
JCSI 21 (2021) 279–286

Received: 29 August 2021

Accepted: 30 September 2021

279

Comparison of classical machine learning algorithms in the task of

handwritten digits classification

Porównanie klasycznych algorytmów uczenia maszynowego w zadaniu
klasyfikacji liczb pisanych odręcznie

Oleksandr Voloshchenko*, Małgorzata Plechawska-Wójcik

Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland

Abstract

The purpose of this paper is to compare classical machine learning algorithms for handwritten number classification.

The following algorithms were chosen for comparison: Logistic Regression, SVM, Decision Tree, Random Forest and

k-NN. MNIST handwritten digit database is used in the task of training and testing the above algorithms. The dataset

consists of 70,000 images of numbers from 0 to 9. The algorithms are compared considering such criteria as the learn-

ing speed, prediction construction speed, host machine load, and classification accuracy. Each algorithm went through

the training and testing phases 100 times, with the desired metrics retained at each iteration. The results were averaged

to reach the reliable outcomes.

Keywords: machine learning; classification; MNIST; classical algorithms

Streszczenie

Celem niniejszej pracy jest porównanie klasycznych algorytmów uczenia maszynowego do klasyfikacji liczb pisanych
odręcznie. Do porównania wybrano następujące algorytmy: Logistic Regression, SVM, Decision Tree, Random Forest
oraz k-NN. Do szkolenia i testowania powyższych algorytmów wykorzystano zbiór danych MNIST. Zbiór danych
składa się z 70 000 obrazów cyfr od 0 do 9. Algorytmy porównywane są z uwzględnieniem takich kryteriów jak szyb-

kość uczenia, szybkość budowania predykcji, obciążenie maszyny głównej oraz dokładność klasyfikacji. Każdy algo-

rytm przeszedł przez fazy szkolenia i testowania 100 razy, z zachowaniem pożądanych metryk przy każdej iteracji.
Wyniki zostały uśrednione w celu uzyskania wiarygodnych rezultatów.
Słowa kluczowe: uczenie maszynowe; klasyfikacja; MNIST; algorytmy klasyczne

*Corresponding author

Email address: oleksandr.voloshchenko@pollub.edu.pl (O. Voloshchenko)

©Published under Creative Common License (CC BY-SA v4.0)

1. Introduction

Machine learning is one of the most popular technolo-

gies these days, evolving incredibly fast and having a

huge impact on the world today. The definition of ma-

chine learning dates back to 1959, when Arthur Samuel,

an American pioneer in machine learning and artificial

intelligence, said that machine learning is a field of

learning that allows computers to learn without explicit

programming [1]. In turn, in 1997, American professor

Thomas Mitchell gave a more modern definition. He

said that machine learning is when a program is told to

learn from experience E with respect to some class of

tasks T that measures performance P, if its performance

on tasks T, which is measured as P, improves with each

experience E.

This paper considers one of the main tasks of ma-

chine learning – the classification, and more specifical-

ly, the task of classifying handwritten digits.

Classification is one of the problems of machine

learning, which refers to the supervised learning ap-

proach. Supervised learning is an approach in machine

learning in which there is a set of data and expected

results for that data, and the goal is to find a dependency

rule between input and output parameters. In turn, im-

age classification is a fairly commonly used task. For

example, in classifying crops using satellite images, for

agricultural purposes [2], determining benign and ma-

lignant tumors in medicine [3], gesture languages [4], in

manufacturing, and in other modern tasks [5-8].

One of the problems of classification is the problem

of classifying handwritten numbers [9-15]. The oldest

papers and their conference discussions were held in

1994-1995. One of the examples of such works is Com-

parison of classifier methods: a case study in handwrit-

ten digit recognition [10], written by a large group of

authoritative scientists in the field of machine learning.

