝑗  units. Notice that all firms would huddle in one location if there were no idiosyncratic location payoffs. 

However, due to the idiosyncratic location payoffs, firms may spread over to multiple locations. 

 Although we frame it as a game of firms’ location choices under spillovers, our game form can also 
be used to model some other real-life scenarios. For instance, imagine potential app users choosing from 
several related computer applications. It may be that the users choose from alternative social media 
applications, such as Twitter, Facebook, and Instagram. There are clearly network effects associated with 
social media applications since an app becomes more appealing to its users if it has more users. Indeed, if 
there were no idiosyncrasy in app preferences, users would be “huddling together” in a single app. But social 
media applications are not perfect substitutes, and there is heterogeneity in preferences across users and, 
for the same user, over time. Therefore, the market sustains multiple social media apps. Notice that a similar 
situation is at play when potential users choose from alternative instant messaging apps, such as WhatsApp, 
Messenger, and Viber. 

 It is worth mentioning that our game form can be viewed as the “battle of sexes” game extended to 
more than two players.  Below, in Example 1, we present an illustration of the battle of sexes game, and we 
show that it can be obtained as an instance of the location choice under spillovers game. But one caution is 
in point: In Example 1, in the payoff matrix, if the payoffs (1,1) on the bottom-left corner are replaced by 
(0,0), the game may still be viewed as a “battle of sexes” situation, but it cannot be obtained as an instance 
of or our game form. In other words, the battle of sexes has no one standard formulation in the literature, 
and our game form should be viewed as an extension of its certain formulations. 

Example 1: “Battle of Sexes” as a location choice under spillovers game 

  Woman 

  Opera Football 

Man 
Opera 2,3 0,0 

Football 1,1 3,2 

  

Consider the “battle of sexes” game above: A man and a woman (husband and wife) are to choose 
which event to attend on a Sunday evening. They do not like to be separated, but their favorite events are 
not the same. The man prefers the football match over the opera concert and vice versa for the woman. This 
game can be expressed as an instance of the location choice under spillovers game as follows: 

• Each person’s payoff depends on the kind of event (location) he or she attends and if he or she 
attends the event alone or with his or her partner. 

• The man gets 0 units of payoff if he attends the opera concert and 1 unit of payoff if he attends 
the football match. 

• The woman gets 1 unit of payoff if she attends the opera concert and 0 units of payoff if she 
attends the football match. 
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• Each person gets an additional 2 units of payoff if he or she attends an event with his or her 
partner. 

There are some parallels between our game form and congestion games, introduced by Rosenthal 
(1973). Like in our setting, in a congestion game, there is a set of players (𝑁) and a set of alternative facilities 
(𝑀), and players choose from these facilities. Also, as in our setting, each player’s payoff at some facility is a 
function of the total number of users of that facility—these functions are called “congestion cost functions.” 
In a congestion game, players choose facilities to minimize their incurred congestion costs. In two respects, 
the congestion game is more general than our game form: 

• A player’s set of admissible actions is an a priori given set of subsets of 𝑀. Therefore, in a 
congestion game, players can choose multiple facilities and they can be restricted in their 
choices—they can only choose from the a priori given player-specific combinations of facilities. 

• There is no restriction on congestion cost functions. The congestion cost functions can be 
monotonically increasing/decreasing or non-monotonic. Notice that the huddling incentive can 
be modeled in a congestion game if the congestion functions are chosen to be monotonically 
decreasing. 

But our game form differs from a congestion game in that, in our game form, players (firms) also 
have idiosyncratic preferences over facilities (locations). The theoretical findings of our paper are as follows: 

In his paper, Rosenthal (1973) proved that every congestion game possesses a Nash equilibrium in 
pure strategies. He proved this result by the potential function argument. In a similar vein, in our main result, 
Theorem 1, we show that every location choice under spillovers game possesses a Nash equilibrium in pure 
strategies. Our proof technique is similar to the proof technique in Rosenthal (1973). We show that our game 
form admits a potential function, which implies the existence result. Since the location choice under 
spillovers is a finite potential game, a learning process based on better-response dynamics converges to a 
pure-strategy Nash equilibrium. 

We then turn our attention to the theoretical properties of the pure-strategy Nash equilibrium 
outcomes. A natural question of interest is whether a Nash equilibrium outcome is always Pareto efficient. It 
turns out that it may not be. In Proposition 1, we show that a Nash equilibrium outcome need not be Pareto 
efficient, and a Pareto efficient outcome need not be a Nash equilibrium. 

