
 125

Artificial Intelligent in Healthcare (Meiliana A, et al.)
Indones  Biomed J. 2019; 11(2): 125-35DOI: 10.18585/inabj.v11i2.844

R E V I E W  A R T I C L E

Artificial Intelligent in Healthcare

Anna Meiliana1,2,, Nurrani Mustika Dewi2, Andi Wijaya1,2

1Postgraduate Program in Clinical Pharmacy, Padjadjaran University, Jl. Eijkman No.38, Bandung, Indonesia
2Prodia Clinical Laboratory, Jl. Cisangkuy No.2, Bandung, Indonesia  

Corresponding author. E-mail: anna.meiliana@prodia.co.id

Received date: May 17, 2019; Revised date: Jul 3, 2019; Accepted date: Jul 10, 2019

BACKGROUND: Giant transformations are going 
on currently in health care, and the greatest force 
behind this phenomenon is data.

CONTENT: Big data has arrived into medicine field, lead to 
potential enhancement in accountability, quality, efficiency, 
and innovation. Most updated, artificial intelligence (AI) and 
machine-learning (ML) techniques rapidly developed, bring 
forth the big data analysis into more useful applications, 
from resource allocation to complex disease diagnosis. To 
realize this, a very large set of health-care data is needed 
for algorithms training and evaluation, including patients’ 
treatment data, patients respond to treatment, and personal 

patient information, such as genetic data, family history, 
health behavior, and vital signs.

SUMMARY: Precision Health involving preventive, 
predictive, personalized and precise. The arrival of AI 
and ML will enhance and facilitates the improvement of 
this relationship through better accuracy, productivity, and 
workflow, thus develop a health system that will go beyond 
just curing disease, but further into wellness that preventing 
disease before it strikes, thus the patient–doctor bond is 
expected to be reformed and not be eroded.
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Abstract

Introduction

Demographic, economic and technological count their 
own role in health care, and any changes are forcing us to 
reconsider its delivery, funding models, education, scientific 
innovation, how it affect the physician, pharmaceutical 
companies, payors and patients.(1) The health care circle 
growing to a bigger and more complex connection each 
other, at once send a challenge message for us whose job is 
to heal, innovate and educate.(1) Recently, two major facts 
are plastered in medicine face. The first is a failed business 
model, while expenditures and job demands keep increasing 
in healthcare, the key outcomes deteriorate. Life expectancy 
reduced, infant, childhood, and maternal mortality keep 
high. The second is data generation in massive quantities, 
from high-resolution medical imaging, biosensors with 

continuous output of physiologic metrics, genome 
sequencing, and electronic medical records.(2) In deeper 
observations, an enormous of resources wasted, a large 
number of serious diagnostic errors and mistaken treatments 
occurred, due to inefficiencies in workflow, inequities, 
and inadequate time between patients and clinicians.(3,4) 
Eager for improvement, leaders in healthcare and computer 
scientists have asserted that artificial intelligent (AI) might 
be utilized in addressing all of these problems.(2)
 AI typically refers to a machine with human 
capabilities. Some activities such as speech recognition, 
learning, planning, and problem solving can be designed 
for AI.(5) The widespread growth of big data supporting 
AI in industry offers a preview of their promise and 
peril in medicine and biomedical research, help guide 
clinical decisions is a central aspect of precision medicine 
initiatives; machine learning (ML) may refer either to a 
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Figure 1.  Data’s impact throughout 
each step in the health care cycle: 
from medical research, to daily life, 
to the patient experience, to ongoing 
care, to prediction and prevention.
(9) (Adapted with permission from 
Stanford Medicine).

