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Transport parameters of soluble chemicals through soils are needed to assess the 
pollution risks of soil and groundwater resources. But, it is time consuming, laborious, 
expensive and, practically, impossible to experimentally measure such parameters for a 
wide range of solutes and soil types. So, indirect estimate of the parameters by pedo-
transfer function is becoming popular. The aim of this study was to develop and evaluate 
pedo-transfer functions (PTFs) for solute-transport parameters by multiple linear 
regression (MLR) analysis. For this, transport parameters of three heavy metal 
/metalloid compounds (NaAsO2, Pb(NO3)2, Cd(NO3)2), a pesticide (carbendazim) and an 
inert salt (CaCl2) through 14 agricultural soils of Bangladesh were determined. The 
transport experiments were done in repacked soil columns under unsaturated steady-
state water flow conditions. Breakthrough data of the solutes were measured with time-
domain reflectometry (TDR), and velocity (V), dispersion coefficient (D) and retardation 
factor (R) of the solutes were determined by analyzing the data by a transfer-function 
method. Bulk density (), organic carbon (OC) content, clay (C) content, pH, median grain 
diameter (D50) and uniformity coefficient (Cu) of the soils were determined. Regression 
models for V, D and R were developed with , OC, C, pH, D50 and Cu as the input variables. 
Bulk density and clay content were found the most sensitive input variables to the MLR 
models. The MLR models fairly predicted V, D and R, and thus provide a way of 
significantly enhancing prediction of reactive solute transport through agricultural soils. 

 Keywords: Soluble chemicals, soil properties, solute movement, indirect estimate. 
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Introduction 

Pollution of agricultural soils by heavy metals and pesticide residues occurs through the application of 
chemical fertilizers, especially phosphate fertilizers, and pesticides. The residues of these chemicals 
contaminate the soil and water (both surface and groundwater), enter the food chain and cause threat to 
human and animal health. Industrial effluents and irrigation with wastewater further degrade soil and water 
quality. The characterization of soluble-chemical transport through soils is an important aspect to assess the 
pollution of soil and groundwater resources (Porro et al., 1993). Usually, simulation models are used to 
quantify solute transport through subsurface as tools to implement improved agricultural management. 
Solute-transport parameters, such as velocity of transport, dispersion coefficient, dispersivity and 
retardation factor, are among the most crucial inputs for the simulation models. Success of these models 
depends on our ability to properly quantify the input solute-transport parameters. 
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The estimation of solute-transport parameters in soils is generally done by fitting measured breakthrough 
curves (BTC) of solutes to analytical solutions of the convection-dispersion equation. BTCs are constructed 
with the concentrations of effluent or a proxy measurement of concentration like TDR-measured electrical 
conductivity from leaching experiments. Such measurements are however time consuming, laborious, 
expensive and, practically, impossible to obtain BTCs for a wide range of solutes and soil types to sample 
temporal and spatial variations. So, indirect approaches are needed to predict solute-transport parameters 
with pedo-transfer functions (PTFs), which use basic soil properties that are often routinely available from 
soil survey information (Bouma, 1989). The general purpose of developing PTFs is to establish predictive 
models using databases of soil properties, which contain suitable predictors (basic soil properties) and 
desired predictands (estimated less available soil properties). 

Although widely used to predict unsaturated hydraulic properties of soils (e.g., Vereecken, 1992; Gonçalves 
et al., 1997), PTFs are yet not well-developed and very familiar to predict solute-transport parameters. 
Recent developments in this field include parameterizations of solute transport, heat exchange, soil 
respiration, organic carbon content, root density and water uptake by vegetation (Van Looy et al., 2017). 
Since it is difficult to relate and compare the physical meaning of specific model parameters, there are only 
limited PTFs for predicting solute-transport parameters from basic soil characteristics. Several studies on 
PTFs for adsorption isotherm parameters mostly concern contaminants such as heavy metals (e.g., Horn et 
al., 2006) or excess pesticides (e.g., Kodešová et al., 2011; Moeys et al., 2011) and fertilizers (e.g., Achat et al., 
2016). All these studies include soil organic carbon content as a predictor. Soil pH and clay content were 
reported as the other common predictors for PTFs of adsorption properties. Perfect et al. (2002) predicted 
dispersivity using PTFs across a range of soil textures and could explain 50% of its total variation by the 
parameters of soil-water retention curves using step-wise multiple regressions. Alibuyog (2007), by using 
PTFs from multiple linear regressions, showed great potential in predicting pore-water velocity, dispersion 
coefficient and dispersivity from soil physical properties than from water retention parameters. In his 
observations, using soil properties as predictors, the PTFs could account for more than 50% of the total 
variation of pore-water velocity, dispersion coefficient and dispersivity. 

