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Abstract

Introduction

Precision medicine aims to design disease prevention and 
clinical care strategies based on individual environments, 
lifestyles, genetics, and molecular phenotype variability. 
Since 1957, the Central Dogma of molecular biology set an 
impact in life sciences. However, at that moment, Central 
Dogma didn’t catch the idea of small molecule composition 
in the cells, which play the actual role in controlling the 
function of genes, transcripts, and proteins, as well as the 
macromolecules activities regulation in a complex feedback 
circuit. The interaction between small molecules and the 
cells’ macromolecular components is the main determinant 
of cell function or dysfunction.(1)
 Metabolomics is a comprehensive measurement of 
all metabolites in biology specimens, including parent 
compounds and their low-molecular weight molecules 
<1000 Da, such as amino acids, monosaccharides, small 
lipids, cofactors, vitamins, energy cycle intermediates, 

nucleotides, and exogenous xenobiotics. The numbers of 
metabolites profiled by metabolomics are much larger than 
standard clinical laboratory techniques, so we can describe 
more comprehensive coverage of biological processes and 
metabolic pathways to consider the strategies for precision 
medicine.(2) 
 Currently, clinicians only have a small piece of 
information about human metabolism based on the routine 
blood chemistry analytes measurement.(1) Updated 
information from complex interactions between genotype, 
lifestyle, diet, nutrition, drug therapy, environmental 
exposure, and gut microflora at the molecular level, provide 
new insight into disease pathophysiology and drug response 
mechanism in clinical practice to predict both risk of toxicity 
and beneficial responses to drug treatment.(3-15) However, 
even after 20 years, there are still so many barriers to face in 
translating -omics technologies in clinical practice.(16)
 In this narrative review, we discuss the current 
knowledge about metabolomic as the latest tool in -omics 
family, together with its challenges and future, especially 
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in its application for biomarker discoveries, nutritional 
management, and precision medicine related to metabolic 
diseases.

“Omics” approaches, including genomics, transcriptomics, 
proteomics and metabolomics, recently have become 
important tools to integrate genetic, protein, metabolite, 
cellular and pathway events in flux and interdependent in 
one system to develop a better understanding of the complex 
biological processes.(17-22) The “omics” approaches 
measure multiple genes, transcripts, proteins, or metabolites 
changes simultaneously and provide an overview of 
various physiological or pathological conditions.(23) These 
advanced techniques could bring a big change in clinical 
setting for human diseases’ diagnosis and treatments with 
full consideration of the limitations.(24) Metabolomics 
and metabonomics are two terms that are often used 
interchangeably.(25-28) In brief definition, metabolomics 
measure all metabolites in the cell, while metabonomics 
asses the change due to metabolic responses, or in other word, 
metabolomic profiling.(1,17,29-32) Metabolome profiling 
is typically performed either by targeted or untargeted 
methods. Targeted and semi-targeted metabolomics focus 
on selected metabolites based on a hypothesis-driven 
approach, while untargeted metabolomics pursues an 
unbiased screening of all metabolites and hypothesis-free. 
Therefore, a combination of both approaches is preferred 
for a thorough metabolome capture.(16,33) 
 As the changes in the genome, transcriptome and 
proteome do not always result in altered biochemical 
phenotypes, metabolomics may in fact provide the most 
“functional” information of the omics technologies, with 
the facts that the metabolome represents the final “omic” 
level in a biological system, and metabolites represent 
functional entities which have a clear function in the life 
of the biological system and are also contextual, reflecting 
the surrounding environment.(28) Metabolomics has the 
capacity to increase the readouts by orders of magnitude 
compared with traditional chemical or even genetic 
screening.
 As the emerging omics tools, metabolomics is less 
evolved compared to the other family, and in practice 
send quite a challenge. It targets a big range of divergent 
molecule physical properties, with different polarity from 
very water-soluble organic acids to very nonpolar lipids.