Medical Big Data

set of computational and statistical tools for identifying 
relationships in data or to the use of such tools to make 
predictions based on data; and deep neural networks (DNN) 
are a particular type of ML whose success at tasks, such 
as image recognition, has led to them being referred to 
as AI or deep learning (DL).(5) To realize such potential 
gains, clinicians will need to acquire a basic knowledge of 
the workings of ML and AI to evaluate new developments 
and use the tools they make possible, just as in interpreting 
the results of clinical trials and in conducting research.(5) 
AI will increase efficiency, take over many routine tasks, 
and provide a first and last set of eyes. Our medical teams 
will become increasingly multidisciplinary and consist of 
clinicians, engineers, and data scientists.(6) We remain 
optimistic that big data and AI will transform our lives as 
clinicians and researchers. It has the potential to reduce the 
time we spend on cumbersome tasks, warn us about signs 
of trouble, help catch potential errors, and free us to provide 
higher quality, lower cost care.(7)

Data collection systems has grown in advances for the last 
decade, as well as our ability to effectively analyze and 
understand it. Nowadays, information become easier to 
collect, analyze and understand. At some point, the data 
grow massively big and complex, to be dealt traditionally, 

while we know that today, data is a powerful force driving 
many industries including health care forward.(1) Big data 
refer to extremely large data sets that may be analyzed 
computationally to reveal patterns, trends, and associations, 
especially relating to human behavior and interactions. It 
is often defined by ‘3Vs’: volume (large amounts of data), 
velocity (high speed of access and analysis), and variety 
(substantial data heterogeneity across individuals and 
data types).(8) Big data is helping every industry become 
more efficient and productive in quality and cost, therefore 
improve outcomes and achieve new solutions (as cited from 
“How Big Data Keeps Transforming Healthcare,” LinkedIn, 
May 2017; “Biomedical Data Science Initiative,” Stanford 
news, July 2015) (Figure 1).(1,9)
 Medical data grows fast, estimates 48% each year. 
Computing power and technical ability boost the remake of 
medical field with the influx of big data in advanced ways 
never thought before.(1)  It has been long expected that big 
data will substantially improve health care, but why does it 
matter? So far, big data research application have been put 
into two rough groups: long-practiced analysis approaches 
and newer methods using machine learning and AI.(10) 
In such a way, big data can be used as a powerful tools 
to promote health care improvement (11), by tidying up 
remains relatively untracked and under-analyzed records, 
hope to mend current ineffective treatment, substantial 
waste, medical error, and the systemic improvement by 
more understanding what works and what doesn’t (12). 
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Big data can be leveraged to measure hospital quality, 
as in the Centers for Medicare and Medicaid Services’ 
Hospital Inpatient Quality Reporting program (13); to 
develop scientific hypotheses, as in proliferating genome-
wide association studies (14); to compare the effectiveness 
of different interventions, as in the Patient Centered 
Outcome Research Institute (http://www.pcori.org); and to 
monitor drug and device safety, as with the Food and Drug 
Administration (FDA) Sentinel system (15).
 Applying AI methods in big data, catch the pattern 
to make predictions and recommendations, is rapidly 
developing either in clinics or in daily life.(16,17) The 
popularity of wearable devices, such as pedometers and 
heart rate monitors, is exploding. Various types of home 
testing, including digitized glucose tests, blood pressure and 
genetic testing, are allowing individuals to take own control 
of their health, supported with many consultation tools in 
many websites. Thus, long before patients see the doctors, 
they have already their own day-to-day health data records.
 More advanced in clinical applications involves image 
analysis equipped with algorithms make it possible to 
identify cancerous skin lesions from images as accurately as 
trained dermatologists1.(18) IDx-DR system even received 
FDA approval for image-based AI diagnosis of diabetic 
retinopathy. Furthermore, AI can be used for prognostic 
purposes so immediate intervention can be done (19), or 
when a patient is very likely to die in within short time then 
might consider shifting from traditional care to palliative 
care (20). On other side, the new age of health care also 
creates a tension regarding the data sharing. Some experts 
agree that infrastructure and policies encouraging the 
essence of sharing of data to maximize its benefits, while 
the others care about cybersecurity attacks and patients’ 
privacy. Thus it’s remain to be solving how to get benefit 
from public data sharing while ensuring the safe and secure 
of patient information.(21)