Predictions of solute-transport parameters, instead of direct measurements, may be accurate enough for 
many applications. It is therefore worthwhile to analyze databases in such a way that solute-transport 
parameters can be predicted from easily-measured soil properties. But, extrapolation of PTFs in different 
agropedoclimatic contexts limits their performance (Touil et al., 2016). So, attempts to develop solute 
transport PTFs have, so far, been mostly kept to small, local data sets and specific models since the local 
PTFs are important to properly investigate the relation between the predictors and predictands, and they 
could be useful in meeting the local agricultural requirements for modeling with reasonable accuracy. The 
prediction of transport parameters at the local scale is also a first step to simulate subsurface solute 
movement over larger areas (Gonçalves et al., 2001). 

Regression technique is widely used to determine the relationship between predictors and predictands 
because of its simplicity. It can use linear regressions or nonlinear regressions depending on the expected 
relationship among the variables (Mojid et al., 2018). The advantage of regression analysis is that it is 
straightforward to carry out and easy to employ. The disadvantage is that the regression equations (e.g., 
linear, logarithmic or exponential) and predictors must be determined as a priori and that the relationships 
between soil properties and predictors may be different in different portions of the database (Van Looy et 
al., 2017). However, improved multiple linear regression (MLR) can be an efficient and reliable method 
(Touil et al., 2016) if the relationship between the dependent and independent variables is not complex. 

Studies of pedo-transfer function may undertake one of two primary purposes: research or application. 
Investigators who intend to advance research knowledge may find it more desirable that the model is 
flexible and can work efficiently with various data sizes and types. Or they may intend to help mine auxiliary 
information (e.g., importance of input variables) given the structure or features of the model (Van Looy et al., 
2017). Our study addressed the research issue. The objectives were: (i) to develop pedo-transfer functions 
for velocity, dispersion coefficient and retardation factor of four reactive solutes and a non-reactive solute 
with basic soil properties by multiple linear regression analysis and (ii) to evaluate performance of the pedo-
transfer functions.    
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Material and Methods 

Soil sampling and solute-transport measurement 

Fourteen (14) soil samples of adequate quantity were collected from different locations of Bangladesh under 
intensive agricultural activities. The plowed upper soil layers (0–15 cm) were used in solute-transport 
experiments to reduce variability due to heterogeneity. The soil samples were air dried and sieved to pass 
through a 2-mm mesh sieve after crushing. Sub-samples from the sampled soils were analyzed for particle 
size distribution, gradation, pH and organic carbon (OC) by employing standard methods. Details of soil 
sampling and analysis of the samples are reported in Mojid et al. (2018). 

The procedures of solute-transport experiments are described here in brief. For details, the readers are 
referred to Mojid et al. (2016). The experiments were done in four PVC columns (hereafter called 
experimental columns), each 34 cm long and 15 cm in inner diameter. These columns were filled with four of 
the air-dried and sieved soils under investigation in the first batch. Each column was packed to 32 cm depth. 
The soil columns were conditioned by leaching sufficient quantity of tap water (EC = 17 mS m–1) following 
six wetting and drying cycles during a nine-month period. The soil columns were transferred and placed 
vertically and axially on four 1.2-m high supporting soil columns to simulate a thick natural soil profile. Two 
3-wire TDR sensors (10 cm long and 3 cm spacing with 0.2 cm wire diameter) were inserted horizontally to 
each column during preparing the soil columns. One sensor was at 8 cm and the other at 28 cm below the 
top of the upper column; the vertical distance between the two sensors (Z) was 20 cm. A cartridge pump 
applied tap water through fine needles at constant rate (0.32  0.02 cm h1), which was considerably lesser 
than the saturated hydraulic conductivities (0.64 cm h1) of the soils to ensure unsaturated flow. The pump 
distributed the applied water uniformly over the soil surface of each column through nine fine needles 
uniformly spaced with a PVC cap on each soil column. Water flow continued until equilibrium between the 
applied and drainage water was attained. A constant hanging water table, maintained at 20 cm above the 
base of the supporting (lower) columns, created suction in soils of the experimental (upper) columns. 

First, CaCl2 was used in the breakthrough experiments; it helped retaining structure of the soils during the 
transport experiments. At steady-state water flow condition, a pulse of 5 ml CaCl2 solution (250 g l–1) was 
introduced uniformly on each column with a syringe attached to a fine needle. The water flow (0.32  0.02 
cm h–1) continued until the solution was completely eluted from the upper columns. A TDR100 and CR10X 
data logger were programmed to record water content and bulk EC of the soils at fixed interval (40, 50 or 60 
minutes depending on the solute and soil types). The measurements continued until whole of the applied 
solute leached out from the upper columns. Measurements of water content and bulk EC were done for 
CaCl2, NaAsO2, Pb(NO3)2, Cd(NO3)2 and carbendazim. Carbendazim is a granular organic solute, which is 
extensively used in Bangladesh as fungicide. The molecular weight of carbendazim is 191.2 g mol1 and its 
solubility in water at pH 7–8 is 5–7 mg l1. The pulse volume and concentration of NaAsO2, Pb(NO3)2, 
Cd(NO3)2 and carbendazim were the same as that for CaCl2 (5 ml and 250 g l–1). A solute took 5–10 days to 
leach completely through the soil columns depending on texture of the soils and properties of the solute. 
After completion of the experiments, three soil samples were collected from the surface of each column by 
using core samplers (5 cm × 5 cm; Eijkelkamp, The Netherlands). These samples were used to determine the 
basic physical and hydraulic properties of the soils. Approximately, 200 g additional soil samples were also 
collected from each column for determining pH, EC and OC. Following the whole procedures, data recording 
on soil-water content and bulk EC, and soil sampling were done for the remaining 10 of the 14 soils in 
subsequent batches of experiments. In is noted that because of very time-consuming transport experiments 
there was no replication on each soil. 