Despite the fact that the first mentions are quite old –

the problem continues to be studied even now. For ex-

ample, the paper [14] gives examples of using such

recognition on documents, photos, or, for example, text

analysis after touch screen input. The article compares

three common machine learning algorithms (SVM, k-

NN, NN) for text classification after optical character

recognition (OCR). Or, for example, the paper [13]

explores the capabilities of SVM, k-NN and neural

network tools. The recognition time, error rate, number

of misclassified images, and computation time were

studied. In general, the following algorithms dominate

in the literature among classical algorithms, those that

do not rely on neural networks: Logistic Regression,

mailto:oleksandr.voloshchenko@pollub.edu.pl

Journal of Computer Sciences Institute 21 (2021) 279-286

280

Support Vector Machine (SVM), k-Nearest Neighbours

(k-NN) classifier, Decision Tree and Random Forest.

In this paper, the handwritten digit classification

problem is solved using classical machine learning

algorithms described above. These algorithms were

chosen because they are among the most popular classi-

fication algorithms and are fairly common in the litera-

ture on such topics.

2. Purpose of the experiment

The purpose of this paper is to compare classical ma-

chine learning algorithms in the handwritten number

classification problem. The experiment covers the com-

parison of several machine learning algorithms, such as

logistic regression, support vector machine (SVM), k-

nearest neighbor (k-NN) classifier, decision tree and

random forest. The MNIST dataset was used in the

analysis. The thesis defined for this paper is as follows:

all the investigated algorithms will show different re-

sults in the handwritten digit classification problem.

2.1. Accuracy part

The primary purpose of this article is to compare the

above algorithms in terms of overall accuracy and indi-

vidual number recognition accuracy. This part of the

work involves comparing algorithms in terms of the

accuracy of handwritten number classification classes

and the accuracy of classification in the case of each

individual class.

The following research questions are defined for this

part of the experiment:

 Which algorithm more accurately identifies classes

of handwritten digits?

 Which numbers are better or worse defined for each

algorithm?

2.2. Performance part

In addition to accuracy during the experiment, addition-

al algorithm parameters, such as performance metrics,

can also be explored. The following research questions

are defined for the performance part of the experiment:

 Which algorithm learns faster?

 Which algorithm takes longer to learn?

 Which algorithm makes predictions faster?

 Which algorithm makes the prediction slower?

 Which algorithm requires more computer resources

to learn?

3. Experiment description

To compare the algorithms, it is necessary to provide a

plan for testing all of the mentioned algorithms under

the study. All selected algorithms will be compared in

the handwritten number classification task. MNIST

handwritten number dataset was chosen as a ready-

made dataset. This set consists of 70,000 pictures of

numbers from 0 to 9, 28 by 28 pixels (a total of 784

pixels per picture). The parameters by which each of the

algorithms will be evaluated are defined. These parame-

ters were chosen so that the values obtained would help

to answer the questions presented in section 2. In the

case of the accuracy part (section 2.1), the following

metrics were determined:

 accuracy – accuracy of algorithms when classifying

handwritten numbers, which is determined as the ra-

tio of successful classifications to the total number

of tests;

 accuracy within numbers classes – accuracy of algo-

rithms in determining each individual class, where

classes are numbers from 0 to 9. Metric shows the

percentage of correctly recognized numbers of a par-

ticular class (from 0 to 9) out of the total amount of

numbers of that class in the test data set.

In the case of the performance part of the article

(section 2.2), the following metrics were defined for the

study:

 learning time – amount of time it takes for the algo-

rithm to learn on the training data set;

 prediction time – amount of time needed for the

algorithm to build the prediction for the whole test

dataset;

 CPU load – percentage of CPU load during the pro-

cessing of the training data set;

 RAM load – amount of used MiB RAM while pro-

cessing the training dataset;

All of the above parameters must be measured dur-

ing the execution of the overall plan of the experiment.

This plan is as follows:

1. Randomly divide 70,000 handwritten number pic-

tures into training and test datasets.

2. Start measuring the training parameters.

3. Train the learning algorithm on the training dataset.

4. End of training parameters measurement.

5. Beginning of measurement of the test parameters.

6. Testing of the trained algorithm on the test dataset.

7. End of the testing parameters measurement.

8. Saving of all measured parameters.

9. Repeat steps 1-8 N-number of times.

10. Results analysis.

Following this plan, steps 2 and 4 obtain the values

of the parameters related to the training of the model,

namely learning time, CPU load and RAM load. In

steps 5 and 7 the data of the parameters calculated dur-

ing model testing are obtained, namely prediction time,

accuracy and accuracy within numbers classes. In step

8, the parameters obtained during iteration are saved for

further analysis. To improve the accuracy of the ob-

tained results, each algorithm went through the steps of

the above plan 100 times, and the final results were

averaged.