Metabolomics is An 
Emerging Technology

(34)  A  comprehensive  metabolomic  technology  platforms 
prepare the sample pre-analytic and analytical procedures 
specifically and divide metabolomes into subgroups of 
metabolites, either by the polarity, common functional 
groups, or structural similarity as illustrated in Figure 1, 
and the methods used in metabolomics still continue to 
evolve and improve each year.(35) Current techniques 
used in metabolomics such as liquid chromatography-mass 
spectrometry (LC-MS) can measure tens to hundreds of 
metabolites with excellent precision, make it possible for 
rapid discovery and validation of early metabolic indicators 
of human disease, even years before the symptoms are 
clinically seen, for example, pancreatic cancer (36), 
type 2 diabetes (17-20,37), memory impairment (20). 
Metabolomics studies also reveal our understanding of diet 
and disease relationships, such as the link between elevated 
branched-chain amino acids (BCAA) and obesity to insulin 
resistance.(34) A previous study brought microbiome into 
the metabolite profiling and found that elevated plasma 
levels of trimethylamine-N-oxide, which is abundant in 
red meat, was associated with the composition of the gut 
microbiome and risk for cardiac events.(2,35)
 While metabolomics technology is still developing, 
recent studies are also observing what actually constitutes the 
human metabolome. The complete set of small molecules in 
human body may exceed 19,000 (38), consist of metabolites 
derived from endogenous enzymatic activities encoded by 
the human genome, and also exogenous metabolites from 
food, medications, the microbiota that inhabit the body, 
and the environment. Nine of the 20 amino acids our body 
needs was depend on diet, because even we have the codons 
in our body but not the endogenous biosynthetic route, 
and this fact highlight how the exogenous metabolites are 
important to be counted.(2) Liquid chromatography and 
gas chromatography coupled to mass spectrometry (GC-
MS and LC-MS) and nuclear magnetic resonance (NMR) 
spectroscopy improve the capabilities for holistic metabolic 
profiling for precision medicine. The platform should be 
stable and reproducible, and recent studies showed the 
capability now possible for robust and high-quality data 
generation.(33,36)
 Like any other its predecessors, there are still some 
bottlenecks in metabolomics to be translated clinically, 
especially in precision medicine, such as the general 
quality assurance and quality control standards, systematic 
errors assessment, universal workflow, big data integration 
and collection platform, reproducible data analysis and 
interpretation, and potential bioethical issues. Despite 
the current challenges, quantified metabolomics data 
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Figure 1. Illustration of the liquid chromatography-mass spectrometry (LC-MS)-based metabolomics platform.(2) (Adapted with 
permission from Cold Spring Harbor Laboratory Press).

have significant translational opportunities in biomarker 
discovery, precision nutrition and precision medicine, due 
to its advantages to detect responses even when growth 
phenotypes are lacking. 

Metabolomics Analysis for 
Biomarker Discovery

Metabolome was first coined in 1998 as the set of metabolites 
(low molecular weight compounds) synthesized by cells, 
tissues, organs or organisms, dependent and varying  
according  to  the  physiology.(29)  Metabolome can be divided 
into several fractions: the endogenous metabolome, which 
is naturally produced by an organism, and the exogenous 
metabolome, which are chemicals that are not naturally 
produced by an organism, includes all foreign metabolites 
derived from drugs, pollutants and dietary compounds.
(1,39,40) The endogenous metabolome is subdivided as 
primary metabolome includes all metabolites characteristic 
of each cell type, tissue, organism, or biological fluid, 
reflecting particular environmental conditions and evolving 
according to physiological demands, and secondary 
metabolome which is the microbial metabolome produced 
by the microflora. 
 Thus, the metabolic phenotype consists of 
the integration of individual’s genetic, nutritional, 
pharmacological, and environmental status.(1,41,42) 

Indeed, the biochemical pathways of metabolites, as well 
as knowledge of their intracellular  fluxes  ought  to  be  
understood  because  the  production  and  degradation 
of metabolites are regulated in interconnected distinct 
metabolic pathways.(41-43)
 The fact that metabolites is closely related to 
phenotype, and that metabolome is sensitive to many 
factors, make it feasible for a large range of applications 
including diagnosis and identification of certain metabolites 
which characterize distinct pathological and physiological 
states (11,32,44-46), added with the assumption that 
metabolites are important players in biological systems and 
the disruption of biochemical pathways induce diseases. 
Metabolomics results in multiple metabolites assessment, 
thus  metabolomics  offers  potential  advantages  in 
sensitivity and specificity in the clinical area compared to 
classical diagnostic approaches and conventional clinical 
biomarkers.(47)
 An ideal biomarker is expected to fulfill some criteria 
included: present in minimally invasive and readily available 
sources such as blood or urine; highly sensitive and specific, 
means allow early diagnosis and unaffected by external 
or comorbid conditions; precisely change in response 
to treatment and disease progression; it provide a better 
understanding about the disease mechanism; and helpful 
in disease risk stratification and prognosis.(27) The central 
dogma of molecular biology explains that DNA (genes) 
are transcribed to mRNA (transcripts) and translated into 
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Figure 2. The three main applications of food metabolomics, from farm to human: food resource production, industrial food 
processing and food intake by humans.(60) (Adapted with permission from Wolter Kluwer Health).