The analysis of TDR-measured EC was based on the relation between the concentration of a solute in soil 
water and EC of soil water, which is linearly related to the EC of bulk soil for constant water content (Ward 
et al., 1994). It is noted that the applied solutes dissociated into ions in solution (e.g., CaCl2 dissociated into 
Ca2+ and Cl–) and the positive and negative ions, especially for reactive solutes, might have different 
behaviors and interactions with the soil solid phase and with the existing ions on the exchange complex 
(Rose et al., 2006). However, for a non-reactive/inert solute like CaCl2, the velocity of a solute is assumed 
same as the velocity of pore water in most transport experiments; although the velocity of Cl– may differ 
from that of the bulk solution due to anion exclusion, the possible small discrepancy was ignored for the 
relatively non-reactive/inert soils used in this study. The time-series of solute concentration were 
determined from the TDR-measured EC. Breakthrough curves (BTCs) were drawn by plotting normalized 
concentrations against time. The mean travel time, , mass-dispersion number, N (=D/ZV), and retardation 
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factor, R, of the solutes were fitted from the BTCs by a transfer-function method (Mojid et al., 2004; their Eqs. 
5 and 7) using non-linear least-square fitting technique; the performance of the transfer-function method 
was reported reliable and described in detail in Mojid et al. (2004). For the physical meaning of the velocity 
and retardation factor of the reactive solutes (NaAsO2, Pb(NO3)2, Cd(NO3)2 and carbendazim) and their 
differences from those of inert solutes, the readers are referred to Mojid and Vereecken (2005). For CaCl2, R 
was fixed at unity assuming it to be a non-reactive solute. The transport velocity, V (= Z/), and dispersion 

coefficient, D (= VZN = Z2N/), of the solutes were calculated from , N and the distance, Z, between the input 
and response BTCs. 

Soil property measurement 

By determining the fractions of sand, silt and clay of the soils by Hydrometer method (Black, 1965) their 
textural classes were obtained from the Marshall’s triangle (Soil Survey Staff, 1975). Soil pH was determined 
by a glass electrode pH meter following Jackson (1962). Twenty (20) grams of each air-dry soil was mixed 
with 50 ml distilled water in separate opaque plastic bottles. The suspensions were shaken with a horizontal 
electric shaker for 20 minutes and kept undisturbed in a control room at 25oC for five hours. The pH of the 
partly settled soil suspensions was measured by immersing the glass electrode. Soil organic matter, OM, was 
determined following the method of Walkey-Black (Jackson, 1962). Two grams of each soil were swirled in 
10 ml of 1.0N K2Cr2O7 solution. Then, 20 ml concentrated H2SO4 was added to it and mixed thoroughly. The 
mixture was kept undisturbed for 30 minutes and diluted to 200 ml with distilled water. It was titrated 
against FeSO4.7 H2O in presence of 0.5 g NaF and 30 drops of diphenylamine as indicator to dull green 
endpoint. The OM of the soil was calculated by 

335.0110(%) 









B

K
OM  

(1) 

where K is FeSO4.7 H2O (ml), which is used for titration of the sample and B is FeSO4.7 H2O (ml) for blank. 
The OC of the soil was calculated following Nelson and Sommers (1982) by 
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Gradation tests of the soils were done on the samples by a typical sieve analysis involving a nested column of 
sieves with wire mesh cloth. For each soil, a 500-g sample was poured into the top sieve, which had the 
largest screen openings. Each lower sieve in the column had smaller openings than the one above. There was 
a pan at the base. After shaking, the constituent materials retained on each sieve were weighed. The test was 
done in accordance with the British Standards, BS 1377 (1990) (Code of Practice). This exercise was 
repeated for the 14 soils. The median grain diameter (D50) and uniformity coefficient (Cu) of the soils were 
calculated from the grain size distribution curves. Cu was calculated by 

10

60

D

D

uC   
(3) 

For determining bulk densities of the soils in the experimental columns, the soil samples in the core 
samplers, collected from each column after transport experiment, were dried in oven at 105oC for 24 h. The 
bulk densities were determined by dividing the oven dry weights of the soils by the inner volume of the core 
sampler. The average bulk density of each column, calculated from the three samples, was used in 
developing pedo-transfer functions. The textural class, bulk density, organic carbon content, relative pH 
(ratio of observed soil pH to the pH of a neutral soil (7) and denoted by pH′), clay content, median grain 
diameter and coefficient of uniformity of the soils are given in Table 1. 

