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Abstract

Introduction

Within tissues, cells coordinating need a proper 
communication. Different cell types can communicate 
each other by soluble factors (1), cell-to-cell interactions 
mediated by adhesion molecules including cytonemes that 
connect neighboring cells for exchange surface-associated 
molecules, or by tunneling nanotubules that establish 
conduits between cells which more than only transferring 
surface molecules but also cytoplasmic components.(2,3)
	 Extracellular vesicles (EVs) are a heterogeneous 
collection of membrane-bound carriers release from a cell 
with complex cargos, including proteins, lipids and nucleic 
acids (e.g., cell specific antigens, surface markers, adhesion 
molecules, ligands, receptors, enzymes, micro RNAs 
(miRNAs), long non-coding RNAs (lncRNAs), messenger 

RNAs (mRNAs), growth factors, etc.).(4-6) EVs consist 
of exosomes and microvesicles, which originate from the 
endosomal system or which are shed from the plasma 
membrane, respectively.(7) For a long time, microvesicles 
regarded as inert cellular debris or as the consequence of 
cell damage or the result of dynamic plasma membrane 
turnover, until recently some studies suggested them to be 
involved in cell communication.(8,9) In the last decade, 
many studies in physiology and diseases considered EVs as 
significant factors in inflammation and immune responses, 
antigen presentation, cancer progression and metastasis, 
immunomodulation, coagulation, tissue regeneration, organ 
repair, cell-cell communication, senescence, proliferation 
and differentiation in the body (10-12). 
	 Exosomes perform many stimulatory or inhibitory 
functional outcomes including cell proliferation, apoptosis, 
cytokine production, immune modulation, and metastasis, 
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R E V I E W  A R T I C L E

BACKGROUND: Mesenchymal stem (stromal) 
cells (MSCs) have a multipotent character, able 
to differentiate into several cell types, thus MSC 

serve as  a  cell  reservoir  for  regenerative  medicine. 
MSC therapeutic potency more associated to their 
immunosuppressive and anti-inflammatory properties rather 
than the multipotency, by its mechanism to secrete soluble 
factors with paracrine actions.

Content: MSC paracrine function was known to 
mediated partly by extracellular vesicles (EVs), which were 
released predominantly from the endosomal compartment 

contained in MSC secretome. EV contain a cargo bring 
micro RNA (miRNA), messenger RNA (mRNA), and 
proteins from  their  cells  of  origin,  propose  EV  as  a  
novel alternative to whole cell therapies, regarding the 
benefit of EV in safety and easier storage compared to the 
parent cells.

Summary:  The discovery of EVs including exosomes in 
MSC secretome as key of stem cells beneficial function lead 
to the future hope of using cell-free regenerative therapies.
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as their bioactive cargo is capable to modify the activity 
or properties of specific target cells.(13-17) Despite of the 
conventional one, exosomes add an alternative mode of 
paracrine and endocrine communication strategies of direct 
cell-cell contact and soluble, receptor-targeted hormones 
and cytokines.(18) Therefore, exosomes are proposed to 
play an important albeit role in human physiology and 
homeostasis, pathogenesis of major human diseases, and 
also become a promising source of disease-associated 
biomarkers and outright may be used as cell-free delivery 
vectors for targeted biological therapies.(19,20)
	 Regenerative medicine aims to restore any damaged, 
malfunctioning, or missing tissue. There are currently 
three approaches in regenerative medicine: first, cell-based 
approach, where cells are directly administered to restore 
a tissue through the cells themselves and/or the cells’ 
paracrine functions; secondly, classical tissue engineering, 
using a combination of cells and a biodegradable scaffold to 
form a tissue; and lastly material-based approaches, which 
rely on bio-degradable materials, often functionalized with 
cellular functions.(9) Increasing evidences support that 
many observed effects of stem cell therapies were employed 
by the cells’ secretion products like growth factors and 
cytokines, and implanted cells alone cannot survive for long 
without bioactive factors they produce.(6-9) This secreted 
paracrine factors drag a major interest to discover new 
therapeutics that stimulate local tissue regeneration and in 
tissue engineering as well.(21-23) 