In our game form, each firm chooses a single location, and the location spillover functions are 
monotonically increasing. In a study related to ours, Holzman and Law-Yone (1997) considered the special 
case of congestion games under which, similar to in our setting, each player chooses a single facility, and 
congestion functions are monotonically increasing. Under these assumptions, they showed that the set of 
Nash equilibria coincides with the set of strong equilibria. Their result, however, does not hold in our setting. 
In Proposition 2, we show that in a location choice under spillovers game, a Nash equilibrium may not be a 
strong equilibrium. 

The rest of the paper is organized as follows. Section 2 briefly mentions the related literature. Section 
3 introduces the model (our game form). Section 4 introduces our notions. Section 5 presents our results. 
Section 6 concludes. 

2. Related Literature 

 As explained above, our location choice under spillovers game relates to congestion games. 
Rosenthal (1973) introduced this game form, and he proved that in a congestion game, a pure-strategy Nash 
equilibrium always exists. A singleton congestion game is a congestion game in which each player is restricted 
to choosing a single facility. In singleton congestion games, Holzman and Law-Yone (1997) showed that if 
congestion functions are monotonic, the set of Nash equilibria coincides with the set of strong equilibria. 
Milchtaich (1996) considered the extension of congestion games in which, at facilities, players face player-
specific congestion functions. In this setting, he showed that a Nash equilibrium always exists if each player 
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is restricted to choosing a single facility. There are also computational studies on congestion games in the 
literature. For studies on the price of anarchy, see Roughgarden and Tardos (2002), Christodoulou and 
Koutsoupias (2005), and Awerbuch et al. (2013). For studies on the computation of a Nash equilibrium, see 
Caragiannis et al. (2011), Chien and Sinclair (2011), and Harks and Timmermans (2017). For other studies on 
congestion games and its special instances, see Feldman and Tennenholtz (2010), Anshelevich et al. (2013), 
and Caskurlu et al. (2020a, 2020b, 2021). 

As in our paper, some studies in the literature show the existence of pure-strategy Nash equilibrium in 
various game forms. One game form that always admits a pure-strategy Nash equilibrium is congestion 
games, as shown by Rosenthal (1973). For other studies on the existence of pure-strategy Nash equilibrium 
in different game forms, see Tasnádi (1999), Holard (2000), Lu (2007), Yamazaki (2008), Noguchi (2009), and 
Mallick (2011). 

3. Model 

The location choice under spillovers game 𝐺 is a four-tuple 〈𝑁,𝑀, 𝑥, 𝑓〉: 

• 𝑁 = {1,2,⋯ , 𝑛} is a set of firms (players). 

• 𝑀 = {1,2,⋯ ,𝑚} is a set of locations (pure strategies). 

• 𝑥 = (𝑥𝑖𝑗)𝑖∈𝑁,𝑗∈𝑀 is the matrix for firms’ idiosyncratic location payoffs. 

• 𝑓 = (𝑓𝑗)𝑗∈𝑀 is the vector for the monotonic location spillover functions. 

In this game, the players are the firms, each firm’s strategy space is the set of locations, and each 
firm’s goal is to maximize its payoff. Firm 𝑖’s payoff when it chooses location 𝑗 is the sum of two factors: its 
idiosyncratic location payoff at location 𝑗, denoted by 𝑥𝑖𝑗. And the positive spillover to firm 𝑖 at location 𝑗, 

equal to 𝑓𝑗(𝑠), where 𝑓𝑗 is the spillover function at location 𝑗 and 𝑠 is the number of firms that choose location 

𝑗. We assume that the spillover function 𝑓𝑗 is monotonic, i.e., for 𝑠1 > 𝑠2, 𝑓𝑗(𝑠1) ≥ 𝑓𝑗(𝑠2). 

For the sake of shortness, when  �̅� ⊆ 𝑁 is the subset of firms that choose location 𝑗, we use 𝑓𝑗(�̅�) 

(instead of 𝑓𝑗(|�̅�|) to denote the positive spillover to a firm choosing location 𝑗. Thus, if �̅� is the set of firms 

that choose location 𝑗, and if 𝑖 ∈ �̅�, then the firm 𝑖’s payoff is equal to 𝑥𝑖𝑗 + 𝑓𝑗(�̅�). 

 An allocation 𝜇:𝑁 → 𝑀 is a function that maps each firm to its location choice. Let ℳ denote the 
domain of allocations. Note that an allocation corresponds to a strategy profile since it fully specifies the 
firms’ location choices. 

