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Abstract 

The purpose of this paper is to compare classical machine learning algorithms for handwritten number classification. 

The following algorithms were chosen for comparison: Logistic Regression, SVM, Decision Tree, Random Forest and 

k-NN. MNIST handwritten digit database is used in the task of training and testing the above algorithms. The dataset 

consists of 70,000 images of numbers from 0 to 9. The algorithms are compared considering such criteria as the learn-

ing speed, prediction construction speed, host machine load, and classification accuracy. Each algorithm went through 

the training and testing phases 100 times, with the desired metrics retained at each iteration. The results were averaged 

to reach the reliable outcomes. 
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Streszczenie 

Celem niniejszej pracy jest porównanie klasycznych algorytmów uczenia maszynowego do klasyfikacji liczb pisanych 
odręcznie. Do porównania wybrano następujące algorytmy: Logistic Regression, SVM, Decision Tree, Random Forest 
oraz k-NN. Do szkolenia i testowania powyższych algorytmów wykorzystano zbiór danych MNIST. Zbiór danych 
składa się z 70 000 obrazów cyfr od 0 do 9. Algorytmy porównywane są z uwzględnieniem takich kryteriów jak szyb-

kość uczenia, szybkość budowania predykcji, obciążenie maszyny głównej oraz dokładność klasyfikacji. Każdy algo-

rytm przeszedł przez fazy szkolenia i testowania 100 razy, z zachowaniem pożądanych metryk przy każdej iteracji. 
Wyniki zostały uśrednione w celu uzyskania wiarygodnych rezultatów. 
Słowa kluczowe: uczenie maszynowe; klasyfikacja; MNIST; algorytmy klasyczne 
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1. Introduction 

Machine learning is one of the most popular technolo-

gies these days, evolving incredibly fast and having a 

huge impact on the world today. The definition of ma-

chine learning dates back to 1959, when Arthur Samuel, 

an American pioneer in machine learning and artificial 

intelligence, said that machine learning is a field of 

learning that allows computers to learn without explicit 

programming [1]. In turn, in 1997, American professor 

Thomas Mitchell gave a more modern definition. He 

said that machine learning is when a program is told to 

learn from experience E with respect to some class of 

tasks T that measures performance P, if its performance 

on tasks T, which is measured as P, improves with each 

experience E. 

This paper considers one of the main tasks of ma-

chine learning – the classification, and more specifical-

ly, the task of classifying handwritten digits. 

Classification is one of the problems of machine 

learning, which refers to the supervised learning ap-

proach. Supervised learning is an approach in machine 

learning in which there is a set of data and expected 

results for that data, and the goal is to find a dependency 

rule between input and output parameters. In turn, im-

age classification is a fairly commonly used task. For 

example, in classifying crops using satellite images, for 

agricultural purposes [2], determining benign and ma-

lignant tumors in medicine [3], gesture languages [4], in 

manufacturing, and in other modern tasks [5-8]. 

One of the problems of classification is the problem 

of classifying handwritten numbers [9-15]. The oldest 

papers and their conference discussions were held in 

1994-1995. One of the examples of such works is Com-

parison of classifier methods: a case study in handwrit-

ten digit recognition [10], written by a large group of 

authoritative scientists in the field of machine learning. 

Despite the fact that the first mentions are quite old – 

the problem continues to be studied even now. For ex-

ample, the paper [14] gives examples of using such 

recognition on documents, photos, or, for example, text 

analysis after touch screen input. The article compares 

three common machine learning algorithms (SVM, k-

NN, NN) for text classification after optical character 

recognition (OCR). Or, for example, the paper [13] 

explores the capabilities of SVM, k-NN and neural 

network tools. The recognition time, error rate, number 

of misclassified images, and computation time were 

studied. In general, the following algorithms dominate 

in the literature among classical algorithms, those that 

do not rely on neural networks: Logistic Regression, 
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Support Vector Machine (SVM), k-Nearest Neighbours 

(k-NN) classifier, Decision Tree and Random Forest. 

In this paper, the handwritten digit classification 

problem is solved using classical machine learning 

algorithms described above. These algorithms were 

chosen because they are among the most popular classi-

fication algorithms and are fairly common in the litera-

ture on such topics. 