have an endosomal origin, compare to larger microvesicles 
(100 nm-1 mm) and apoptotic bodies (1-5 mm) result 
from the direct outward budding and fission of the plasma 
membrane.(30-32) Figure 1 shows the assembly, release 
and action process of EVs. 
	 Typical exosomal marker proteins are tetraspanins 
such as cluster of differentiation (CD)9, CD63, and CD81; 
cytoplasmic proteins such as actin, annexins, and Ras-
associated binding (RAB) proteins; MVB biogenesis 
molecules such as Alix and tumor susceptibility gene 
(TSG)101, also heat-shock proteins such as heat shock 
protein (HSP)70 and HSP90.(33-36) Other components 
defined in exosomes can also be cell-type specific such as 
~1300 mRNAs (i.e., about 10% of mRNAs from the parent 
cells) and 120 miRNAs, various other types of RNAs and of 
double-stranded DNA fragments, phospholipids which form 
the lipid bilayer, identified as about 3500 proteins and 2000 
lipid species.(37-43) The presence of so many molecules is 
not in one single vesicle  but  instead  those  bulk  materials  
were  represented in several populations of microvesicles or 
exosomes as an exosome pellet or a microvesicle pellet.(41-
44). So, there may be some distinct biogenesis pathways for 
different populations.(45)
	 More recently, another pathway for exosome 
biogenesis was characterized which involving the 
syndecan/syntenin complex and requires the activity of the 
phospholipase D (PLD)2.(16) PLD2 inactivation prevents 
the MVBs intraluminal vesicles formation (Figure 2). PLD2 
is activated by the small G protein Arf6, and PLD activities 
known to coordinate the process between exosomes 
and microvesicle formation. Arf6 activity involved in 
microvesicle formation by leading to the localization of the 
myosin-light chain kinase at the neck of the newly forming 
vesicles, to promote the fission to release them from the 
plasma membrane.(22)
	 The protocol for reticulocyte exosomes purifying 
first developed to separate exosomes from tissue culture 
conditioned medium (46,47) and then improved to purify 
these vesicles from antigen-presenting cells based on 
differential centrifugation, where the smallest vesicles 
(including exosomes) are sedimented by ultracentrifugation 
at 100,000×g.(7,37,43) However, the ultracentrifugation 
is not a proper purification, because it open the possibility 
for other vesicles with similar size as protein aggregates. 
Many current commercially available methods without 
ultracentrifugation claims to be fast and simple, either 
(presumably) by polymer-based precipitation or 
immunocapture by antibody-coated beads. Nonetheless, 
these new tools still need to be validated for any kinds 

EVs consist of exosomes, microvesicles (also known as 
shedding vesicles, ectosomes, and nanoparticles) and 
apoptotic bodies, with different size and biogenesis. By some 
stimulus, cell plasma membrane inwardly budding to form 
early endosomes. The late endosomes then subsequently 
form multivesicular bodies (MVBs) through characterized 
pathway that relies on endosomal-sorting complexes required 
for transport (ESCRT). ESCRT helps in MVBs invagination 
and cleaving the buds to form intraluminal vesicles (ILVs). 
During this process, certain proteins are incorporated into 
the invaginated membrane, later generating the parent cells’ 
reflection in exosomes.24-29 Most ILVs are released into 
the extracellular space upon MVBs fusion with the plasma 
membrane, which are referred to as exosomes. Exosomes 
are the smallest EVs, with a diameter of 30-150 nm, and 
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Figure 1. Assembly, release and action 
of EVs.(18) (Adapted with permission 
from Elsevier).

of vesicles were precipitated.(7) Overall composition of 
extracellular vesicles is shown in Figure 3.
	 Exosomes are secreted by various cell types including 
immune cells, neural and stem cells to interact with other 
cells, involved in many physiological processes such as 
antigen presentation (48), transfer of RNA (13) or tissue 
repair (49), resulting in physiological changes (48). This 
explain exosomes and its associaton with the progression 
of disease conditions including neurodegenerative disease, 
cardiovascular diseases and cancer (50-53), raising the 
interest to isolate exosomes as the active components of 
conditioned medium from human embryonic stem cell-
derived MSC (49). Clinical studies performed the injection 
of dendritic cell-derived exosomes in melanoma patients 
showed tumor regression and long-term stabilization.(28)  
Exosomes first time proved to be used as delivery vehicle 
for nucleic acid cargos was exploited recently during 
Alzheimer’s disease.(54,55)