 Abusing notation, let 𝜇𝑗  denote the set of firms that choose location 𝑗 at allocation 𝜇. That is, 𝜇𝑗 =
{𝑖 ∈ 𝑁|𝜇(𝑖) = 𝑗}. 

 Let 𝜋𝑖(𝜇) denote firm 𝑖’s payoff at allocation 𝜇. That is, 𝜋𝑖(𝜇) = 𝑥𝑖𝑗 + 𝑓𝑗(𝜇𝑗) where 𝑗 = 𝜇(𝑖). 

4. Notions 

 A coalition 𝐶 is a non-empty subset of firms, i.e., 𝐶 ⊆ 𝑁 and 𝐶 ≠ ∅. 

 A coalition 𝐶 blocks an allocation 𝜇 if, at 𝜇, a deviation by coalition 𝐶 leads to an allocation under 
which every coalition member is better off. In formal terms: A coalition 𝐶 blocks an allocation 𝜇 if there 
exists �̅� ∈ ℳ such that for all 𝑖 ∈ 𝑁\𝐶,  �̅�(𝑖) = 𝜇(𝑖), and for all 𝑖 ∈ 𝐶, 𝜋𝑖(�̅�) > 𝜋𝑖(𝜇). In the definition, note 
that, at 𝜇, when coalition members deviate, the induced allocation is �̅�, and at �̅�, every coalition member’s 
payoff is higher. 

 An allocation 𝜇 is a Nash equilibrium if there exists no 𝑖 ∈ 𝑁 such that {𝑖} blocks 𝜇. In words, if an 
allocation is a Nash equilibrium, it means a deviation by a firm never leads to an increase in the firm’s payoff. 
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 An allocation 𝜇 is a strong equilibrium if there exists no coalition 𝐶 such that 𝐶 blocks 𝜇. In words, if 
an allocation is a strong equilibrium, it means no deviation by a subset of firms leads to an increase in the 
payoff of each of these firms. 

 Let 𝑁𝐸(𝐺) ⊆ ℳ and 𝑆𝐸(𝐺) ⊆ ℳ, denote, in order, the sets of Nash equilibrium allocations and 
strong equilibrium allocations. By definition, 𝑁𝐸(𝐺) ⊆ 𝑆𝐸(𝐺). 

 An allocation �̅� Pareto dominates another allocation 𝜇 if under �̅�, every firm is at least as well off, 
and at least one firm is strictly better off. In more formal terms, the allocation �̅� Pareto dominates 𝜇 if for all 
𝑖 ∈ 𝑁, 𝜋𝑖(�̅�) ≥ 𝜋𝑖(𝜇), and for some 𝑖 ∈ 𝑁, 𝜋𝑖(�̅�) > 𝜋𝑖(𝜇). 

 An allocation 𝜇 is Pareto efficient if there exists no allocation that Pareto dominates 𝜇. 

 Let 𝑃𝐸(𝐺) ⊆ ℳ denote the set of allocations that are Pareto efficient. 

5. Results 

 In our main result (Theorem 1), we show that the location choice under spillovers game is a “potential 
game.” Consequently, in this game form, the set of Nash equilibria in pure strategies is non-empty and 
coincides with the local optima of the associated potential function. Since our main result builds on the 
potential function argument, some background information is useful. 

 The concept of potential function is first mentioned in Monderer and Shapley (1996). But even if they 
coined this term, earlier, without calling it, Rosenthal (1973) used a potential function to show that every 
congestion game possesses a Nash equilibrium in pure strategies. In their paper, Monderer and Shapley 
(1996) introduced several notions of potential function. The one used in our paper is the “exact potential 
function,” which we define next. 

 Consider a game in strategic form with 𝑛 players. Let 𝑠 = (𝑠1, 𝑠2, ⋯ , 𝑠𝑛) be a strategy profile. Let 𝑆 =
𝑆1 × 𝑆2 ×⋯× 𝑆𝑛 be the domain of strategy profiles. Let 𝑢𝑖(𝑠) be player 𝑖’s payoff under the strategy profile 
𝑠. 

A function 𝜑: 𝑆 → ℝ is an (exact) potential function if for every 𝑠 ∈ 𝑆, �̅�𝑖 ∈ 𝑆𝑖, 

𝜑(�̅�𝑖, 𝑠−𝑖) − 𝜑(𝑠) = 𝑢𝑖(�̅�𝑖, 𝑠−𝑖) − 𝑢𝑖(𝑠). 

 A potential game is a game that admits a potential function. 