Metabolomics as A Tool in 
Nutritional Research

The comprehensive approach of metabolomics made 
possible of exploring the complex interaction between 
human and diet, complete with the implications and subtle 
changes in metabolism activated by foods, nutrients and 
disease. In general, metabolomics application in nutrition 
application is divided into three categories: studies for 
dietary biomarker discovery, studies of diet-related diseases, 
and studies for dietary intervention.(51)
 Overall, most metabolomics studies recently observe 
the disturbances in metabolic pathways (52), to find out how 
nutrition influences metabolism and homeostatic control and 
to find the early phase disturbance on this regulation, related 
to early detection of diseases (53). Commonly the studies 
performed by three approaches: acute intervention, cohort, 
and dietary patterns and metabolic profiles association 

proteins, then the protein activity results in small molecules 
(metabolites) formation.(29) Therefore, any changes in 
genes or proteins will affect a change in the metabolism and 
these were the “omics” complementary sciences all about 
(48), and metabolomics is applied for the nutritional and 
physiological status of the patient by measuring the variety 
of small molecules. The current metabolomics analysis 
tools allow a large number of samples measurement in a 
high-throughput manner, so it provides us the understanding 
of current molecular response of a biological system to 
any perturbation in its microenvironment (49,50), explain 
the basic mechanisms of diseases at once able to identify 
the molecular markers for the diseases (1). Metabolite 
biomarkers can be classified into three different classes: 
predictive biomarkers to determine who in the population 
might respond to specific treatment regimes, prognostic 
biomarkers to observe the prospect of the disease in a 
patient, and pharmacodynamics biomarkers to evaluate the 
outcome of the treatment.(16) 
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analysis. Attempts on self-reporting dietary assessment 
currently such as food-frequency questionnaires (FFQs), 
24-h recalls, weighed food records cannot be fully reliable 
due to energy under-reporting, recall errors and difficulty 
in assessment of portion sizes.(54,55) Thus, biomarkers for 
dietary intake are needed to improve the dietary assessment. 
Currently, we have biomarkers for salt, protein, sucrose 
and fructose intake (sodium/nitrogen/sucrose and fructose 
measured in 24 h urine samples), and for energy expenditure 
(the doubly labeled water technique) (56,57), which were 
extremely useful to validate the previous self-reports (57). 
Food metabolomics is the application of metabolomics 
application in human food systems, including food resources, 
food processing and diet. Food systems are evidently 
related to nutrition and human health directly. Hence, 
metabolomic not only useful for biomarker discoveries 
but also to elucidate the underlying mechanisms of disease 
development.(58) For instance, a number of possible risk 
factors of type 2 diabetes mellitus have been identified by 
metabolomics involving lipid molecules such as free fatty 
acids, bile acids and amino acids, and notably BCAA, which 
is correlated with insulin resistance in human and rodents.
(34,59) A study found an elevated levels of BCAA in obese 
subjects, suggest due to increased catabolism of BCAAs or 

Figure 3. The workflow of food metabolomics consisting of food and human sample collection, metabolome sample extraction, 
instrumental analysis using analytical tools and statistical analysis of metabolic data and their biological interpretation.(60) 
(Adapted with permission from Wolter Kluwer Health).

‘BCAA overload’.(34) The three main applications of food 
metabolomics, from farm to human include food resource 
production, industrial food processing and food intake by 
humans (Figure 2).(60)
 Food processing in food system used in food 
industries to increase food safety; to change or modify 
food textures, tastes, flavors, colors, etc.; and to provide 
nutritional or balanced diets for customers by using all 
techniques and methods to convert food resources such as 
crops, vegetables, fruits, meat and milk into valuable food 
products.(61) Figure 3 shows one example of the workflow 
of food metabolomics.
 Many studies on new metabolite biomarkers correlated 
with dietary intake patterns such as juice (62), fruits, 
vegetables (63), grain, fish (64), wine (65) coffee (66) and 
the complex ones (67,68) revealed that either specific food 
intake or the complex dietary pattern significantly affect 
human metabolism like amino acid and lipid metabolism, 
related to human health. Therefore, metabolomics is useful 
for nutritional epidemiological studies to effectively analyze 
the effect of specific food consumption and dietary patterns 
on metabolic changes. The application of metabolomics 
will be wider in food sciences and technology, delivering 
food from the farm to human, including food resource 



6

The Indonesian Biomedical Journal, Vol.13, No.1, March 2021, p.1-105 Print ISSN: 2085-3297, Online ISSN: 2355-9179