Pedo-transfer function development 

Beyond some general conceptual understanding, there are no precise a priori relations that link predictors 
with the predictands. In addition, most pedo-transfer functions, PTFs, differ with the set of predictors (input 
variables) and predictands (output variables). PTFs were developed through multiple linear regression 
analyses to predict solute-transport parameters. SPSS 11.5 statistical program was used to construct 
multiple linear regression models for the velocity, dispersion coefficient and retardation factor of CaCl2, 
NaAsO2, Pb(NO3)2, Cd(NO3)2 and carbendazim. The input variables of the models were bulk density, organic 
carbon content, relative pH, clay content, median grain diameter, and uniformity coefficient of the soils 
(Table 1). The PTFs were developed through data validation, variable selection, and model calibration and 
verification. Performances of the PTFs were evaluated by sensitivity analysis and performance assessment. 
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Table 1. Textural class, particle size distribution, bulk density (γ, g cm3), organic carbon content (OC, %), relative pH 
(pH), clay content (C, fraction), median grain diameter (D50, mm) and uniformity coefficient (Cu) of nine soils used in 
developing and validating MLR models 

Sl. 
No. 

Texture Particle size distribution 
(%) 

γ  
(g 

cm3) 

OC 
(%) 

pH′ C 
(fraction) 

D50 
(mm) 

Cu 

sand silt clay 

1 Loamy sand 79.48 14.48 6.04 1.36 0.767 0.136 0.060 0.235 3.27 
2 Silt loam 22.70 65.96 11.44 1.33 0.686 0.134 0.114 0.101 3.26 
3 Sandy loam 54.48 37.02 8.50 1.33 0.452 0.132 0.085 0.200 3.58 
4 Silt loam 37.32 52.00 10.68 1.29 0.753 0.136 0.107 0.112 3.30 
5 Silt loam 17.24 70.08 12.68 1.40 0.523 0.143 0.127 0.095 3.86 
6 Silt 8.68 77.96 13.36 1.34 0.787 0.141 0.134 0.069 2.98 
7 Silt loam 18.48 66.04 15.48 1.37 0.372 0.158 0.155 0.066 2.63 
8 Silt loam 4.92 75.96 19.12 1.32 0.840 0.146 0.191 0.062 2.78 
9 Silty clay loam 2.68 70.16 27.16 1.41 0.554 1.09 0.272 0.037 2.43 
10 Silt loam 16.96 59.84 23.20 1.26 0.987 0.96 0.232 0.045 2.61 
11 Sandy loam 61.36 23.00 15.64 1.54 0.288 1.14 0.156 0.073 2.99 
12 Sandy loam 74.59 15.91 9.50 1.61 0.245 1.16 0.095 0.134 3.35 
13 Loamy sand 84.47 10.60 4.93 1.63 0.134 1.20 0.049 0.299 3.64 
14 Silt loam 29.04 53.92 17.04 1.33 0.760 0.97 0.170 0.070 2.85 

Data validation and variable selection 

Data validation is a corrective measure that is taken at ‘ab initio’ in observations. It is crucial since existence 
of even a single outlier can make the whole data set to a non-linear form (Draper and Smith, 1981). The 
purpose of selecting the appropriate regression variables is to reduce predictors to some “optimal” subset of 
the available regressors. This is important since a smaller set of predictors may often provide more accurate 
predictions of future cases, and/or identifying only the pertinent predictor variables may significantly 
improve the response. 

An important step in data validation process is to scale up or down the observations by focusing on their 
units of measurements. This is because the mean change of response-dependent variables (Y) with 
measuring units controls statistical information. For a valid data set, Y needs to be greater than the mean 
change of predictors/independent variables (X). Such alterations of digital magnitudes in mean due to the 
change in measuring units do not, however, disrupt the basic theme of analysis. The yardstick of fixing the 

right units of measurement is called coefficient of centrality (c), which makes the mean of Ys (denoted byY ) 

compatible to the mean of Xs (denoted by X ) (Rashid, 1999). A typical multiple linear regression model with 
the means of variables is expressed by 

kk XbXbXbXbY  221100  (4) 

where bs are regression coefficients. Dividing Eq. 4 by Y  results in 

 
k

jkk bccbcbcbcbcb
1

002211001  
(5) 

The coefficients of centrality, in all respects, are akin to the latent vectors, which are widely used in the 
latent-root regression analysis. These coefficients are always non-negative statistics and the unique value co 