2. Purpose of the experiment 

The purpose of this paper is to compare classical ma-

chine learning algorithms in the handwritten number 

classification problem. The experiment covers the com-

parison of several machine learning algorithms, such as 

logistic regression, support vector machine (SVM), k-

nearest neighbor (k-NN) classifier, decision tree and 

random forest. The MNIST dataset was used in the 

analysis. The thesis defined for this paper is as follows: 

all the investigated algorithms will show different re-

sults in the handwritten digit classification problem. 

2.1. Accuracy part 

The primary purpose of this article is to compare the 

above algorithms in terms of overall accuracy and indi-

vidual number recognition accuracy. This part of the 

work involves comparing algorithms in terms of the 

accuracy of handwritten number classification classes 

and the accuracy of classification in the case of each 

individual class.  

The following research questions are defined for this 

part of the experiment: 

 Which algorithm more accurately identifies classes 

of handwritten digits? 

 Which numbers are better or worse defined for each 

algorithm? 

2.2. Performance part 

In addition to accuracy during the experiment, addition-

al algorithm parameters, such as performance metrics, 

can also be explored. The following research questions 

are defined for the performance part of the experiment: 

 Which algorithm learns faster? 

 Which algorithm takes longer to learn? 

 Which algorithm makes predictions faster? 

 Which algorithm makes the prediction slower? 

 Which algorithm requires more computer resources 

to learn? 

3. Experiment description 

To compare the algorithms, it is necessary to provide a 

plan for testing all of the mentioned algorithms under 

the study. All selected algorithms will be compared in 

the handwritten number classification task. MNIST 

handwritten number dataset was chosen as a ready-

made dataset. This set consists of 70,000 pictures of 

numbers from 0 to 9, 28 by 28 pixels (a total of 784 

pixels per picture). The parameters by which each of the 

algorithms will be evaluated are defined. These parame-

ters were chosen so that the values obtained would help 

to answer the questions presented in section 2. In the 

case of the accuracy part (section 2.1), the following 

metrics were determined: 

 accuracy – accuracy of algorithms when classifying 

handwritten numbers, which is determined as the ra-

tio of successful classifications to the total number 

of tests; 

 accuracy within numbers classes – accuracy of algo-

rithms in determining each individual class, where 

classes are numbers from 0 to 9. Metric shows the 

percentage of correctly recognized numbers of a par-

ticular class (from 0 to 9) out of the total amount of 

numbers of that class in the test data set. 

In the case of the performance part of the article 

(section 2.2), the following metrics were defined for the 

study: 

 learning time – amount of time it takes for the algo-

rithm to learn on the training data set; 

 prediction time – amount of time needed for the 

algorithm to build the prediction for the whole test 

dataset; 

 CPU load – percentage of CPU load during the pro-

cessing of the training data set; 

 RAM load – amount of used MiB RAM while pro-

cessing the training dataset; 

All of the above parameters must be measured dur-

ing the execution of the overall plan of the experiment. 

This plan is as follows: 

1. Randomly divide 70,000 handwritten number pic-

tures into training and test datasets. 

2. Start measuring the training parameters. 

3. Train the learning algorithm on the training dataset. 

4. End of training parameters measurement. 

5. Beginning of measurement of the test parameters. 

6. Testing of the trained algorithm on the test dataset. 

7. End of the testing parameters measurement. 

8. Saving of all measured parameters. 

9. Repeat steps 1-8 N-number of times. 

10. Results analysis. 

Following this plan, steps 2 and 4 obtain the values 

of the parameters related to the training of the model, 

namely learning time, CPU load and RAM load. In 

steps 5 and 7 the data of the parameters calculated dur-

ing model testing are obtained, namely prediction time, 

accuracy and accuracy within numbers classes. In step 

8, the parameters obtained during iteration are saved for 

further analysis. To improve the accuracy of the ob-

tained results, each algorithm went through the steps of 

the above plan 100 times, and the final results were 

averaged. 

At each iteration, the set of pictures described above 

was randomly divided into a training and a test dataset 

according to the recommendations of its creators. The 

training dataset at each iteration contained 60,000 pic-

tures (85.7% of the total dataset), while the test dataset 

contained 10,000 pictures (14.3% of the total dataset). 