Metabolomics Profiles and 
Nutritional Patterns

Nutrition is essential in human metabolism and health, thus 
considered as one major factor contributes in metabolic 
diseases. Metabolomics is used for nutritional studies to 
profile all low-molecular-weight metabolites in biological 
samples to better understand how a stimulus could affect 
metabolic pathways.(69,70) Many studies observed the 
impact of single nutrients or single foods, up to global diets 
or dietary patterns such as the Mediterranean diet on chronic 
diseases to find the link between diet and the diseases.(67)
 Principal component analysis (PCA) is utilized to 
depict a portrait of a population’s dietary patterns (71) 
such as the Prudent (or Healthy pattern), the Western 
dietary pattern, and so on, which are positively or inversely 
correlated with cardiovascular disease risk factors and 
mortality (72-74). A dietary pattern such as foods that high 
in sugar-sweetened soft drinks, or refined grain, processed 
meats and low vegetable intake was associated with the 
risk of type 2 diabetes mellitus.(75) Though we have 
not had a full understanding of the pathways underlying 
metabolic risk factors in humans, yet we know those are 
likely related to derangements in primary metabolism. 
More recent technologies apply LC-MS to acquire high-
throughput metabolic status profiles of organisms and a 
comprehensive assessment of molecules of substrates or 
products of metabolic pathways (i.e., metabolomics).(76-
80) By having a complete profile of individual metabolites, 
we can elucidate specific metabolites' role in metabolic 
disorders development and its sequelae.(81-84)
 There are many dietary guidelines to promote well-
being and prevent chronic diseases. Most researches focus 
only on individual food or nutrient, while in fact quality of a 
diet is influenced by the combination of foods, its quantity, 
and also interrelations.(68,85,86) Diets in their complexities 
can be summarized in patterns.(87-91) Therefore, studies 
should focus more on these patterns in relation to the health 
benefits.(92) Due to its potential to measure a range of 
small molecules present in a biological system, nutritional 
metabolomics combined with multivariate statistical 
analysis, can characterize and define the normal physiologic 
variation profiles and the changes in different biofluids as 
a result of specific dietary interventions.(93–95) A recent 

production, industrial food processing and food intake. 
Comprehensively, metabolomics will result in personalized 
food practice from design up to final products.

application on nutritional metabolomics has shown its 
potential in the identification of dietary biomarkers (96), 
as long as it’s qualified to be replicated in future studies 
and comply to a classical measurement model. Moreover, 
metabolomics has the advantages of highlighting which 
metabolites and pathways are influenced by diet, thus dietary 
pattern–disease relations could be further explored.(97,98) 
Biocrates Life Science AG (Innsbruk, Austria) developed 
AbsoluteIDZ kit, which allows more than 160 targeted 
metabolites in over 4 compound classes quantification in an 
easy, reliable and robust way. The 4 months reproducibility 
is good, and data showed a single measurement is sufficient 
for risk assessment in epidemiologic studies using healthy 
subjects.(99) Hence, we could collect data on metabolite 
properties to create a dietary biomarker classification 
(i.e., recovery, concentration, replacement, or predictive 
biomarkers).(59,93,100)

Obesity  is  a  worldwide  problem.  The  technology 
development spoiled most people’s lifestyle and contributed 
to obesity increasing number, in line with its metabolic 
comorbidities, especially the risk of insulin resistance, 
hypertension and dyslipidemia, and mortality rate.(100) 
However, 10-30% of obese population have a relatively 
healthy metabolic status, with normal insulin sensitivity, 
blood pressure and lipid profiles.(101,102) These 
metabolically healthy obesity (MHO) group compared to 
the metabolically abnormal obesity (MAO), also shown a 
lower mortality rate and lower risk of developing metabolic 
disease.(103-105) Many studies aim to determine the 
underlying mechanisms that differentiate normal subjects, 
MHO and MAO subjects. Metabolomics could be used 
to quantitatively analyze the substantial differences in 
circulating markers of amino acid (106-109) and lipid 
(107,109) metabolism, to understand how metabolites 
reflect physiological states. Perturbation in these metabolic 
pathways also reflects not only established cardiometabolic 
risk biomarkers, independently of weight status (110,111), 
but were also predictive of future disease (112-114).
 Many factors can modulate metabolites in its 
pathways, either genetic factors, environmental factors or 
gene-environment interactions.(115) Mass spectrometry-
based metabolite profiling was applied to investigation of 
serum metabolite concentrations between normal (Nw), 
overweight (Ov),  and obese (Ob) group with metabolic 
disturbance (MetS) and not, and showed that there were three 