≥0 in respect to the dummy variable Xo appears only at ∑ 2

1 kc 
≤1. This axiom is satisfied only if 0≤ 2

0c ≤1, and 

the restriction could be met by expressing the respondents, Ys, in higher or the predictors, Xs, in lower 
measuring units. The ‘c2 = 0’ implies a homogeneous model. For modeling our multiple linear regressions, 
the required conditions were satisfied by scaling up velocity of the solutes from ‘cm h–1’ to ‘mm h–1’ and 
dispersion coefficient of the solutes from ‘cm2 h–1’ to ‘mm2 h–1’. Soil pH was scaled down to pH′, the unit value 
of which implies a neutral soil. All input variables satisfied the required conditions. 
The selection of variables, done at the completion of regression analysis, was accomplished with the 
direction of the regression coefficients (bj) and correlation coefficients (rj). The predictors to be consistent, bj 
must be unidirectional to rj; their anti-directional behavior results in negative correlation coefficient (–r), 
which reveals that the variables are irrelevant and must be discarded from the regression models. Based on 
this criterion, irrelevant variables were discarded during model development. Acceptable probability level 
for the MLR analysis was fixed at 5%, that is the upper level of significance for acceptance was p > 0.05. Eight 
soils (# 1 – 8, Table 1) were used to select variables for MLR models. 
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Model calibration and verification 

The MLR models were calibrated with experimental data of five soils (#9 – 13, Table 1); the purpose was to 
determine appropriate values of the regression coefficients (Eq. 4). Unlike usually employed procedure of 
calibrating a model by utilizing only one known data set, we utilized five known data sets and determined 
the overall average regression coefficients for the data sets. So, the calibration was done by comparing the 
model-estimated solute-transport parameters (V, D and R) with their measured values, while ensuring least 
errors between the two parameter sets. The obtained models were verified with the measured soil 
properties in evaluating solute-transport parameters. Data of a silt loam soil (#14, Table 1), not used in 
variable selection and model calibration, was used to verify accuracy of the models. 

Parameter sensitivity analysis 

Sensitivity analysis was done to evaluate relative importance of each input variable in the performance of 
the MLR models. At first, the model was run by using the measured input variables and the observed error 
was recorded for the solutes. Afterwards, the model was run by changing the input variables by ± 5% and ± 
10%, and the error was recorded in each run. The sensitivity of an input variable was estimated by the ratio 
of error obtained with ± 5% or ± 10% changing of the variable to the error obtained with original 
(measured) value of the variable. An error ratio of less than unity implies that there is no effect of the input 
variable in generating output of the model. A larger error ratio, on the other hand, indicates more sensitivity 
of the input variable on the output of the model. The input variables were ranked in order of their degree of 
influence on the model output based on the error ratio. 

Model performance assessment 

Improving the accuracy of pedo-transfer functions, PTFs, requires studying how prediction uncertainty can 
be apportioned to different sources of uncertainty in inputs. The performance of the MLR models in 
simulating transport parameters of the five solutes in homogenous soil columns against their measured 
values was evaluated by using goodness-of-fit parameters following Piegorsch and Bailer (2005), Sarmah et 
al. (2005) and Phillips (2006). The most common metrics used to evaluate performance of the PTFs are root-
mean-square errors (RMSEs), mean errors (MEs) and coefficient of determination (r2). The RMSE quantifies 
the root of the average bivariate variance between estimated and measured quantities. It was calculated by 
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where Pi is predicted and Oi is measured solute-transport parameters, and n is the number of observations. 
An RMSE of zero indicates no difference between the measured and simulated solute-transport parameters; 
the smaller an RMSE the better is the performance of the model. Modeling efficiency (EF) is a measure of 
accuracy of simulation and is an indicator of overall agreement between the measured and predicted results. 
EF of the model was calculated by 
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where Om is the average of measured values, and Oi and Pi represent the same meaning as in Eq. 6. An EF of 
unity implies a perfect match between the predicted and measured results. A negative EF implies that the 
predicted values are worse than simply using the observed mean as the best estimate of the data.  

Databases used in the development of PTFs usually do not reflect the true population of soils in a region, and, 
as a result, PTFs tend to be biased to the database on which they are calibrated (Schaap and Leij, 1998). 
Mean error (ME) provides the size and sign of such systematic errors or bias of the prediction error. This 
error is computed by 

  nPOME
n

i

ii /
1




  
(8) 

Negative ME values indicate an average underestimation of the quantity being evaluated, while its positive 
values indicate an overestimation of the target variables. For a truly well-performing PTF, both RMSE and 
ME should be as low as possible. 
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Bias is a persistent positive or negative deviation of the measured value from the true value that arises from 
erroneous assumptions in the learning algorithm. This error, expressed as a percentage of overall error and 
denoted by BOE, is calculated by (Geman et al., 1992) 

100
2


MSE

ME
BOE  

(9) 

A mean square error (MSE), which measures the average of the square of error with the error being the 
amount by which the estimator differs from the quantity to be estimated, is calculated by 

 2RMSEMSE   (10) 