 In words: 𝜑 is a potential function if a player’s deviation at a strategy profile leads to an equal change 
in the value of the potential function and the deviating player’s payoff. 

For a strategy profile 𝑠, its “neighborhood” consists of strategy profiles that vary from 𝑠 in at most 
one player’s strategy. That is, the neighborhood of 𝑠 consists of strategy profiles of the form (�̅�𝑖, 𝑠−𝑖), where 
�̅�𝑖 ∈ 𝑆𝑖 for some player 𝑖. In a potential game, the set of Nash equilibria coincides with the set of “local 
optima” of the potential function. By a local optimum, we mean a strategy profile 𝑠 such that in the 
neighborhood of 𝑠, the potential function’s value is maximized at 𝑠. To see this, note that: 

• If 𝑠 is a Nash equilibrium, then, by the definition of Nash equilibrium, for every strategy profile 
(�̅�𝑖, 𝑠−𝑖) in the neighborhood of 𝑠, 𝑢𝑖(�̅�𝑖, 𝑠−𝑖) − 𝑢𝑖(𝑠) ≤ 0. Then, by the definition of the potential 
function 𝜑, 𝜑𝑖(�̅�𝑖 , 𝑠−𝑖) − 𝜑𝑖(𝑠) ≤ 0. But then, by definition, 𝑠 is a local optimum of the potential 
function 𝜑. 

• If 𝑠 is a local optimum of the potential function 𝜑, then, by definition of local optimum, for every 
strategy profile (�̅�𝑖, 𝑠−𝑖) in the neighborhood of 𝑠, 𝜑𝑖(𝑠) − 𝜑𝑖(�̅�𝑖 , 𝑠−𝑖) ≥ 0. Then, by the definition 
of the potential function 𝜑, 𝑢𝑖(�̅�𝑖 , 𝑠−𝑖) − 𝑢𝑖(𝑠) ≤ 0. But then, by definition, 𝑠 is a Nash 
equilibrium. 

In a potential game, if we begin with an arbitrary strategy profile, whenever a player takes a deviation 
that makes the player better off, the value of the potential function increases. Therefore, in a finite potential 
game, the players’ myopic better-response dynamics always converge to a Nash equilibrium outcome. For 
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further discussions on better-response dynamics in potential games, see Monderer and Shapley (1996) and 
Voorneveld (2000). 

We are now ready to present the main result of our paper. 

Theorem 1: The location choice under spillovers game is a potential game. Therefore, the set of Nash 
equilibria in pure strategies coincides with the local optima of the associated potential function. Furthermore, 
since the game is finite, the set of Nash equilibria in pure strategies is non-empty. 

Proof 

For some allocation 𝜇, let: 

• 𝑥𝑗(𝜇𝑗) = ∑ 𝑥𝑖𝑗𝑖∈𝜇𝑗  

• 𝐹𝑗(𝜇𝑗) = 𝑓𝑗(0) + 𝑓𝑗(1) + ⋯+ 𝑓𝑗(𝜇𝑗) 

Above, 𝑥𝑗(𝜇𝑗) is the sum of the idiosyncratic location payoffs to firms that choose location 𝑗 at 𝜇. But 

the function 𝐹𝑗(𝜇𝑗) does not have a meaningful interpretation. In particular, it is not equal the sum of positive 

spillovers to firms that choose location 𝑗 at 𝜇. (That sum would be equal to 𝑓𝑗(𝜇𝑗) ⋅ |𝜇𝑗|.) The function 𝐹𝑗(𝜇𝑗) 

is simply an artifact of definition that we will use in the definition of the game’s potential function. 

A potential function maps players’ strategies to real numbers. In a location choice under spillovers 
game, an allocation corresponds to a strategy profile since it specifies every firm’s location choice. Therefore, 
in this game form, a potential function should map allocations to real numbers. 

Let the function 𝜑:ℳ → ℝ be defined as follows: 𝜑(𝜇) = ∑ 𝜑𝑗(𝜇)𝑗∈𝑀  where 𝜑𝑗(𝜇) = 𝑥𝑗(𝜇𝑗) +

𝐹𝑗(𝜇𝑗). 

We will show that 𝜑 is a potential function of the location choice under spillovers game. To show 
this, we will show that a deviation by a firm at some allocation leads to an equal change in the function’s 
value and the deviating firm’s payoff.  