At each iteration, the set of pictures described above

was randomly divided into a training and a test dataset

according to the recommendations of its creators. The

training dataset at each iteration contained 60,000 pic-

tures (85.7% of the total dataset), while the test dataset

contained 10,000 pictures (14.3% of the total dataset).

For the experiment was used the python language

and the library scikit-learn, which contains ready-made

implementations of the studied algorithms. The numeri-

cal values of the pixels of the pictures were taken as the

parameters of the models. This means that each input

Journal of Computer Sciences Institute 21 (2021) 279-286

281

algorithm had 784 numeric parameters on the basis of

which it must classify the number in the picture.

The computer used for the experiment is an Ubuntu

18.04 system, a 2.8GHz Intel Core i7-7700HQ proces-

sor and 16GB of DDR4 RAM. During the experiment

the algorithms were run with a CPU limit of 1 thread.

4. Algorithms

4.1. Logistic Regression

Logistic regression is a statistical model that uses a

logistic function to model the relationship between an

output variable and input parameters. Binary logistic

regression assumes answers at the model output as 0 or

1. Logistic regression can be used to estimate the proba-

bility of occurrence of an event for a particular test.

The logistic regression problem uses a linear regres-

sion function for estimating prediction. However, the

linear regression equation does not fit the definition of

logistic regression, since the model's responses may

differ from 0 and 1. Some kind of transformation, also

called a logit-transformation, must be performed to

solve the problem. This transformation looks like this

(1): 𝑃 = 11 + 𝑒−𝑦 (1)

where 𝑃 is the probability of occurrence of the event of

interest, 𝑒 is the Euler number, and 𝑦 is the standard

regression equation.

During the experiment, the LogisticRegression class

from the linear_model module of the used library was

used as a logistic regression in the experiment. Since the

algorithm needs to classify many classes, in this case the

algorithm with a multinomial parameter was used.

There were also used parameters for L2 regularization

and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

optimizing algorithm, which fit multiclass classification,

are quite robust, and together should converge faster.

When it comes to the number of iterations for conver-

gence for the optimizing algorithm, a value of 100 itera-

tions was chosen.

4.2. Decision Tree

Decision trees are a method for data analysis and pre-

dictive analytics. It is clear from the name that the tool

is a hierarchical tree structure in which nodes are rules

and leaves are decision points.

The rules are generated automatically by training the

algorithm on a test dataset. These nodes test whether an

example matches a given rule on a particular attribute.

As a result of the check, the set of examples in a node is

split into two subsets, one of which contains examples

that satisfy the rule and one that does not. The sets then

descend the tree to the next nodes, where further condi-

tions are checked. This process is repeated until some

stopping condition is satisfied. The last node performs

no more checks, such a node is called a tree leaf. The

leaf defines a solution for each example it contains.

However, unlike a node, a leaf does not contain a rule,

but a subset of objects that satisfy all branch rules.

The attribute that is used for partitioning in a node

must partition the set so that the resulting subsets con-

tain objects with the same class labels, or are as close to

this result as possible. In the experiment, the Gini index,

which is calculated by formula (2), is used to solve this

problem:

𝐺𝑖𝑛𝑖(𝑄) = 1 − ∑ 𝑝𝑖2𝑛
𝑖=1 (2)

where 𝑄 – the final data set, 𝑛 – the number of classes

in that set, 𝑝𝑖 – probability of the 𝑖-th class. This index

takes values from 0 to 1. If the index takes the value 0,

then all elements of the dataset 𝑄 belong to one class,

and 1 if all classes are equally likely. Obviously, the

smaller the index value, the better the partition will be.