Results and Discussion 
MLR models 

Pedo-transfer functions, in the form of multiple linear regression, MLR, for predicting transport parameters 
of CaCl2, NaAsO2, Pb(NO3)2, Cd(NO3)2 and carbendazim are compared in Table 2 along with the inconsistent 
input variables, coefficient of determination (r2) and probability level (p). The MLR models for predicting 
velocity, V, of the solutes were significant over probability level, p = 0.014 to 0.032. The coefficients of 
determination of the models, r2 ≥0.99, revealed that over 99% variation in V was justified due to the 
contributions of organic carbon, OC; bulk density, γ; clay content, C; median grain diameter, D50; and 
uniformity coefficient, Cu, of the soils. When relative soil reaction, pH′, was included, in addition to these 
input variables, the models became insignificant in predicting V, with probability level exceeding 0.05. It thus 
revealed that pH′ exerted inconsistent effects on the output of the models. The opposite signs (not shown) 
obtained between the regression coefficients (bs in Eq. 4) and correlation coefficient (r) of pH′ also 
confirmed this inconsistency. So, pH′ was ignored for modeling velocity of the solutes. 

Table 2. Pedo-transfer functions of MLR models for CaCl2, NaAsO2, Pb(NO3)2, Cd(NO3)2 and carbendazim with the 
values of the regression coefficients, inconsistent input parameters, coefficients of determination (r2) and probability of 
uncertainty of the models 

Solutes MLR models Inconsistent 
parameters 

r2 p-value 

CaCl2 V = 11.99 + 0.561(%OC) – 2.31(γ) -  21.80(C) + 4.39(D50) + 
0.13(Cu) 

pH′ 0.990 0.025 

D = 11.10 – 1.02(%OC) + 2.39(γ )+3.60(pH′)–14.94(C) + 
33.78(D50) 

Cu 0.999 0.001 

NaAsO2 V = 10.38 + 0.513(%OC) – 1.31(γ) -  21.57(C) + 4.68(D50) + 
0.19(Cu) 

pH′ 0.997 0.016 

D = 23.35 + 0.31(γ) + 0.97(pH′)  – 30.63(C) + 0.54Cu %OC, D50 0.927 0.047 
R = 1.14 + 0.021(%OC) + 0.173(γ)- 0.056 (pH′) + 0.631(C) – 
0.34(D50) 

Cu 0.998 0.005 

Pb (NO3)2 V = 12.29 + 0.489(%OC) – 2.86(γ) – 21.22(C) + 4.39(D50) 
+0.254(Cu) 

pH′ 0.998 0.032 

D = 16.16  – 0.025(%OC ) – 19.43(C) + 3.97(D50) + 0.55(Cu) γ, pH′ 0.963 0.017 
R = 1.16 + 0.011(%OC) +0.092(γ) – 0.098(pH′) + 0.855(C)  D50, Cu 0.984 0.005 

Cd (NO3)2 V = 12.19 + 0.35(%OC) – 3.18(γ) – 19.07(C) + 5.62(D50) + 0.31(Cu) pH′ 0.990 0.026 
D = 9.90 + 3.50(γ) – 9.92(C) + 4.89(D50) pH′, %OC, Cu 0.939 0.007 
R = 1.21 + 0.090(γ) + 0.273(C) – 0.694(D50) pH′, %OC, Cu 0.994 0.001 

Carbenda-
zim 
 

V = 12.82 + 0.433(%OC) – 3.09(γ) – 21.65(C) + 4.05(D50) + 
0.221(Cu)  

pH′ 0.994 0.014 

D = 13.28 – 0.178(%OC) + 0.371(γ) – 14.86(C) + 0.046(D50)  pH′, Cu 0.983 0.005 
R = 1.17 + 0.018(%OC) + 0.112(γ) – 0.053(pH′) + 0.566(C) – 
0.563(D50) 

Cu 0.999 0.003 

 

In modeling dispersion coefficient, D, all the five solutes encountered one or more inconsistent input 
variables. Although the MLR models for D, with inclusion of all input variables, were significant at p > 0.05, 
the uniformity coefficient, Cu, was inconsistent. Elimination of Cu from the models improved significant level 
of the models from 0.03 to 0.001. Modeling D for NaAsO2 was insignificant with probability level exceeding 
0.05 when all input variables were considered. Organic carbon, OC, and median grain diameter exerted 
inconsistent effects on model outputs. When these variables were discarded, the significant level of the 
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models improved to 0.047. For Pb(NO3)2, γ and pH′ exerted inconsistent effects on the model outputs, and 
their exclusion from the models reduced probability level to 0.017. Organic carbon, pH′ and Cu exhibited 
inconsistency in modeling D for Cd(NO3)2. When these variables were excluded, the models became 
significant with probability level improved from 0.188 to 0.007. For carbendazim, when all input variables 
were considered in the model, γ and pH′ appeared inconsistent, and their elimination significantly improved 
the probability level although Cu then became inconsistent. Consequently, Cu was also discarded. The 
accuracy of the models however improved surprisingly when γ was re-introduced; γ became consistent with 
a model probability of 0.005. The coefficients of determination of the models for the five solutes ranged from 
0.927 to 0.999. The uniformity coefficient always put inconsistent influence for modeling retardation factor, 
R, of the solutes. In addition to this, pH′ and OC were also inconsistent in case of Cd(NO3)2, and D50 was 
inconsistent in case of Pb(NO3)2. All inconsistent input variables were eliminated from the models to obtain 
improved levels of model probability. 