Metabolomics Profiles and Obesity
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principal factors explaining a maximum of variance between 
groups. First, the score of long-chain glycerophospholipids 
metabolite is higher in Ov/Ob with MetS compare to Ov/Ob 
and Nw subjects without MetS. This factor also positively 
correlated with plasma total cholesterol (total-C) and 
triglyceride levels in the three groups, and high-density 
lipoprotein-cholesterol (HDL-C) only in subjects without 
MetS. The second factor is amino acids and short to long-
chain acylcarnitine which was positively correlated with 
HDL-C and negatively correlated with insulin levels in Nw 
participants. The third factor is medium-chain acylcarnitines 
profile scores which was higher in Nw subjects than other 
groups independent to MetS. It was negatively associated 
with glucose levels among the Ov/Ob with MetS. It seems 
like factor 1 have a relationship effect to deteriorated 
metabolic profile in obesity, while factor 2 and 3 related to 
the healthy metabolic profile.(116)
 Other interesting metabolites associated with obesity 
are choline and betaine. They are quaternary ammonium 
compounds obtained from food or synthesized de novo in 
tissues. Choline roles as the major source of methyl groups 
in the diet and can be found in eggs, beef, pork, liver, 
soybean, and wheat germ.(117,118) Phosphatidylcholine 
(lecithin) is the most abundant choline species, and an 
important source of choline relative to dietary intake, 
moreover in premenopausal women.(119) Lecithin is 
formed endogenously from phosphatidylethanolamine 
by a S-adenosylmethionine-dependent methylation 
reaction catalyzed by phosphatidylethanolamine 
N-methyltransferase. The biological function of choline, 
including gene expression epigenetic regulator (120), as 
a lipoprotein precursor, membrane phospholipids, and the 

neurotransmitter acetylcholine; thus, it was important for 
lipid metabolism, the integrity of cell membranes, and nerve 
function (117,121).
 Betaine is a modified amino acid found in the highest 
content in whole grains such as wheat bran, wheat germ, 
and spinach. It is also formed in the kidney and liver by 
choline oxidation catalyzed by the mitochondrial enzyme, 
choline dehydrogenase.(117,122,123) Betaine is a key 
organic osmolyte cue to its dipolar zwitterion structure. It 
accumulates in a variety of cells, including renal medullary 
cells, under the condition of hypertonicity.(124) Betaine 
metabolism is dominant in the liver in mammals, where it 
functions as a methyl donor in the betaine-homocysteine 
methyltransferase (BHMT) reaction (125), for homocysteine 
betaine-dependent remethylation yielding dimethylglycine 
and methionine (126). That’s why betaine supplementation 
can reduce total homocysteine (tHcy) level and they’re 
inversely correlated; therefore betaine used as a treatment 
for homocysteinemia.(127-130)
 Central obesity and excessive flux of fatty acids in the 
visceral tissue are regarded as the main factors of metabolic 
syndrome, which leads to insulin resistance and atherogenic 
dyslipidemia.(131) Betaine intake and plasma levels were 
inversely correlated with several metabolic syndrome 
markers.(121,132) Insulin decrease both BHMT and choline 
dehydrogenase in rat liver, while diabetes increased them 
(133), human with insulin resistance also found to have lower 
N,N,N-trimethylglycine, or glycine betaine level. Inversely, 
betaine decreases hepatic lipid content and improves glucose 
tolerance in rodents.(134-137) Mitochondrial dysfunction 
found in metabolic syndrome (138-140), suggests the 
involvement of choline oxidation to betaine that takes place 

Table 1. Compilation of metabolomic profiling studies on obesity patients conducted in various countries. 

Sample Analytical Tools Country References

Carnitine (+) Plasma LC-MS USA (108)
Carnitine (-) Plasma LC-MS USA (142)
Acylcarnitine (+) Plasma and Urine Flow injection-MS UK (34)
Acylcarnitine (+) Plasma LC-MS USA (108)

Leucine (+) Plasma LC-MS UK (143)
Valine (+) Blood and Urine GC-MS UK (34)
Tyrosine (+) Blood UPLC-MS South Korea (144)
Glutamine (-) Plasma LC-MS Italy (145)
Kynurenic acid (-) Urine LC-MS UK (143)
Xanthurenic acid (-) Urine LC-MS UK (143)
Uric Acid (-) Plasma LC-MS UK (143)