For the experiment was used the python language 

and the library scikit-learn, which contains ready-made 

implementations of the studied algorithms. The numeri-

cal values of the pixels of the pictures were taken as the 

parameters of the models. This means that each input 
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algorithm had 784 numeric parameters on the basis of 

which it must classify the number in the picture.  

The computer used for the experiment is an Ubuntu 

18.04 system, a 2.8GHz Intel Core i7-7700HQ proces-

sor and 16GB of DDR4 RAM. During the experiment 

the algorithms were run with a CPU limit of 1 thread. 

4. Algorithms 

4.1. Logistic Regression 

Logistic regression is a statistical model that uses a 

logistic function to model the relationship between an 

output variable and input parameters. Binary logistic 

regression assumes answers at the model output as 0 or 

1. Logistic regression can be used to estimate the proba-

bility of occurrence of an event for a particular test. 

The logistic regression problem uses a linear regres-

sion function for estimating prediction. However, the 

linear regression equation does not fit the definition of 

logistic regression, since the model's responses may 

differ from 0 and 1. Some kind of transformation, also 

called a logit-transformation, must be performed to 

solve the problem. This transformation looks like this 

(1): 𝑃 = 11 + 𝑒−𝑦 (1) 

where 𝑃 is the probability of occurrence of the event of 

interest, 𝑒 is the Euler number, and 𝑦 is the standard 

regression equation. 

During the experiment, the LogisticRegression class 

from the linear_model module of the used library was 

used as a logistic regression in the experiment. Since the 

algorithm needs to classify many classes, in this case the 

algorithm with a multinomial parameter was used. 

There were also used parameters for L2 regularization 

and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

optimizing algorithm, which fit multiclass classification, 

are quite robust, and together should converge faster. 

When it comes to the number of iterations for conver-

gence for the optimizing algorithm, a value of 100 itera-

tions was chosen. 

4.2. Decision Tree 

Decision trees are a method for data analysis and pre-

dictive analytics. It is clear from the name that the tool 

is a hierarchical tree structure in which nodes are rules 

and leaves are decision points. 

The rules are generated automatically by training the 

algorithm on a test dataset. These nodes test whether an 

example matches a given rule on a particular attribute. 

As a result of the check, the set of examples in a node is 

split into two subsets, one of which contains examples 

that satisfy the rule and one that does not. The sets then 

descend the tree to the next nodes, where further condi-

tions are checked. This process is repeated until some 

stopping condition is satisfied. The last node performs 

no more checks, such a node is called a tree leaf. The 

leaf defines a solution for each example it contains. 

However, unlike a node, a leaf does not contain a rule, 

but a subset of objects that satisfy all branch rules. 

The attribute that is used for partitioning in a node 

must partition the set so that the resulting subsets con-

tain objects with the same class labels, or are as close to 

this result as possible. In the experiment, the Gini index, 

which is calculated by formula (2), is used to solve this 

problem: 

𝐺𝑖𝑛𝑖(𝑄) =  1 − ∑ 𝑝𝑖2𝑛
𝑖=1  (2) 

where 𝑄 – the final data set, 𝑛 – the number of classes 

in that set, 𝑝𝑖  – probability of the 𝑖-th class. This index 

takes values from 0 to 1. If the index takes the value 0, 

then all elements of the dataset 𝑄 belong to one class, 

and 1 if all classes are equally likely. Obviously, the 

smaller the index value, the better the partition will be. 

After the rules are formed on the branches of the tree 

on the basis of the training dataset – the branch pruning 

stage is performed. This approach determines the accu-

racy and error of the full tree. After evaluation, leaves 

and nodes are removed from the tree, the removal of 

which will not lead to a significant loss of accuracy and 

increase the error.  

During the experiment, the DecisionTreeClassifier 

class from the tree module was chosen as the Decision 

Tree algorithm. The Gini index was used as a criterion 

for evaluating data partitioning in the tree, and for the 

partitioning itself all the parameters of the input objects 

were taken into account. The classification tree was split 

until the outermost nodes (leaves) had objects of the 

same class, or until the number of objects in the leaf was 

equal to 1. The number of leaves was not limited. 