After the rules are formed on the branches of the tree

on the basis of the training dataset – the branch pruning

stage is performed. This approach determines the accu-

racy and error of the full tree. After evaluation, leaves

and nodes are removed from the tree, the removal of

which will not lead to a significant loss of accuracy and

increase the error.

During the experiment, the DecisionTreeClassifier

class from the tree module was chosen as the Decision

Tree algorithm. The Gini index was used as a criterion

for evaluating data partitioning in the tree, and for the

partitioning itself all the parameters of the input objects

were taken into account. The classification tree was split

until the outermost nodes (leaves) had objects of the

same class, or until the number of objects in the leaf was

equal to 1. The number of leaves was not limited.

4.3. Random Forest

This model is an improvement of the previous one – the

decision tree. The improvement is made by the fact that

the random forest consists of an ensemble of decision

trees [16].

During training, each tree is trained on random data

sets, each of which is taken from the main training set.

These sets are generated using a statistical method

called bootstrapping. Although each tree may be highly

variable with respect to a particular training dataset,

training trees on different sample sets reduces the over-

all variability of the forest without sacrificing accuracy.

The random forest result is derived by averaging the

predictions obtained from each tree in the ensemble of

decision trees. This bootstrapping approach for each

tree, and after averaging, is called bagging.

During the experiment, the RandomForestClassifier

class from the ensemble module of the library was used

as Random Forest algorithm. The used forest had 100

tree units, which were built using bootstrap samples.

The trees used the same parameters as the Decision Tree

algorithm above. This means that each tree used a Gini

index to evaluate the quality of the separation. All input

object parameters were used in the node for splitting.

The tree was not limited in growth and grew as long as

the leaves did not consist of objects of the same class, or

as long as the leaf did not count 1 element.

Journal of Computer Sciences Institute 21 (2021) 279-286

282

4.4. Support Vector Machine

Support vector machine is a supervised machine learn-

ing algorithm. It is used for both classification and re-

gression tasks. In this algorithm, each sample of the

training dataset is represented as a point in n-

dimensional space, where n is the number of features of

an element in the dataset. The task of the algorithm is to

construct a hyperplane that would optimally divide by

classes the elements in this space. This hyperplane is

constructed so that the distance from it to the elements

of the classes was the largest. In other words, the princi-

ple of the algorithm is to increase the gap between the

dividing hyperplane and the vectors of classes that are

closest to it. These vectors are called support vectors.

Obviously, the best hyperplane is the one with the larg-

est gap.

During the experiment, the SVC class from the svm

module of the used library was used as Support Vector

Machine. Multi-class classification in the algorithm is

supported by the one-vs-one scheme. As a kernel, the

Radial Basis Function was used with an adjusting pa-

rameter with value 1 and with value gamma, which was

calculated using the (3) formula: 𝛾 = 1𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝜎2 (3)

where 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is the number of model parameters,

which in the case of this experiment is the number 784,

and 𝜎2 – dispersion of test parameters values. The aver-

age value of the 𝛾 parameter during the experiment was

2.06.

4.5. k – Nearest Neighbors

The algorithm works according to the following princi-

ple: the object under study gets the class that most of its

neighbors have in space. During training, the algorithm

remembers the feature vectors of incoming observations

and their corresponding class labels. At the classifica-

tion stage, k nearest neighbors that already have a class

are determined for the example under study.

In the simplest case, a class is defined by simply

choosing the most frequent class among k examples, but

this approach is not always successful. For example, in

cases where the frequency of occurrence of all classes is

the same. It is also important that not all neighbors are

equally significant for the studied example. The usual

case is simple unweighted voting. In this strategy, all k

neighbors have the same weight regardless of their dis-

tance to the examined instance.

However, it would be reasonable to assume that the

further away the sample is, the less influence it has. To

do this, the model includes a weighting of the parame-

ters depending on their distance to the sample under

study. This method is called weighted voting.

Also, an important aspect of the algorithm is the

choice of coefficient k. If k is small enough, there is an

overfitting phenomenon, and the decision is made on

the basis of a rather small number of examples and is

generally of low significance. When k is too large, too

many examples from different classes are involved in

the classification process, which poorly reflects the local

features of the data.