Stem Cells in Regeneration Medicine

Regenerative medicine is defined as various approaches 
and actions to replace lost tissues with new tissues/cells 

or enhance regeneration of damaged tissues in a broad 
spectrum of indications (e.g., myocardial infraction, 
osteoarthritis, lung diseases, acute kidney injuries, chronic 
wounds, muscular dystrophies, bone and cartilage defects, 
etc.).(9,10,56-58) There are different strategies towards 
tissue/organ regeneration, from cell transplantation to 
utilizing  biomaterials  alongside  stem  cell  therapy,  which 
are called tissue engineering.(59) 
	 Mesenchymal stem (stromal) cells (MSCs) are 
multipotent, non-hematopoietic adult stem cells, with 
the potential to differentiate and/or transdifferentiation 
into osteoblasts, chondrocytes, and adipocytes as well as 
endothelial, cardiovascular, and neurogenic cell types, 
thus appeared to be the plausible solution for tissue repair 
and wound healing.(60-63) MSCs can be isolated from 
bone marrow (BM), umbilical cord, placental or adipose 
tissue, with the capacity for ex vivo expansion and ethical 
acceptable.(61-64) Despite of their direct role in tissue 
regeneration, the potency of MSC found to associated with 
its anti-inflammatory and/or immunosuppressive properties, 
as demonstrated by some studies that the differentiation 
capability of MSCs did not predominant the mechanisms 
for promoting or repairing the tissue damage in most disease 
but instead they found a short-lived paracrine mechanisms 



116

The Indonesian Biomedical Journal, Vol.11, No.2, August 2019, p.113-24 Print ISSN: 2085-3297, Online ISSN: 2355-9179

Figure 2. Lipid-related partners of exosome and microvesicle biogenesis.(45) (Adapted with permission from American Society for 
Biochemistry and Molecular Biology).

among MSCs therapeutic actions.(65-69) Extensive studies 
explore more MSCs use as regenerative agents in spinal 
cord injury, multiple sclerosis, Alzheimer’s disease, liver 
cirrhosis and hepatitis, osteoarthritis, myocardial infarction, 
kidney disease, inflammatory bowel disease, diabetes 
mellitus, knee cartilage injuries, organ transplantation, and 
graft-versus-host disease (http://www.clinicaltrials.gov; 
accessed November 2014).(66)
	 In acute kidney injury (AKI), MSC administration 
give their benefit not for differentiating into a tubular 
or endothelial cell phenotype, but by increasing anti-
inflammatory regulation and organ-protective mediators 
including interleukin (IL)-10, basic fibroblast growth 
factor (bFGF), transforming growth factor (TGF)-α, and 
B-cell lymphoma 2 (Bcl-2).(70) The paracrine nature of 
cytoprotection in the immediate vicinity of administered 
MSCs in AKI. In this study, the renotropic factors, 
(hepatocyte growth factor, and insulin-like growth factor 
1) induced by MSCs, showed to decrease apoptosis and 
stimulate proliferation of renal epithelial cells.(71) However, 
the precise mechanism of MSC’s paracrine fashion is not 
fully understood. Some data suggested an array of soluble 
factors and large numbers of extracellular vesicles (EVs) 
released by MSCs, bring up possibilities that EVs to some 
degree, mediating the communication between exogenously 
administered MSCs and other stem cells and generating the 
complex paracrine regenerative actions.(72-74)

Many growing evidences supported the MSCs paracrine 
actions in improving their positive clinical outcome, along 
with the findings of a wide range of chemokines, cytokines, 
growth factors and EVs secreted by MSCs, collectively 
termed as secretome which involved in cell viability, 
proliferation, angiogenesis, and immune responses.(75) The 
secretome is defined as the set of factors/molecules secreted 
to the extracellular space.(76-83) Secretome of individual 
cells and tissues is specific, and changes in response 
to fluctuations in physiological states or pathological 
conditions.(23,84) 
	 MSC secretion also including vascular endothelial 
growth factor (VEGF), insulin-like growth factor (IGF)-
1, bFGF, (TGF-b1), nerve growth factor (NGF), placental 
growth factor (PGF), stromal-derived growth factor (SDF-
1/CXCL12), monocyte chemo-attractant protein-1 (MCP-
1/CCL2), IL-6, IL-8, IL-10 and IL-13.(85-88) Different 
population of MSCs can secret different secretome, for 
instance adipose-derived MSCs were reported to have 
higher mRNA expression of VEGF-D, IGF-1 and IL-
8, while dermal sheath and dermal papilla-derived cells 
secreted higher concentrations of CCL2 and leptin.(89) 
placenta-derived MSCs increased expression levels of  