4.3. Random Forest 

This model is an improvement of the previous one – the 

decision tree. The improvement is made by the fact that 

the random forest consists of an ensemble of decision 

trees [16]. 

During training, each tree is trained on random data 

sets, each of which is taken from the main training set. 

These sets are generated using a statistical method 

called bootstrapping. Although each tree may be highly 

variable with respect to a particular training dataset, 

training trees on different sample sets reduces the over-

all variability of the forest without sacrificing accuracy. 

The random forest result is derived by averaging the 

predictions obtained from each tree in the ensemble of 

decision trees. This bootstrapping approach for each 

tree, and after averaging, is called bagging. 

During the experiment, the RandomForestClassifier 

class from the ensemble module of the library was used 

as Random Forest algorithm. The used forest had 100 

tree units, which were built using bootstrap samples. 

The trees used the same parameters as the Decision Tree 

algorithm above. This means that each tree used a Gini 

index to evaluate the quality of the separation. All input 

object parameters were used in the node for splitting. 

The tree was not limited in growth and grew as long as 

the leaves did not consist of objects of the same class, or 

as long as the leaf did not count 1 element. 
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4.4. Support Vector Machine 

Support vector machine is a supervised machine learn-

ing algorithm. It is used for both classification and re-

gression tasks. In this algorithm, each sample of the 

training dataset is represented as a point in n-

dimensional space, where n is the number of features of 

an element in the dataset. The task of the algorithm is to 

construct a hyperplane that would optimally divide by 

classes the elements in this space. This hyperplane is 

constructed so that the distance from it to the elements 

of the classes was the largest. In other words, the princi-

ple of the algorithm is to increase the gap between the 

dividing hyperplane and the vectors of classes that are 

closest to it. These vectors are called support vectors. 

Obviously, the best hyperplane is the one with the larg-

est gap.  

During the experiment, the SVC class from the svm 

module of the used library was used as Support Vector 

Machine. Multi-class classification in the algorithm is 

supported by the one-vs-one scheme. As a kernel, the 

Radial Basis Function was used with an adjusting pa-

rameter with value 1 and with value gamma, which was 

calculated using the (3) formula: 𝛾 = 1𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝜎2 (3) 

where 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is the number of model parameters, 

which in the case of this experiment is the number 784, 

and 𝜎2 – dispersion of test parameters values. The aver-

age value of the 𝛾 parameter during the experiment was 

2.06. 

4.5. k – Nearest Neighbors 

The algorithm works according to the following princi-

ple: the object under study gets the class that most of its 

neighbors have in space. During training, the algorithm 

remembers the feature vectors of incoming observations 

and their corresponding class labels. At the classifica-

tion stage, k nearest neighbors that already have a class 

are determined for the example under study. 

In the simplest case, a class is defined by simply 

choosing the most frequent class among k examples, but 

this approach is not always successful. For example, in 

cases where the frequency of occurrence of all classes is 

the same. It is also important that not all neighbors are 

equally significant for the studied example. The usual 

case is simple unweighted voting. In this strategy, all k 

neighbors have the same weight regardless of their dis-

tance to the examined instance. 

However, it would be reasonable to assume that the 

further away the sample is, the less influence it has. To 

do this, the model includes a weighting of the parame-

ters depending on their distance to the sample under 

study. This method is called weighted voting. 

Also, an important aspect of the algorithm is the 

choice of coefficient k. If k is small enough, there is an 

overfitting phenomenon, and the decision is made on 

the basis of a rather small number of examples and is 

generally of low significance. When k is too large, too 

many examples from different classes are involved in 

the classification process, which poorly reflects the local 

features of the data.  

During the experiment, the KNeighborsClassifier 

class from the neighbors module of the used library was 

used as the k-NN algorithm. To determine the class of 

an object, five of its nearest neighbors were studied. 

Each object in the space had the same weight. 

5. Results 

During the experiment described in section 3, each 

algorithm under study went through the training and 

testing stages 100 times. At each stage the parameters 

described in section 3 were recorded. All results were 

averaged and displayed in this section. 