Electronic Health Record (EHR)

A medical record is narrow contains the patient’s medical 
history, diagnoses and treatments by a particular physician, 
nurse practitioner, specialist, dentist, surgeon or clinic while 
an EHR is more comprehensive, an individual’s shareable 
official health document that could be accessed via mobile 
devices such as smartphones and tablets. EHR comprise of 
demographic information, diagnoses, laboratory tests and 
results, prescriptions, radiological images, clinical notes, 
and more relevant patient information.(22) More than 

improving operational efficiency, some studies found more 
application based on EHR in hospital and ambulatory care 
setting, especially compared to the traditional paper way 
or medical and health recording, EHR give benefits over 
time saving, environment saving by reducing papers, costs 
lowering, easier access, and reducing concerns regarding 
illegibility.(23-26) 
 Since 15 years ago, foundation of AI has been laid 
in healthcare for innovation, started from digitalization 
the medical data record for large numbers of patients 
and asymptomatic individuals (27), and improving the 
hardware with powerful computing platforms based on high 
performance computing and cloud computing, especially 
in graphics processing units (28). In particular, the patient 
data contained in EHR systems has been used for such tasks 
as medical concept extraction (29,30), patient trajectory 
modeling (31), disease inference (32-33), clinical decision 
support systems (34), and more. The application of these 
improvement help hospitals and clinics to minimize errors, 
improve care coordination, and provide more data for 
researchers.(35) In terms of functionality, EHR systems 
can be categorized into: basic EHR without clinical notes, 
basic EHR with clinical notes, and comprehensive systems.
(25). Basic EHR at least provide the information of patient’s 
medical history, complications, and medication usage. 

Machine Learning  and Deep Learning 

Digital medicine, defined as applying digital tools in the 
practice of medicine to improve one to be high definition 
and individualized, holds promise in revolutionizing 
healthcare and patients adherences. The revolution core is 
the development of processing and integrating vast amount 
of individual data at the population levels and utilize them 
to address the health problems and challenges faced by 
patients, clinicians and health systems alike.(36) Some 
industries come out with smarter choices, Amazon use the 
basis of similar customers’ shopping patterns to targets 
product recommendations. Google updates its search results 
using the outcomes of previous searches as a basis. Waze 
optimize the directions suggestion uses information from 
drivers traveling similar routes.(37)
 Much attention has been devoted recently to the 
development of ML algorithms with the goal of improving 
treatment policies in healthcare.(38) Different from other 
computer, ML transforms the algorithms input into outputs 
using  statistical, data-driven rules that are automatically 
derived from a large set of examples, rather than being 
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Figure 2. A deep neural network, simplified.(40) (Adapted with permission from Springer Nature).

explicitly specified by humans. Traditionally, ML algorithm 
input must be hand-crafted from raw data by a practitioner 
domain expertise and human engineering who have 
knowledge to determine explicit patterns of prior interest, 
to design feature extractors that transformed raw data into 
suitable representations from which a learning algorithm 
could detect patterns. The engineering process is laborious 
and time consuming, subjectively depend on the ”black art” 
(39), requiring creativity, trial-and-error, and oftentimes 
luck for creating, analyzing, selecting, and evaluating 
appropriate features. 
 DL techniques in contrast, is a form of representation 
learning. The machine learn optimal features directly from 
the data itself, without any human guidance, allowing for 
the automatic discovery of latent data relationships and 
pattern recognition, which is composed of multiple layers 
of representations, that might otherwise be unknown or 
hidden. These layers are typically arranged sequentially 
and composed of a large number of primitive, nonlinear 
operations. At the beginning one layer is represented by 
the raw data input, then it is fed into the next layer and 
transformed into a more abstract representation. The data 
flows through the layers of the system, while the input 
space becomes iteratively warped until data points become 
distinguishable (Figure 2). Finally based on this manner, 
highly complex functions can be learned.(40)
 DL performed a deeper hierarchical feature 
construction and in effective manner capturing long-
range dependencies in data (41), this approach achieved 
great success applied EHR data for clinical informatics 
tasks (42-44) compare to traditional methods, and showed 
better performance while require less time-consuming 
preprocessing and feature engineering (Figure 3).(45)