At allocation 𝜇, let firm 𝑖 deviate from location 𝑘 to 𝑙. Let �̅� be the allocation induced. Then, firm 𝑖’s 
payoff changes from 𝜋𝑖(𝜇) = 𝑥𝑖𝑘 + 𝑓𝑘(𝜇𝑘) to 𝜋𝑙(�̅�) = 𝑥𝑖𝑙 + 𝑓𝑙(�̅�𝑙). Thus: 

𝜋𝑖(�̅�) − 𝜋𝑖(𝜇) = (𝑥𝑖𝑙 + 𝑓𝑙(�̅�𝑙)) − (𝑥𝑖𝑘 + 𝑓𝑘(𝜇𝑘)) 

The change in 𝜑’s value is 𝜑(�̅�) − 𝜑(𝜇) = ∑ 𝜑𝑗(�̅�)𝑗∈𝑀 −∑ 𝜑𝑗(𝜇)𝑗∈𝑀 . For 𝑗 ∉ {𝑘, 𝑙}, note that 𝜇𝑗 =

�̅�𝑗. Then, for 𝑗 ∉ {𝑘, 𝑙}, 𝜑𝑗(𝜇) = 𝜑𝑗(�̅�) = 𝑥𝑗(𝜇𝑗) + 𝐹𝑗(𝜇𝑗). Thus, we get: 

𝜑(�̅�) − 𝜑(𝜇) = (𝜑𝑘(�̅�) + 𝜑𝑙(�̅�)) − (𝜑𝑘(𝜇) + 𝜑𝑙(𝜇)) 

= (𝜑𝑘(�̅�) − 𝜑𝑘(𝜇)) + (𝜑𝑙(�̅�) − 𝜑𝑙(𝜇)) 

When we switch from 𝜇 to �̅�, everything remains the same at locations 𝑘 and 𝑙, with the exception 
that firm 𝑖 is dropped from location 𝑘 and added to location 𝑙. Then, using the definition of the function 𝜑𝑗, 

we obtain the following: 

𝜑𝑘(�̅�) − 𝜑𝑘(𝜇) = −𝑥𝑖𝑘 − 𝑓𝑘(𝜇𝑘) and 𝜑𝑙(�̅�) − 𝜑𝑙(𝜇) = 𝑥𝑖𝑙 + 𝑓𝑙(�̅�𝑙) 

Thus: 

𝜑(�̅�) − 𝜑(𝜇) = (𝑥𝑖𝑙 + 𝑓𝑙(�̅�𝑙)) − (𝑥𝑖𝑘 + 𝑓𝑘(𝜇𝑘)) 

Therefore, we found that: 

𝜑(�̅�) − 𝜑(𝜇) = 𝜋𝑖(�̅�) − 𝜋𝑖(𝜇) 

As desired, we found that a deviation by a firm leads to an equal change in the value of the function 
𝜑 and the deviating firm’s payoff. This shows that the location choice under spillovers game is a potential 
game, and the function 𝜑 is its potential function. Therefore, the set of Nash equilibria in pure strategies 
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coincides with the local optima of the potential function. Since the game is finite, the set of Nash equilibria 
in pure strategies is also non-empty.  

Theorem 1 shows that a location choice under spillovers game always admits a Nash equilibrium 
outcome. A natural question that ensues is whether a Nash equilibrium outcome is always Pareto efficient. 
The answer turns out to be negative. The converse statement is also not true. We present this result in 
Proposition 1. 

Proposition 1: In a location choice under spillovers game, a Nash equilibrium outcome need not be 
Pareto efficient, and an outcome that is Pareto efficient need not be a Nash equilibrium, i.e., we may have 
𝑁𝐸(𝐺) ∖ 𝑃𝐸(𝐺) ≠ ∅ and 𝑃𝐸(𝐺) ∖ 𝑁𝐸(𝐺) ≠ ∅. 

Proof 

For 𝑁𝐸(𝐺) ∖ 𝑃𝐸(𝐺) ≠ ∅, see Example 2. For 𝑃𝐸(𝐺) ∖ 𝑁𝐸(𝐺) ≠ ∅, see Example 3.  

Example 2 

Suppose that there are two firms and two locations and both firms prefer location 1 to 2. Suppose 
that there is a sufficiently large positive spillover when the two firms are together. Thus, both firms prefer to 
be in the same location, even if it means they are at location 2. For specificity, we have: 

• 𝑥11 = 𝑥21 = 1 and 𝑥12 = 𝑥22 = 0 

• 𝑓𝑗(0) = 0, 𝑓𝑗(1) = 1, 𝑓𝑗(2) = 100 for 𝑗 = 1,2 

Consider these two allocations: 

• �̅� such that �̅�(1) = �̅�(2) = 1 

• 𝜇 such that 𝜇(1) = 𝜇(2) = 2 

The allocation 𝜇 is a Nash equilibrium: if a single firm deviates to location 1, its payoff decreases from 
100 to 2. But 𝜇 is not Pareto efficient: �̅� Pareto dominates 𝜇.  