5.1. Accuracy results 

When evaluating the overall accuracy of the algorithms 

on the test data set, the results were obtained as shown 

in Figure 1. 

 

Figure 1: Accuracy of the algorithms 

As can be seen from the graph, the best results were 

shown by the SVM, k-NN and Random Forest algo-

rithms, the Logistic Regression algorithm comes next 

and the Decision Tree algorithm showed the worst per-

formance relative to other algorithms in this task.  

The next accuracy metric is accuracy within num-

bers classes. Along with the usual bar charts, confusion 

matrices are also used to display the results, which will 

show what errors the algorithm made during training. 

For each algorithm, the matrices were obtained on one 

of the 100 iterations of the overall experiment plan. 

Figure 2 presents the results for the Logistic Regres-

sion algorithm. 

 

Figure 2: Accuracy of determining each individual number by Lo-

gistic Regression 
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The algorithm is best at determining the numbers 0 

and 1, in turn determining the numbers 5 and 8 is rela-

tively worse than other numbers. Figure 3 shows the 

confusion matrix of the Logistic Regression algorithm. 

From the matrix, it can be seen that the number 5 was 

mostly mistaken for the numbers 3, 6, and 8. In the case 

of number 8, false predictions were made in favor of 

numbers 1, 3, and 5. 

 

Figure 3: Logistic Regression confusion matrix 

In the case of the k-NN algorithm the following re-

sults were obtained, shown in Figure 4. 

 

Figure 4: Accuracy of determining each individual number by k-NN 

The algorithm performed well in the task of classify-

ing numbers in general, but showed great accuracy for 

the numbers 0 and 6, but did a little worse for the num-

bers 8 and 9. The confusion matrix for the k-NN algo-

rithm is shown in Figure 5. The matrix shows that in the 

case of number 8, the largest number of false predic-

tions are assigned to numbers 1, 3, and 5. In the case of 

number 9 most of the errors fell on number 7 and a few 

on number 4. 

The results of the SVM algorithm are shown in Fig-

ure 6. The algorithm did best with the numbers 0, 1 and 

6, the algorithm did relatively worst with the classifica-

tion of the number 9. The confusion matrix of the algo-

rithm results is shown in Figure 7. The matrix shows 

that in the case of number 9, most of the false assump-

tions were made in favor of numbers 4 and 7. 

 

Figure 5: k-NN confusion matrix 

 

Figure 6: Accuracy of determining each individual number by SVM 

 

Figure 7: SVM confusion matrix 

The Decision Tree algorithm got the results shown 

in Figure 8. The algorithm showed the best classifica-

tion results for numbers 0 and 1. In the case of numbers 

3, 5, 8, and 9, the algorithm showed the worst result, 

which, in general, is the lowest result among all the 

algorithms studied. The confusion matrix for the Deci-

sion Tree algorithm is shown in Figure 9. From the data 

in the matrix, it can be said that in the case of number 3, 
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a lot of false predictions were made in favor of classes 

2, 5, 8, and 9. In the case of number 5, false predictions 

were made in favor of numbers 3, 6, 8, and 9. The num-

ber 8 was taken by the algorithm as the numbers 2, 3, 4, 

5, and 9 in most false cases. In the case of number 9, 

most false predictions were made in favor of numbers 3, 

4, 5, 7, and 8. 

 

Figure 8: Accuracy of determining each individual number by Deci-

sion Tree 

 

Figure 9: Decision Tree confusion matrix 

In the case of the Random Forest algorithm the re-

sults are shown in Figure 10. 

 

Figure 10: Accuracy of determining each individual number by Ran-

dom Forest 

The algorithm showed the best results in numbers 0, 

1 and 6, but in the case of classes 3, 8 and 9 the results 

are relatively worse. The confusion matrix in the case of 

this algorithm is shown in Figure 11. From the matrix it 

can be seen that the algorithm confused the number 3 

with the numbers 2 and 8. In the case of number 8, false 

predictions were in favor of numbers 3, 5 and 9. In the 

case of number 9, numbers 3, 4, and a little bit of 7 

caused problems for the algorithm. 