 Model performance 

The simulated velocity of the solutes agreed well with the measured velocity as illustrated in Figure 1. In 
predicting solute velocity, V, by the MLR models, the coefficients of determination were large (r2 = 0.955–
0.996). The RMSEs were 0.084–0.126 (Table 3). The efficiency, EF, of the models was 99% for all the solutes 
under investigation. The mean errors, MEs, of the models were –0.006 to –0.008 for CaCl2, Cd(NO3)2 and 
carbendazim; the negative MEs imply that the models slightly overestimated V during validation. For NaAsO2 
and Pb(NO3)2, MEs of the models were 0.0027–0.0028, implying that the models slightly underestimated V. 
The bias components of overall error, BOE, were considerably small (0.051–0.99%). 

Table 3. Statistical indices for performance assessment of MLR models for CaCl2, NaAsO2, Pb(NO3)2, Cd(NO3)2 and 
carbendazim 

Solute solutions Parameters RMSE EF ME BOE (%) 

CaCl2 
 

V 0.110 0.990 –0.006 0.30 
D 0.046 0.999 0.000 0.00 
R 0.019 0.598 –0.003 3.23 

NaAsO2 
 
 

V 0.091 0.993 0.003 0.09 
D 0.373 0.927 –0.004 0.01 
R 0.004 0.992 0.004 74.41 

Pb(NO3)2 
 
 

V 0.126 0.987 0.003 0.05 
D 0.213 0.963 0.012 0.34 
R 0.007 0.965 –0.005 54.82 

Cd(NO3)2 
 
 

V 0.114 0.990 –0.007 0.33 
D 0.169 0.939 0.009 0.28 
R 0.006 0.987 0.004 51.40 

Carbendazim 
 
 

V 0.084 0.994 –0.008 1.00 
D 0.074 0.983 –0.002 0.08 
R 0.003 0.997 –0.002 59.60 

 

There were good agreements between the measured and simulated dispersion coefficients, D, for the solutes 
(Figure 2) with large coefficients of determination (r2 = 0.982–0.997). RMSE of the models was 0.213 for 
Pb(NO3)2 and 0.373 for NaAsO2 (Table 3). Models’ efficiency varied from 0.927 to 0.999. MEs of the models 
for CaCl2, Pb(NO3)2 and Cd(NO3)2 were positive (0.000–0.0124), but those for the other solutes were negative 
(0.0021 to 0.0041). These results revealed that the MLR models for CaCl2, Pb(NO3)2 and Cd(NO3)2 slightly 
underestimated D. For the other solutes, the models slightly overestimated D. The BOEs were perceptibly 
small (0–0.338%) for all the solutes. 

The measured retardation factors, R, agreed well with the estimated R of all the solutes (Figure 3) with large 
coefficients of determination (r2 = 0.971–0.993). Small RMSEs (0.003–0.019, Table 3) revealed good match 
between the measured and simulated Rs of the solutes. Modeling efficiencies for R in case of NaAsO2, 
Pb(NO3)2, Cd(NO3)2 and carbendazim were 0.992, 0.965, 0.987 and 0.997, respectively. For CaCl2, EF was 
significantly low (0.598). The mean errors of the models, 0.0035 for NaAsO2 and 0.0042 for Cd(NO3)2, imply 
slightly underestimation of R by the models. For the other solutes, MEs were 0.0023 to 0.0051; these small 
negative MEs indicate minimal overestimation of R. BOEs of the models were considerably large (3.23 to 
74.41%), implying that the MLR models for R might miss the appropriate relations between the input 
parameters and target output (R). 
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Figure 1. Predicted velocities of CaCl2, NaAsO2, Pb(NO3)2, Cd(NO3)2 and carbendazim by MLR models versus their 
observed velocities. 

 

 
 

Figure 2. Predicted dispersion coefficients CaCl2, NaAsO2, Pb(NO3)2, Cd(NO3)2 and carbendazim by MLR models versus 
their observed dispersion coefficients. 
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Figure 3. Predicted retardation factors of NaAsO2, Pb(NO3)2, Cd(NO3)2 and carbendazim by MLR models versus their 
retardation factors. 