During the experiment, the KNeighborsClassifier

class from the neighbors module of the used library was

used as the k-NN algorithm. To determine the class of

an object, five of its nearest neighbors were studied.

Each object in the space had the same weight.

5. Results

During the experiment described in section 3, each

algorithm under study went through the training and

testing stages 100 times. At each stage the parameters

described in section 3 were recorded. All results were

averaged and displayed in this section.

5.1. Accuracy results

When evaluating the overall accuracy of the algorithms

on the test data set, the results were obtained as shown

in Figure 1.

Figure 1: Accuracy of the algorithms

As can be seen from the graph, the best results were

shown by the SVM, k-NN and Random Forest algo-

rithms, the Logistic Regression algorithm comes next

and the Decision Tree algorithm showed the worst per-

formance relative to other algorithms in this task.

The next accuracy metric is accuracy within num-

bers classes. Along with the usual bar charts, confusion

matrices are also used to display the results, which will

show what errors the algorithm made during training.

For each algorithm, the matrices were obtained on one

of the 100 iterations of the overall experiment plan.

Figure 2 presents the results for the Logistic Regres-

sion algorithm.

Figure 2: Accuracy of determining each individual number by Lo-

gistic Regression

Journal of Computer Sciences Institute 21 (2021) 279-286

283

The algorithm is best at determining the numbers 0

and 1, in turn determining the numbers 5 and 8 is rela-

tively worse than other numbers. Figure 3 shows the

confusion matrix of the Logistic Regression algorithm.

From the matrix, it can be seen that the number 5 was

mostly mistaken for the numbers 3, 6, and 8. In the case

of number 8, false predictions were made in favor of

numbers 1, 3, and 5.

Figure 3: Logistic Regression confusion matrix

In the case of the k-NN algorithm the following re-

sults were obtained, shown in Figure 4.

Figure 4: Accuracy of determining each individual number by k-NN

The algorithm performed well in the task of classify-

ing numbers in general, but showed great accuracy for

the numbers 0 and 6, but did a little worse for the num-

bers 8 and 9. The confusion matrix for the k-NN algo-

rithm is shown in Figure 5. The matrix shows that in the

case of number 8, the largest number of false predic-

tions are assigned to numbers 1, 3, and 5. In the case of

number 9 most of the errors fell on number 7 and a few

on number 4.

The results of the SVM algorithm are shown in Fig-

ure 6. The algorithm did best with the numbers 0, 1 and

6, the algorithm did relatively worst with the classifica-

tion of the number 9. The confusion matrix of the algo-

rithm results is shown in Figure 7. The matrix shows

that in the case of number 9, most of the false assump-

tions were made in favor of numbers 4 and 7.

Figure 5: k-NN confusion matrix

Figure 6: Accuracy of determining each individual number by SVM

Figure 7: SVM confusion matrix

The Decision Tree algorithm got the results shown

in Figure 8. The algorithm showed the best classifica-

tion results for numbers 0 and 1. In the case of numbers

3, 5, 8, and 9, the algorithm showed the worst result,

which, in general, is the lowest result among all the

algorithms studied. The confusion matrix for the Deci-

sion Tree algorithm is shown in Figure 9. From the data

in the matrix, it can be said that in the case of number 3,

Journal of Computer Sciences Institute 21 (2021) 279-286

284

a lot of false predictions were made in favor of classes

2, 5, 8, and 9. In the case of number 5, false predictions

were made in favor of numbers 3, 6, 8, and 9. The num-

ber 8 was taken by the algorithm as the numbers 2, 3, 4,

5, and 9 in most false cases. In the case of number 9,

most false predictions were made in favor of numbers 3,

4, 5, 7, and 8.

Figure 8: Accuracy of determining each individual number by Deci-

sion Tree

Figure 9: Decision Tree confusion matrix

In the case of the Random Forest algorithm the re-

sults are shown in Figure 10.