Therapeutic Potential Of 
The MSC Secretomes
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Figure 3. Overall composition of EVs.(7) (Adapted with permission from Annual Reviews). MHC: major histocompatibility complex; 
MFGE8: milk fat globule-EGF factor 8; ESCRT: endosomal-sorting complexes required for transport; LAPM: ysosome-associated 
membrane glycoproteins; TfR: transferrin receptor; RAB: Ras-associated binding; ARF: ADP-ribosylation factor.

hepatocyte growth factor (HGF), bFGF, IL-6, IL-8, IL-1a 
and IL-1b, while in bone marrow-derived MSC VEGF-A, 
NGF and angiogenin were higher.(90) The MSC secretome 
therefore has great potential as a regenerative therapy for 
stroke due to their potency in promoting angiogenesis and 
neurogenesis, prevent apoptosis and modulate inflammatory 
responses so many attempts were taken to enhance the MSC 
secretome (Figure 4).(75)
	 There are some advantages in using cell-free therapies 
such as MSC-sourced secretome in regenerative medicine 
compared to the stem-cell itself, i.e., secretome application 
regards to be safer related to transplantation of living and 
proliferative cell populations in the matter of immune 
compatibility, tumorigenicity, emboli formation and the 
transmission of infections; the evaluation protocol for 
safety, dosage and potency of MSC-sourced secretome 
can be done following to conventional pharmaceutical 
agents; secretome can be stored for a long period without 
potentially toxic cryopreservative agents or loss of product 
potency (91-93); it is more economical and practical and 

avoids invasive cell collection procedures (94); possible for 
tailor-made mass production, providing a convenient source 
of bioactive factors; has lower cost and time for production, 
thus off-the-shelf secretome therapies could be immediately 
available for treatment of urgent conditions such as cerebral 
ischemia, myocardial infarction, or military trauma; 
and the biological product is available for modification 
adjust to desired therapeutic cell-specific effects.(23) By 
preventing cell apoptosis, modulating the inflammatory 
response and promoting endogenous repair mechanisms 
such as angiogenesis and neurogenesis, MSC secretome can 
promote tissue repair.(75)

Prospect of MSC Conditioned Medium 
in Regenerative Medicine

Cell-based therapy using stem cells is a promising option 
for treating ischemic diseases, including ischemic heart 
diseases and chronic limb ischemia.(95,96) However, 
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Figure 4. Summary of in vitro approaches that have been utilized to enhance the therapeutic potential of mesenchymal stem cell 
secretome.(75) (Adapted from Sage Publication)

the cell-based therapy efficacy was limited by the  poor 
engraftment (97,98) and the potential cancer risk after stem 
cell transplantation (99,100). Here, stem cell conditioned 
medium (CM) offers a solution for a safer option.(101)
	 Recent evidences showed that even the secreted factor 
(i.e., secretome, microvesicles, or exosomes) alone without 
the cell may repair damaged tissue in various conditions. 
The use of secretome found in the medium where the stem 
cells are cultured, or so called CM have advantages more 
than what we have mentioned before, as it is devoid of 
cells; there is no need to match the donor and the recipient 
to avoid rejection problems.(102) The use of CM for 
therapy is very appealing and may be booming in the near 
future, as studies on the use of CM for various diseases are 
accumulating.(101,103-105) The fact that stem cells secrete 
various growth factors was also shown by various proteomic 
studies, which revealed the presence of various growth 
factors and other cytokines in the CM.(106-109) To use CM 
for various human diseases, production method of the CM 
needs to be standardized in terms of the type and number of 
cells that were needed to produce the CM, culture medium 
and condition, and CM processing. In addition, the volume 
and mode of delivery are also important. As various studies 
used various numbers and type of cells and various doses of 
CM, it is important to know the number of cells that yielded 
the CM for one application, which may be interpolated for 
human studies.