 As a subfield of ML, DL shown a dramatic resurgence 
in the past 6 years, especially supported by increases 
in computational power and datasets. The machine in 
advances showed its ability to understand and manipulate 
data, including images (46), language (47), and speech (48). 
Healthcare and medicine have their benefits by generated 
vast amount of data (150 exabytes or 1018 bytes in United 
States alone, growing 48% annually (1)), impact on the 
increasing proliferation of medical devices and digital 
record systems.(40)
 The ability to classify images and detect objects in a 
picture significantly improved along with the development 
of convolutional neural network (CNN) layers, involving 
application of multiple processing layers to which image 
analysis filters, or convolutions.(49-50). CNN replaces 
the multiple steps of previous image analysis methods. It 
represent the abstract images by constructing each layer 
systematically, convolving multiple filters across the image, 
producing a feature map that is used as input to the following 
layer. This image processing take image pixels as input, and 
the image classification as output (Figure 4).(51)
 Majority DL algorithms was built upon the framework 
of artificial neural network (ANN). While only the last 
layer of a CNN is fully connected whereas in ANN each 
neuron is connected to every other neurons, as ANNs 
are composed of a number of interconnected nodes 
(neurons), arranged in layers.  Neurons  not  contained  in  
the  input  or  output  layers are referred  to  as  hidden  
units.  Every hidden unit stores a set of weights which are 
updated as the model is trained.  Using DL methodologies, 
predictive models are keep improving, with ambitions 
to equal the human interpretability, since correct clinical 
decision-making determining the patients’ fate, though 
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Figure 3. The most common deep learning architectures for analyzing EHR data.(45) (Adapted with permission from Association for 
Computing Machinery Inc).

some researchers accentuate the model performance and 
downplay the importance of interpretability. Currently, 
life-or-death decisions from systems is only marginal 
improved in accuracy over a human practitioner, but it 
warrant greater transparency than systems with near-perfect 
accuracy, or those with lower stakes. The transparency in 
deep learning will hasten the widespread adoption of such 
methods in clinical practice. Thus, we expect deeper EHR 
interpretability in the future.(45)
 Physicians need to understand about the genetics 
of disease to recommend treatments and provide more 
accurate diagnoses. However, novel variants in a patient’s 
genome which is medically relevant needs more prediction 
on mutations pathogenicity, and this will need features like 
protein structure and evolutionary conservation to train 
learning algorithms.(52) DL techniques with their greater 
power and ability to effectively integrate disparate data 
types, are likely to provide more accurate pathogenicity 
predictions than are possible today.(53) ML perform a 
phenotype prediction from genetic data, including diseases 
risk. DL with additional modalities such as medical images, 
clinical history, and wearable device data can enhance such 
models.(54) A particularly promising approach to phenotype 
prediction is to feed the intermediate molecular phenotypes 
prediction (e.g., gene expression or gene splicing) into 
downstream disease predictors.(55) It is easier to predict 

intermediate molecular states than human traits due to its 
larger, more proximal signals and more extensive training 
data, make it a good fit for DL, which has shown success 
at predicting splicing (56) and transcription factor binding 
(57). DL as an improvement iteration of ML, with huge 
medical data repositories and advanced learning algorithms 
together with physicians put together is now performing at 
state-of-the-art levels in previously difficult tasks, identify 
patterns in sparse, noisy data and requires little input-feature 
engineering, including image analysis, language processing, 
information retrieval, and forecasting. Future physicians 
armed with DL from models continuously trained and 
updated on real-world clinical data will possible to make 
accurate diagnoses and individually optimized treatment 
decisions.(37)