Figure 10: Accuracy of determining each individual number by Ran-

dom Forest

The algorithm showed the best results in numbers 0,

1 and 6, but in the case of classes 3, 8 and 9 the results

are relatively worse. The confusion matrix in the case of

this algorithm is shown in Figure 11. From the matrix it

can be seen that the algorithm confused the number 3

with the numbers 2 and 8. In the case of number 8, false

predictions were in favor of numbers 3, 5 and 9. In the

case of number 9, numbers 3, 4, and a little bit of 7

caused problems for the algorithm.

Figure 11: Random Forest confusion matrix

For a more convenient comparison of the accuracy

of the class classification is built Figure 12, which can

be used to compare the accuracy of determining the

individual classes of numbers by algorithms.

Figure 12: Accuracy of classes classification by algorithms

5.2. Performance results

In terms of learning time, the algorithms showed the

following results shown in Figure 13.

Figure 13: Learning time of algorithms

Journal of Computer Sciences Institute 21 (2021) 279-286

285

As can be seen, the fastest algorithm in terms of

learning was k-NN. Such a fast result is due to the spe-

cifics of the algorithm during training, the main calcula-

tions and time costs occur during the construction of

predictions, which will be shown further in this section

of the article. The next fastest algorithms are Decision

Tree, Logistic Regression and Random Forest. The

slowest algorithm in the training phase was SVM.

The next evaluation criterion is the speed of building

the predictions for the test dataset with the results

shown in Figure 14. As can be seen, the fastest algo-

rithms during the prediction stage for the test dataset

were Decision Tree, Logistic Regression and Random

Forest. The slowest algorithm at this stage was the SVM

algorithm.

Figure 14: Algorithms prediction time

The next metric to measure was CPU load. The re-

sults are shown in Figure 15. SVM, Decision Tree, and

Random Forest had the highest CPU load. The k-NN

algorithm showed the lowest load.

Figure 15: CPU load during learning

On the RAM usage side, the following results were

obtained, shown in Figure 16. The highest level of

memory usage is observed for the SVM and Logistic

Regression algorithms. The Random Forest and Deci-

sion Tree algorithms are relatively average and the low-

est memory usage is observed for the k-NN algorithm.

Figure 16: Memory usage during learning

6. Conclusions

As already described in section 2, the aim of the exper-

iment was to compare classical algorithms in the prob-

lem of classifying handwritten numbers. First of all, as

described in section 2.2 of this paper, we analyzed the

accuracy metrics of the algorithms.

The accuracy analysis showed that the most accurate

algorithms in this problem were SVM, k-NN and Ran-

dom Forest algorithms with 97.93%, 97.21% and

96.95% accuracy. The results for this metric can also be

seen in more detail in Figure 1.

An accuracy metric within number classes, the over-

all results of which are shown in Figure 12, showed that

the algorithms classified numbers 0, 1, and 6 well, but

had some problems classifying numbers 3, 5, 8, and 9.

Based on the confusion matrices for each of the algo-

rithms (figures 3, 5, 7, 9, and 11), we can find that in

most of the incorrect cases the numbers 3, 5, 8, and 9

were confused with each other. These results are gener-

ally plausible, because the spelling of these numbers is

quite similar.

The second part of the research questions (section

2.2) concerned the study of the performance metrics,

which were also measured according to the experi-

mental plan in section 3. The conclusions of the results

of these metrics are described below.

The k-NN algorithm was the fastest on the training

dataset with a result of 0.01 second. This speed is

caused by the specifics of the algorithm, the main calcu-

lations of which take place at the prediction stage. The

next fastest was the Decision Tree algorithm with a

result of 16.11 seconds.

The slowest algorithm was SVM, which took an av-

erage of 247.26 seconds to train.

In terms of prediction construction time, the Deci-

sion Tree, Logistic Regression, and Random Forest

algorithms were the fastest to process the test data set

with corresponding results of 0.01, 0.03 and 0.36 sec-

onds. The slowest in this aspect was the SVM algorithm

with a result of 101.09 seconds.

The CPU load and memory consumption metrics

show that the k-NN algorithm was the least stressful on

the machine during training with a CPU load of 17.43%

and used memory of 209.8 MiB. The SVM algorithm, in

turn, had the highest load on the host machine among all

Journal of Computer Sciences Institute 21 (2021) 279-286

286

the algorithms studied with a CPU load of 25.73% and

used memory of 601.35 MiB.