	 In addition, for translation into patients, it is very 
important to analyze and to note the various cytokine contents 
of the various conditioned media. Further, for every CM 
with known cytokine content, validation of its use on various 
diseases needs to be conducted. Finally, the possibility of 
promotion of existing cancer should be tested for every CM, 
and caution should be taken before CM therapy to ensure that 
the recipient is free from cancer. Advantages of production 
of various CM for patients lie in the possibility of mass 
production by pharmaceutical companies, when production 
methods have been standardized. Conditioned media are 
not like stem cells that need a good manufacturing practice 
(c-GMP) facility to be applied to patients.(110) When CM 
has been packaged properly, it can be transported easily 
as drugs and does not need cryopreservation, such as that 
the stem cells need. However, compared to stem cells that 
may survive for a rather long period, CM needs to be given 
more frequently, as cytokines’ and growth factors’ half-
lives are mostly shorter.(111,112), which is a disadvantage 
for the patients but will give more profit to pharmaceutical 
companies.(113)
	 There are various therapeutic applications for CM, 
including anti-photoaging properties and accelerating the 
wound healing with fewer scars. Moreover, it plays an 
important role in inducing migration and angiogenesis, 
preventing muscle atrophy, possessing anti-fibrotic 
properties and regenerating capacities. It does help in 
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suppressing proteolytic system and the ROS generation in 
muscle atrophied cells.(114-116) The diverse studies on 
the secreted factors derived from stem cells exhibited that 
the secreted soluble factors without the stem cells might 
provoke tissue repair in different conditions that involved in 
organ or tissue damage.(113,117)
	 CM obtained from ubmilical cord-MSCs (UC-CM) 
found to exert significant angiogenic and chemoattractant 
effects on progenitor cells, fibroblasts and stem cells, 
suggest a role of SDF-1/CXCR4 and MCP-1/CCR2 axes in 
UC-CM-induced migration. The local delivery of UC-CM 
may induce the recruitment of cells from the surrounding 
tissues and enhance the proliferation of these cells in 
injured tissue.(118) Recent findings suggest that MSC-CM 
have similar properties like MSCs and favorable antitumor 
characteristics as well.  Therefore it is compelled to be 
applied for the generation of novel and targeted regenerative 
medicine (Figure 5).(117)

Figure 5. Clinical applications of conditioned 
medium (CM) derived from human umbilical 
cord-MSCs.(117) (Adapted with permission from 
International Journal of Hematology-Oncology and 
Stem Cell Research).

MSC-derived Exosome for 
Cell-free Therapy

Identification of exosomes revealed its unique protein and 
lipid contents, which can be used as positive markers. 
It mostly contain fusion proteins and transport proteins 
(annexins and flotilin), HSP70, CD’s proteins (CD9, 
CD81), as well as phospholipases and other lipid related 
proteins.(119,120). In purpose of using MSC exosomes as 

cell-free regenerative medicine, the parameters of quality, 
reproducibility, and potency of their production should be 
considered well.(57)
	 Many techniques for exosome isolation has been 
developed with appreciable quantity and purity. Different 
technique exploits a particular trait of exosomes, such as 
their density, shape, size, and surface proteins to aid their 
isolation with the advantages and disadvantages of each.
(121) Exosomes can be found in all body fluids, carrying 
specific information to their progenitor cells, thus exosomes 
is cheap, minimally invasive, and specific to be ideal 
biomarkers.(122,123) Many studies so far rationalize 
exosome as a novel form of a therapeutic intervention which 
is safer, cheaper, more accessible and potent, cell-free, and 
off- the-shelf therapy, although translation to clinical practice 
would require validation.(124) Studies was reported that 
hucMSC-Ex-mediated Wnt4 induces b-catenin activation 
in endothelial cells and exerts proangiogenic effects, make 
it prospect for use in cutaneous wound healing.(125) 
Another study demonstrated a cartilage regeneration in a 
full-thickness cartilage defect model in immunocompetent 
adult rats from human MSC exosomes (58), proof that 
exosomes also have a chance to alleviate OA via repairing 
and regenerating the damaged articular cartilage (126) 
In neurorestorative events after stroke and neural injury, 
exosomes showed as important intercellular players where 
either naturally occurring or engineered exosomes derived 
from stem/progenitor cells provide therapeutic benefits.
(72,127,128) Suggest that exosomes not only cross the 
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Conclusion

Secretome-based approaches showed many potential 
advantages over the living cells themselves, including 
manufacturing, storage, handling, packaging, product shelf 
life and their potential as a ready-to-go biological therapeutic 
agent. Besides, exosomes also fulfill the requirements to be 
potential biomarkers of pathophysiology in many different 
diseases. However, we still need a clear consensus about the 
optimum culture conditions, separations, characterizations 
and stability and preconditioning strategies to maximize the 
regenerative potential of the MSC secretome.
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