Artificial Intelligence

AI implementation grows rapidly in many industries 
including healthcare industries. it was expected to augment 
the ability of humans to provide healthcare, mimic the 
diagnostic abilities of physicians.(47,51) AI involves the 
development of computer algorithms, including but not 
limited to ML, representation learning, DL, and natural 
language processing to perform tasks typically associated 
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Figure 4. Schematic of a Convolutional 
Neural Network.(51) (Adapted with 
permission from Elsevier).

with human intelligence.(41) Despites of the techniques used 
here, involving this technology in medicine aims to harness 
computer algorithms to uncover relevant information from 
data and use it to assist clinical decision-making, from 
diagnosis generation and therapy selection, making risk 
predictions and stratifying disease, reducing medical errors, 
and improving productivity.(58-60) AI is more reliable 
in terms greater consistency, speed, and reproducibility 
than humans, so AI have a chance in human replacement 
scenario, but unlikely to replace the entirely system. AI 
can be applied in estimating bone age on radiographic 
exams (61), diagnosing treatable retinal diseases on optical 
coherence tomography (51,62), or quantifying vessel 
stenosis and other metrics on cardiac imaging (63). Tasks 
automation using AI can incredibly saving labor and time, 
and the human capital may be freed for an improved used. 

Studies have demonstrated better results by synergizing 
clinicians and AI work together. Clinicians augment real-
time clinical decision support, resulting in improved efforts 
toward precision medicine with help of AI.(64-66) Table 1 
shows some AI that have been approved by FDA.
 AI algorithms implementation has been effectively 
proven in many clinical settings, such as facilitating 
stroke, autism or electroencephalographic diagnoses for 
neurologists (67,68), helping anesthesiologists avoid low 
oxygenation during surgery (69), diagnosis of stroke or 
heart attack for paramedics (70), finding suitable clinical 
trials for oncologists (71), selecting viable embryos for 
in vitro fertilization (72), help making the diagnosis of a 
congenital condition via facial recognition (73) and pre-
empting surgery for patients with breast cancer (74). Using 
AI, 250 images could be processed per day for the cost of 
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Table 1.  FDA AI approvals are accelerating.(2) (Adapted with 
permission from Springer Nature).

Figure 5. Examples of AI applications across human lifespan.(2) (Adapted with permission from Springer Nature).

about $1,000 (75), representing time and cost saved. AI-
assisted image interpretation can improve the workflow, 
reduce workforce for administrative jobs such as coding 
and billing, scheduling of operating rooms and clinic 
appointments, and staffing, finally increase the productivity 
(Figure 5).(2)

Artificial Intelligence in Medical Practice

DL, known as a type of ML models consisting of 
interconnected nodes called neurons arranged in a network 