Metabolite

Fatty acids pathway

Amino acids pathway
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Early identification of functional β-cell mass will help to 
prevent diabetes, unfortunately early asymptomatic β-cell 
defect identification cannot yet be successfully performed. 
Metabolomics  could  be  proposed  to  readout  the  
early  disease  states  before  the  clinical  manifestation 
by identifying novel plasma biomarkers representing 
functional pancreatic β-cell insufficiency before it reaches 
the clinical symptomatic stage.(146) Recent clinical and 
laboratory markers can be helpful to indicate the diabetes 
and its risk progression but provide only a few insight 
regarding pathophysiologic mechanisms.(147) Nonetheless, 
identification of individual risk could provide effective 
interventions for delaying or preventing the onset of T2D 
and lessen the burden.(148-151)
 BCAAs, aromatic amino acids, fructose, mannose, 
α-hydroxybutyrate, and phospholipids are the main 
metabolites that are consistently appearing in human T2D 
studies.(106,112,152-158) Most of them are also associated 
with  insulin  resistance  and  obesity  (159,160)  but  not 
directly to β-cells alteration. Thus, they still cannot answer 
the need for biomarkers reflecting the loss of functional 
β-cell mass.(161,162)
 A study documenting the differences in blood 
metabolite profiles before and after glucose loading in 
obese vs. lean individuals noted differences in amount of C3 
and C5 acylcarnitines, glutamine and glutamate, and other 
small molecules.(81,83) This provides a complementary 
information to identify at-risk individuals over standard 
clinical markers.(106) Identification of 1,5-anhydroglucitol 
showed association with the loss of functional β-cell mass, 
raise a possibility of this marker for early detection on β-cells 
decline.(163) Another study utilizing LC-MS analyzing 
amino acids, amines and some polar metabolites, BMI and 
fasting glucose, found five branched-chain and aromatic 
amino acids that might significantly predict future diabetes 

i.e.: isoleucine, leucine, valine, tyrosine and phenylalanine. 
A combination of three showed more than fivefold higher 
diabetes risk for individuals in the top quartile, and replicated 
result has been performed in an independent, prospective 
cohort. Thus, we can suggest that amino acid profiles could 
aid in diabetes risk assessment.(112) Additional study in 
this observed, and a lower ratio of circulating glutamine-to-
glutamate concentrations (glutamine/glutamate) in Europe 
population (84,164) proposed for up to 12 years prediction 
of diabetes in the future.
 PGC-1α is an important protein in human known 
to regulate energy metabolism. It induces broad genetic 
programs in skeletal muscles, including mitochondrial 
biogenesis and fatty acid β-oxidation. PGC-1α induces the 
paracrine activation for angiogenesis, by coordinating a link 
for fatty acids transport across plasma and mitochondrial 
membranes, deliver fatty acids to muscle, and also increase 
trans-endothelial fatty acid transport from the blood vessel 
lumen to the extraluminal myofibers, which mechanism is 
not fully understood.
 BCAA comprising up to 30% of muscle protein. Valine 
is one of BCAAs that is essential in dietary components. 
In skeletal muscle as well as many other organs, BCAA 
catabolic flux is tightly regulated. All catabolic products are 
trapped inside the cell by covalent linkage to coenzyme A, 
except for 3-hydroxyisobutyrate (3-HIB). Therefore, 3-HIB 
can be utilized as a secreted reporter of BCAA catabolic flux 
in muscle.(106,112,165) High 3-HIB secretion from muscle 
represents the increased catabolic flux of BCAAs, leads 
to excess trans-endothelial fatty acid import into muscle, 
accumulate the lipotoxic and incompletely esterified 
intermediates, such as DAG, finally blunted insulin 
signaling. Excess BCAA then implicates the progression to 
diabetes. The levels of 3-HIB in skeletal muscle from db/db 
mice, as well as the muscle biopsies from diabetic patients, 
were significantly increased. Some studies also reported 
the increased serum level of 3-HIB in diabetic patients.
(166,167) Taken together, paracrine secretion of 3-HIB in 
the cross-regulatory link between the catabolism of BCAAs 
and fatty acids, causes excess accumulation of incompletely 
esterified lipids in skeletal muscle, which finally blunted 
AKT signaling and glucose intolerance.(168)
 Table 2 shows some examples of metabolites profiling 
on human subjects that have been identified in diabetes 
cases utilizing the metabolomics approaches. In the past 
few years, many metabolomic studies were conducted 
in various countries. Unfortunately, we cannot find a 
metabolite profiling study from Indonesia performed on 
human subjects.

in the inner mitochondrial membrane (139). Thus, choline 
and betaine dehydrogenase pathways might be associated in 
insulin resistance, and could be used to predict the response 
of prevention strategies. Another study showed that dietary 
betaine increase Fgf21 and improve metabolic health in 
mice, suggest that betaine supplementation merits further 
investigation for type 2 diabetes mellitus prevention in 
humans.(141) Table 1 shows some examples of metabolites 
profiling on human subjects that have been identified in 
obesity cases utilizing the metabolomics approaches.