The experiment confirmed the thesis described in

section 2: all the algorithms under study showed differ-

ent results in the task of classifying handwritten num-

bers. In the future, this experiment could be conducted

using deep learning tools and compare different types of

neural networks in this task.

References

[1] A.L. Samuel, Some studies in machine learning using the

game of checkers, IBM Journal of Research and

Development 44 (2000) 206-226.

[2] J.M. Peña-Barragán, P.A. Gutiérrez, C. Martínez, J. Six,
R.E. Plant, F. López-Granados, Object-Based Image

Classification of Summer Crops with Machine Learning

Methods, Remote Sensing 6 (2014) 5019-5041.

[3] P. Mohapatra, B. Panda, S. Swain, Enhancing

histopathological breast cancer image classification using

deep learning, The International Journal of Innovative

Technology and Exploring Engineering 8 (2019) 2024-

2032.

[4] N.H. Aung, Y.K. Thu, S.S. Maung, Feature Based

Myanmar Fingerspelling Image Classification Using

SIFT, SURF and BRIEF, Proceedings of the 17th

International Conference on Computer Applications

(ICCA 2019) (2019) 245-253.

[5] I.H. Sarker, A.S. Kayes, P. Watters, Effectiveness

analysis of machine learning classification models for

predicting personalized context-aware smartphone usage,

Journal of Big Data 6 (2019) 1-28.

[6] R. Razavi, A. Gharipour, M. Gharipour, Depression

screening using mobile phone usage metadata: a machine

learning approach, Journal of the American Medical

Informatics Association 27 (2020) 522-530.

[7] M. Pennacchiotti, A.-M. Popescu, A Machine Learning

Approach to Twitter User Classification, Proceedings of

the International AAAI Conference on Web and Social

Media 5 (2021) 281-288.

[8] Y. Nieto, V. Gacía-Díaz, C. Montenegro, C.C. González,
R.G. Crespo, Usage of machine learning for strategic

decision making at higher educational institutions, IEEE

Access 7 (2019) 75007-75017.

[9] L. Bottou, C. Cortes, J.S. Denker, H. Drucker, I. Guyon,

L.D. Jackel, Y. LeCun, U.A. Muller, E. Sackinger, P.

Simard, V. Vapnik, Comparison of classifier methods: a

case study in handwritten digit recognition, Proceedings

of the 12th IAPR International Conference on Pattern

Recognition, Vol. 3-Conference C: Signal Processing

(Cat. No. 94CH3440-5) 2 (1994) 77-82.

[10] Y. LeCun, L.D. Jackel, L. Bottou, A. Brunot, C.Cortes, J.

Denker, H. Drucker, I. Guyon, U.A. Muller, E.

Sackinger, P. Simard, Comparison of learning algorithms

for handwritten digit recognition, International

conference on artificial neural networks 60 (1995) 53-60.

[11] B. El Kessab, C. Daoui, B. Bouikhalene, R. Salouan, A

Comparative Study between the Support Vectors

Machines and the K-Nearest Neighbors in the

Handwritten Latin Numerals Recognition, International

Journal of Signal Processing, Image Processing and

Pattern Recognition 8 (2015) 325-336.

[12] K. Zhao, Handwritten digit recognition and classification

using machine learning, M.Sc. in Computing (Data

Analytics), Technological University Dublin (2018).

[13] C. Kaensar, A comparative study on handwriting digit

recognition classifier using neural network, support

vector machine and k-nearest neighbor, The 9th

International Conference on Computing and

InformationTechnology (IC2IT2013) (2013) 155-163.

[14] N.A. Hamid, N.N. Sjarif, Handwritten recognition using

SVM, KNN and neural network, arXiv preprint

arXiv:1702.00723 (2017).

[15] T.A. Assegie, P.S. Nair, Handwritten digits recognition

with decision tree classification: a machine learning

approach, International Journal of Electrical and

Computer Engineering (IJECE) 9 (2019) 4446-4451.

[16] L. Breiman, Random forests, UC Berkeley TR567

(1999).