layout, inspired by how human brains works and connected. 
Neurons in DL. Mimicking human brains, a neuron in DL is 
a mathematical approximation of a biological neuron, which 
transforms the data input to an output value. In Figure 6, 
electrocardiogram (ECG) input activated the DL neurons, 
processing it to classify heart rhythms and impaired left 
ventricular systolic function.(28,76,77) By predicting the 
outcome faster, theoretically, hospital care resources can be 
more efficient and precise managed, including the patients 
discharge.(2)
 Some DL algorithms has been FDA approved, enable  
the  public  to  take  their  healthcare   into  their own hands. In 
2017, a smartwatch algorithm using photoplethysmography 
and accelerometer sensors was FDA-cleared to detect atrial 
fibrillation, and subsequently in 2018 the Apple Watch 
Series 4 approved.(78,79) The devices learn user heart rate 
at rest and with physical activity, equipped with a haptic 
warning to record an ECG via the watch when a significant 
deviation noticed. Recorded ECG will accurately detect 
whether there is high potassium in the blood, give benefits 
for patients with kidney diseases.(2) Smartphone apps AI 
for medical adherences also developed rapidly, including 
skin lesions and rashes, ear infections, migraine headaches, 
and retinal diseases such as diabetic retinopathy and age-
related macular degeneration.  AiCure (NCT02243670) 
demand the patient to take selfie video as they swallow 
their prescribed pill. Other apps use image recognition of 
food for calorie and nutritional content, with multimodal 
data AI guide an individualized diet and has a chance to be 
developed into a personal medical coach in thef uture.(80) 
The matchmaking apps has been reformed to matchmaking 
doctors and patients with higher levels of trust.(81)
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 One study recorded a continuous sensing of blood-
glucose (for 2 weeks) along with assessment of the gut 
microbiome, physical activity, sleep, medications, all food 
and beverage intake, and a variety of lab tests, and apply 
the data to predict the individual glycemic response to 
specific foods, a physiologic pattern that is remarkably 
heterogeneous among people and significantly driven by 
the gut microbiome.(82-84). Calibrated continuous glucose 
sensors will precede the need for finger-stick glucose 
calibrations, and give an interesting fact that post-prandial 
glucose spikes commonly occur, even in healthy people 
without diabetes (85,86), suggesting an association with 
gastrointestinal barrier dysfunction (87,88) in experimental 
models.
 The latest challenge encounter by ML and DL 
recently is the analytics of genomic and other -omics 
biology datasets. Open-source algorithms mostly in single 
-omic approach are available for classifying or analyzing 
whole-genome sequence pathogenic variants (89-91), 
somatic cancer mutations (92), gene–gene interactions (93), 
RNA sequencing data (94), methylation (95), prediction 
of protein structure and protein–protein interactions (96), 
the microbiome (97), and single cells (98). Facilitates by 
algorithmic prediction of CRISPR guide RNA activity (99) 
and off-target activities, multi-omic algorithms has been 
developed and integrate the datasets (100). AI also transform 
the drug discovery in many levels, including biomedical 
literature searching, data mining of millions of molecular 
structures, designing and making new molecules, predicting 
off-target effects and toxicity, predicting the right dose for 
experimental drugs, and developing cellular assays at a 
massive scale.(101-104) Animal testing may be reduced by 
the implication of ML prediction of toxicity (105), and AI 
cryptography make it possible to combine large proprietary 

pharmaceutical company datasets and discover previously 
unidentified drug interactions (106).
 As promising as it was, AI still face some obstacles 
and pitfalls, especially when it comes to validation and 
readiness for implementation in patient care. A recent 
example is IBM Watson Health’s cancer AI algorithm 
(known as Watson for Oncology). Based on n a small 
number of synthetic, non-real cases with very limited input 
(real data) of oncologists, this algorithms have been used by 
hundreds hospitals around the world, sending many error 
output for treatment recommendations, such as suggesting 
the use of bevacizumab in a patient with severe bleeding, 
which represents an explicit contraindication and black 
box warning for the drug.(107) We expect for software that 
will ingest and meaningfully process massive sets of data 
quickly, accurately, and inexpensively also for machines 
that will see and do things that are not humanly possible. 
This will ultimately lay the foundation for high-performance 
medicine, truly data driven, reducing our dependences in 
human resources, and the symbiosis should take us beyond 
the sum of the parts of human and machine intelligence, and 
lastly is realistic to be implemented widely.(2)

Will AI replace doctors and researchers? No, but a clinician 
who uses AI will replace clinicians who do not. Provided 
big data along with enhanced computing power, the 
availability of cloud storage, has enable the implications 
of  AI  and  DL  including  in  healthcare  industry.  For  
the beginning, clinicians benefit from rapid and accurate 
image interpretation, the health system improved their 
workflow and reduced medical errors, and patients enable 

Conclusion

Figure 6. A deep neural network approach for analyzing electrocardiograms.(28) (Adapted with permission from Springer Nature).
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