Example 3 

Suppose that there are two firms and two locations, firm 1 prefers location 1 to 2, and firm 2 prefers 
location 2 to 1. Suppose that for each firm, the idiosyncratic payoff at its favorite location is sufficiently high 
so that the firm prefers to be at its favorite location, even if it will be alone there. For specificity, consider the 
following parameterization of the game: 

• 𝑥11 = 100, 𝑥12 = 0, 𝑥21 = 0, 𝑥22 = 100 

• 𝑓𝑗(0) = 0, 𝑓𝑗(1) = 1, 𝑓𝑗(2) = 2 for 𝑗 = 1,2 

Consider the allocation 𝜇 such that 𝜇(1) = 𝜇(2) = 1. The allocation 𝜇 is Pareto efficient because, at 
any other allocation, firm 1’s payoff is lower. But 𝜇 is not a Nash equilibrium because, at 𝜇, if firm 2 deviates 
to location 2, its payoff increases from 2 to 101.  

Holzman and Law-Yone (1997) considered a game form that has some parallels to our location choice 
under spillovers game. As in our setting, each player chooses a facility from a subset of alternative facilities. 
But unlike in our setting, players suffer when they come together. Facilities chosen by too many players 
become “congested” and less valuable to users. As in our setting, they study this game form under the 
monotonicity assumption. They show that when congestion cost functions are monotonic, the set of Nash 
equilibria coincides with the set of strong equilibria. In Proposition 2, we show that this result does not hold 
in our setting. 
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Proposition 2: In a location choice under spillovers game, a Nash equilibrium may not be a strong 
equilibrium, i.e., we may have 𝑁𝐸(𝐺) ∖ 𝑆𝐸(𝐺) ≠ ∅. 

Proof 

Consider the allocations 𝜇 and �̅� in Example 2. As explained there, 𝜇 is a Nash equilibrium. But notice 
that the coalition {1,2} blocks 𝜇: when firms 1 and 2 both deviate to location 1, the allocation induced is �̅�, 
and both firms’ payoffs are higher at �̅�. Thus, the allocation 𝜇 is a Nash equilibrium but not a strong 
equilibrium.  

6. Conclusion 

In this paper, we introduced the location choice under spillovers game. In this game form, a number 
of firms choose from a number of alternative locations, and each firm’s payoff at some location is the sum of 
the firm’s location-specific idiosyncratic payoff and the spillover the firm receives at that location. This game 
form is similar to a congestion game since the payoff of a player (firm) at some facility (location) is a function 
of the number of players that choose the facility. But unlike in a congestion game, a player’s payoff at some 
facility also includes the player’s location-specific idiosyncratic payoff. 

In our main result, we show that the location choice under spillovers is a potential game. Thus, there 
always exists a Nash equilibrium in pure strategies. Since the game is finite, a process based on better-
response dynamics always converges to a pure-strategy Nash equilibrium. In other words, beginning with 
some random allocation, if firms take payoff-increasing deviations one at a time, the process ultimately yields 
a Nash equilibrium outcome. We also showed some drawbacks associated with a Nash equilibrium. In 
particular, we showed that a Nash equilibrium may not be Pareto efficient or a strong equilibrium. 

 Our findings have the following policy consequences: On one hand, the fact that a process based on 
the better-response dynamics converges to a pure-strategy Nash equilibrium indicates that a stable spatial 
configuration of firms can be attained in a free market, without any guidance from the government. On the 
other hand, the fact that not all Nash equilibria are Pareto efficient hints that government interference may 
be useful to achieve superior equilibrium outcomes. For instance, if doing so is efficient, the government may 
incentivize firms in the defense industry to congregate in a particular region of the country or firms in the 
textile industry to congregate in a specific district of a city. 

  In a congestion game, when each player chooses a single facility, Milchtaich (1996) showed that a 
pure-strategy Nash equilibrium always exists even if players face player-specific congestion functions at 
facilities. One open research question is whether the same result holds in our setting. That is, future research 
may explore whether the existence of a pure-strategy Nash equilibrium is guaranteed if at some location 
firms face firm-specific spillover functions. 
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