 

Figure 11: Random Forest confusion matrix 

For a more convenient comparison of the accuracy 

of the class classification is built Figure 12, which can 

be used to compare the accuracy of determining the 

individual classes of numbers by algorithms. 

 

Figure 12: Accuracy of classes classification by algorithms 

5.2. Performance results 

In terms of learning time, the algorithms showed the 

following results shown in Figure 13. 

 

Figure 13: Learning time of algorithms 
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As can be seen, the fastest algorithm in terms of 

learning was k-NN. Such a fast result is due to the spe-

cifics of the algorithm during training, the main calcula-

tions and time costs occur during the construction of 

predictions, which will be shown further in this section 

of the article. The next fastest algorithms are Decision 

Tree, Logistic Regression and Random Forest. The 

slowest algorithm in the training phase was SVM. 

The next evaluation criterion is the speed of building 

the predictions for the test dataset with the results 

shown in Figure 14. As can be seen, the fastest algo-

rithms during the prediction stage for the test dataset 

were Decision Tree, Logistic Regression and Random 

Forest. The slowest algorithm at this stage was the SVM 

algorithm. 

 

Figure 14: Algorithms prediction time 

The next metric to measure was CPU load. The re-

sults are shown in Figure 15. SVM, Decision Tree, and 

Random Forest had the highest CPU load. The k-NN 

algorithm showed the lowest load. 

 

Figure 15: CPU load during learning 

On the RAM usage side, the following results were 

obtained, shown in Figure 16. The highest level of 

memory usage is observed for the SVM and Logistic 

Regression algorithms. The Random Forest and Deci-

sion Tree algorithms are relatively average and the low-

est memory usage is observed for the k-NN algorithm. 

 

Figure 16: Memory usage during learning 

6. Conclusions 

As already described in section 2, the aim of the exper-

iment was to compare classical algorithms in the prob-

lem of classifying handwritten numbers. First of all, as 

described in section 2.2 of this paper, we analyzed the 

accuracy metrics of the algorithms. 

The accuracy analysis showed that the most accurate 

algorithms in this problem were SVM, k-NN and Ran-

dom Forest algorithms with 97.93%, 97.21% and 

96.95% accuracy. The results for this metric can also be 

seen in more detail in Figure 1. 

An accuracy metric within number classes, the over-

all results of which are shown in Figure 12, showed that 

the algorithms classified numbers 0, 1, and 6 well, but 

had some problems classifying numbers 3, 5, 8, and 9. 

Based on the confusion matrices for each of the algo-

rithms (figures 3, 5, 7, 9, and 11), we can find that in 

most of the incorrect cases the numbers 3, 5, 8, and 9 

were confused with each other. These results are gener-

ally plausible, because the spelling of these numbers is 

quite similar. 

The second part of the research questions (section 

2.2) concerned the study of the performance metrics, 

which were also measured according to the experi-

mental plan in section 3. The conclusions of the results 

of these metrics are described below. 

The k-NN algorithm was the fastest on the training 

dataset with a result of 0.01 second. This speed is 

caused by the specifics of the algorithm, the main calcu-

lations of which take place at the prediction stage. The 

next fastest was the Decision Tree algorithm with a 

result of 16.11 seconds. 

The slowest algorithm was SVM, which took an av-

erage of 247.26 seconds to train. 

In terms of prediction construction time, the Deci-

sion Tree, Logistic Regression, and Random Forest 

algorithms were the fastest to process the test data set 

with corresponding results of 0.01, 0.03 and 0.36 sec-

onds. The slowest in this aspect was the SVM algorithm 

with a result of 101.09 seconds. 

The CPU load and memory consumption metrics 

show that the k-NN algorithm was the least stressful on 

the machine during training with a CPU load of 17.43% 

and used memory of 209.8 MiB. The SVM algorithm, in 

turn, had the highest load on the host machine among all 
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the algorithms studied with a CPU load of 25.73% and 

used memory of 601.35 MiB. 

The experiment confirmed the thesis described in 

section 2: all the algorithms under study showed differ-

ent results in the task of classifying handwritten num-

bers. In the future, this experiment could be conducted 

using deep learning tools and compare different types of 

neural networks in this task. 
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