Metabolite Profiles and Risk of Diabetes
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Table 2. Compilation of metabolomic profiling studies on diabetes patients conducted in various countries. 

Sample Analytical Tools Country References

Fatty acids pathway
Fatty Acids (+) Serum GC-MS China (169)
Fatty Acids (+) Plasma LC-MS, GC-MS Singapore (170)
Carnitine (+) Plasma LC-MS USA (108)
Carnitine (-) Plasma LC-MS USA (142)
Acylcarnitine (+/-) Plasma LC-MS USA (171)
Acylcarnitine (+) Plasma LC-MS USA (108)
α-hydroxybutyrate (+) Plasma LC-MS, GC-MS Singapore (170)
3-hydoroxybutyrate (+) Serum GC-MS China (169)
Acetate (+) Plasma LC-MS Germany (172)

Amino acids pathway
Leucine (+) Plasma UPLC-MS Germany (172)
Leucine (+) Serum NMR, LC-MS, GC-MS Germany (173)
Isoleucine (+) Serum NMR, LC-MS, GC-MS Germany (173)
Valine (+) Serum NMR, LC-MS, GC-MS Germany (173)
Methionine (+) Serum GC-MS China (169)
Glycine (-) Serum LC-MS Germany (174)
Serine (+) Plasma UPLC-MS Germany (172)
Phenylalanine (+) Serum LC-MS Germany (174)
Phenylalanine (+) Plasma LC-MS, GC-MS Singapore (170)
Glutamate (-) Serum GC-MS China (169)

Metabolite

Metabolic disorders occur as a result of dysregulation in 
multiple biochemical pathways at the molecular level. 
Disease heterogeneity contributes to drug response 
variability, and getting more complicated with genetic 
variability, environment and gut microbiome activity. 
New approaches were developed to understand drug 
effects. Pharmacometabolomics and its union with 
pharmacogenomics provide new insight to discover new 
biomarkers in clinical pharmacology.(8,175)
 Recent medical treatment refers to “average patients” 
based on one-size-fits-all approached therapy, which 
could be successful for some patients and not for others. 
On January 2015 “President Obama’s Precision Medicine 
Initiative” released by the White House defines precision 
medicine as, “a new model of patient-powered research that 
promises to accelerate biomedical discoveries and provide 
clinicians with new tools, knowledge, and therapies to 
select which treatments will work best for which patients.” 
In a simple statement, precision medicine is an individually-
tailored treatment based on the patient’s illness, given at the 
right time (Figure 4).(176,177)

 The Human Genome Project published a reference 
for human genome sequence (178) contribute big milestone 
in biology research, particular in cancer. Metabolomics in 
the last decade added the understanding of cancer biology. 
Small molecules studied in metabolomics can be formed 
by numerous biosynthetic and catabolic pathways within a 
biological system which present in a cell, tissue, or biofluids 
such as urine, blood, or saliva, originating from host’s 
microbiota, nutrient, and pharmaceuticals intake to describe 
a physiological or pathological condition.(179-182) The 
Human Metabolome Project (HMP) in 2004 equivalent the 
Human Genome Project, archived 2500 small molecules 
produced by metabolic reactions in the body’s tissues 
and biofluids (183) include lipids, sugars, ions, metabolic 
intermediates, and products of biochemical reactions, and 
also proteins, nucleic acids, and cell membranes as the 
building blocks for all other biochemical species. Integrating 
multivariate omics technology including genomics, 
epigenetics, transcriptomics, proteomics and metabolomics 
with advanced computation, statistics and bioinformatics 
will develop mechanistic understanding within molecular 
biology at the genome, gene transcription, protein and 
metabolite levels, respectively.(184)
 Personalized medicine or precision medicine predict 
the safest drug treatments for each person, involving 

Pharmacometabolomics and 
Precision Medicine
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Figure 4. Precision medicine contextualizes data from genome to exposome. Thereby genomic, transcriptomic, proteomic, metabolomic 
and microbiomic data is biomolecular by nature, while epigenomic and exposomic data also takes environmental, biometric and medical 
metadata sources into account.(177) (Adapted with permission from SPIE).