Sensitivity of input parameters 

Bulk density, γ, and clay content, C, of the soils predominantly governed velocity of the solutes, V, in the MLR 
models, while organic carbon, OC, influenced them to a lesser extent. Bulk density ranked as the most 
impact-generating variable and clay content ranked as the second most influential variable for predicting V 
except for NaAsO2. These two input variables (γ and C) were inversely related to V as was also observed by 
Dian-qing et al. (2010). For NaAsO2, γ and C followed reversed ranking than for the other solutes. Median 
grain diameter, D50, ranked as third to influence V except for Cd(NO3)2 for which coefficient of uniformity, Cu, 
was the third level and D50 was the fourth level influential regressors. Organic carbon ranked fifth in 
controlling the model output except for CaCl2. Uniformity coefficient ranked as the fifth most important 
variable while C ranked fourth in controlling V for CaCl2. 

Clay ranked as the most prominent input variable in controlling dispersion coefficient, D, of NaAsO2 and 
carbendazim. But, it ranked as the second, third and fourth most influential variable in controlling D for 
Cd(NO3)2, Pb(NO3)2 and CaCl2, respectively. Bulk density ranked as the most influencial variable in case of 
Pb(NO3)2 and Cd(NO3)2. It however ranked as the second, third and fourth most influential variable in case of 
carbendazim, CaCl2 and NaAsO2, respectively. These results were in partial agreement with the findings of 
Bromly et al. (2007), who, by using step-wise multiple regressions, predicted D with pore-water velocity, 
clay content, silt content and bulk density with an adjusted coefficient of determination of 0.735. Since 
velocity of the solutes was related to D, γ and C also influenced D. For CaCl2, D50 controlled the dispersion 
coefficient as the most prominent input variable; it ranked third in case of Cd(NO3)2 and carbendazim, and 
fourth in case of Pb(NO3)2. Relative soil pH, exerted second largest impact in predicting D for CaCl2 and 
Pb(NO3)2, and third largest impact in case of NaAsO2. Uniformity coefficient ranked as the second most 
dominant variable in predicting D for NaAsO2. Organic carbon was less influential since it ranked fourth and 
fifth in case of carbendazim and CaCl2, respectively. 

Bulk density was the most impact-generating variable and exerted positive contribution in predicting 
retardation factor, R, of the reactive solutes under investigation. Clay content was the second most leading 
variable in controlling R of NaAsO2 and Pb(NO3), and third most important variable in case of Cd(NO3)2 and 
carbendazim. For Cd(NO3)2 and carbendazim, D50 put the second largest impact in modeling R; it however 
ranked third and fourth in case of NaAsO2 and Pb(NO3)2, respectively. Relative pH of the soils ranked third in 
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case of Pb(NO3)2, and fourth in case of NaAsO2 and carbendazim; it however exerted only minor influence in 
modeling R. Organic carbon, OC, ranked as fifth main variable, also exerted less impact on the retardation 
factor of NaAsO2 and carbendazim. The low rank of OC seems unexpected since it was believed to be the 
second most dominant factor for sorption after soil pH, and most solutes exhibit high affinities for soil 
organic matter (Springob and Böttcher, 1998). The low ranking of OC could be since most of the 13 soils 
contained relatively low organic carbon (0.134–0.987%, Table 1), and bulk density and clay content of the 
soils might dominantly controlled sorption of the solutes. Based on the ratio of RMSEs, the orders of 
sensitivity of the MLR model outputs (V, D and R) to the input variables were – (i) CaCl2: D>V, (ii) NaAsO2: 
R>V>D, (iii) Pb (NO3)2: R>V>D, (iv) Cd (NO3)2: V>R>D and (v) carbendazim: R>V>D. 

Conclusion 

Pedo-transfer functions, PTFs, in the form of multiple linear regression, MLR, models were developed for 
estimating transport velocity, V, dispersion coefficient, D, and retardation factor, R, of NaAsO2, Pb(NO3)2, 
Cd(NO3)2, carbendazim and CaCl2 in 14 Bangladeshi soils. Bulk density and clay content of the soils were the 
most sensitive/impact-generating input parameters to the MLR models. Based on root-mean-square error, 
RMSE, in estimating the transport parameters, the orders of sensitivity of the model outputs to the input 
variables for the solutes were – CaCl2: D>V, NaAsO2: R>V>D, Pb(NO3)2: R>V>D, Cd(NO3)2: V>R>D and 
carbendazim: R>V>D. The RMSE, mean error, ME, and bias components of overall error, BOE, were 
appreciably small except for the retardation factor, for which BOE was considerably large (3.23–74.41%,) 
that indicated necessity of further improvement of the model. The model efficiencies were noticeably large 
(0.93–1.00) for the reactive solutes. Thus, the developed MLR models could fairly predict transport velocity, 
dispersion coefficient and retardation factor of the reactive solutes under investigation, and hence they can 
be utilized for practical applications at local scales. The MLR models, however, need to be improved for 
predicting the retardation factor, possibly, by including additional input variable(s). Also, data of only 14 
soils were used in this study and the developed MRL models were verified with the data of only one soil. This 
is a drawback of our study that needs to be addressed in future studies. 
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