individual’s genetic, or known as pharmacogenetics and/or 
pharmacogenomics.(185-189) In fact, many factors more 
than genetics, such as environmental or some personal 
factors (i.e., the ‘‘exposome’’), alcohol consumption, the 
gut microbiome, nutrients intake, another medications and 
supplements, age,  and other comorbidities (such as obesity, 
cancer, pregnancy) make the clinical implementation 
of pharmacogenomic face lots of challenges.(190-192) 
The determination of individual metabolic state refer as 
“metabotype” (7,193-196) could be employed to define 
someone’s metabolic signatures and provide a better 
prediction of the potential for drug safety issues (197-199), 
together this fields called as pharmacometabolomics (6) and 
pharmacometabonomics (193).
 Pharmacogenomics classify patients as poor or 
rapid drug metabolizers, or responder and non-responder.
(186,200,201) However, patient’s genotype does not 
always have a clear definition of the phenotype or the 
current (patho) physiological state of the individual (190), 
because the genotype cannot describe the environmental 
factors and/or disease-related factors influence. Phenotypic 
status of an individual results from complex factors such 
as demographic, environmental interaction, gut microbiota, 
and any comorbidities, then the endogenous metabolite 
profile describes a snapshot of these all. Metabolomics 
application provides a direct readout of individual 
current state, so it can better explain the inter-individual 

Figure 5. Pharmacometabolomics-informed pharmaco-
genomics.(202) (Adapted from permission from PMC).

variability of drug pharmacokinetic and pharmacodynamic. 
Pharmacometabolomics evaluate the metabolism of 
pharmaceutical compounds of the patients, and better 
understand the pharmacokinetic profile of a drug (Figure 5). 
Study of pharmacometabolomics involving the application 
of pharmacology, includes pharmacokinetics to define 
metabolic influences on the drug concentration reaching its 
target, pharmacodynamics to define metabolic influences on 
target signaling downstream, clinical pharmacology, drug 
discovery and development, clinical trials and precision 
medicine. The application of “metabotypes” sub-classified 
patients based on their metabolic profiles and useful for 
grouping the subjects in trial inclusion (8,202,203). When 
we interplay this baseline to pharmacometabolomic, we 
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Figure 6. Pharmacometabolomics in research (route A) and clinical practice (route B).(206) (Adapted with permission from Springer).

can better define mechanisms of pharmacodynamic and 
pharmacokinetic variation between individual in response 
to drug therapy by measuring endogenous metabolites.
(204–209) Figure 6 shows how pharmacometabolomics in 
research and in clinical practice works.
 In humans and most complex systems, interdependent 
changes in the gene, protein and metabolite levels can 
occur on very different time scales. These become more 
complicated because an intestinal system has an internal 
ecosystem where the host interacting with many species of 
gut microbial organisms (210-212), and also the impact of 
environmental factors making the individual “metabotype” 
individual is highly responsive to time and the environment.
(213) Metabolomic studies can be utilized to examine and  
understand  this  changes  (214-218)  and  improve  the 
therapies selection for particular patient classes, at once 
assess the drugs’ efficacy and toxic side effects.(184,218) 
it can be proposed from recent studies to create a patient 
metabolic phenotyping, together with the prognosis and pre-

treatment metabolic information to predict post-treatment 
outcomes  and  refine  the  strategy  for  personalized 
medicine (4,213).
 Metabolomics give a better understanding about the 
metabolic signatures of diseases and then will provide 
predictive, prognostic, diagnostic, and surrogate markers 
of diverse disease states; expand our understanding on 
underlying molecular mechanisms of diseases; allow for 
stratification of patients based on metabolic pathways 
impacted; reveal biomarkers for drug response phenotypes, 
so we can predict the variation in a subject’s response to 
treatment (pharmacometabolomics) effectively; define a 
metabotype for each specific genotype, offering a functional 
readout for genetic variants: allow us to monitor response 
and recurrence of diseases; and describe the molecular 
landscape in human performance applications and extreme 
environments. Overall, this will change the way we treat 
diseases and find out the optimal therapeutic regiment 
precisely for each individual.(1)
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Conclusion

Metabolome give important opportunities at present 
to revolutionize the strategy of precision medicine. 
Metabolomics  is  potential  to  be  a  key  profile  and 
phenotyping platform to predict patients’ responses 
to different treatments. Equipped with other omics 
methodologies,  metabolomic  develop  a  decision  support 
tool for selecting or recommending optimal treatment 
regimens and lifestyle changes. The goal is by using the 
personalized profiles to enhance the therapy effectivity and 
contribute to better patient outcomes. An integrated omics 
platform in the future will take account to complement 
the next-generation healthcare system, and there is a 
need to develop the methods for absolute quantification 
of metabolites, miniaturized metabolomics instruments, 
enhancing the automated data processing, to boost the 
translation of metabolomics either in new biomarkers 
discovery or in pharmacometabolomics.
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