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Introduction

Non-Newtonian liquids such as sediment [1-4], fresh 
concrete, and cement [5-7] have rheologically complex 
characteristics, which can include viscoplasticity, typically 
of a Bingham type, and thixotropy. Bingham materials flow 
when an applied shear stress (τ) is greater than a threshold 
value (τ0 i.e., yield stress). Otherwise, they behave like a 
solid. Thixotropy is a characteristic associated with the 
materials’ microstructure that can be broken down and/or 
built up under shearing conditions. The breakdown process 
increases their flowability, while the recovery process does 
the opposite. Good reviews about thixotropy can be found 
in, e.g., H.A. Barnes (1997) [8], J. Mewis and N. Wagner 
(2009) [9], and most recently R.G. Larson and Y. Wei 
(2019) [10]. In a flow field of these materials, solid-like 
zones where τ≤τ0 can be formed known as unyielded zones; 
beyond these zones where τ>τ0 the materials are yielded 
and hence behave like liquids.

Thixotropic Bingham liquids are encountered in 
numerous applications in which interaction between 
complex liquids and a moving object can be presented. 
For Newtonian fluids, the fluid-solid interaction is a 

classical problem in fluid mechanics and has extensively 
been studied [11-13]. However, only a limited number of 
works have been found for Non-Newtonian fluids. While 
a majority of these works dealt with stationary cylinders, 
only a few examined rotating cylinders.

With a stationary cylinder, D.L. Tokpavi, et al. (2008) 
[14] investigated the creeping flow of viscoplastic fluid. 
Size and shape of unyielded zones were found to depend 
on the Oldroyd number (Od) at low values and asymptote 
those at Od=2×105. S. Mossaz, et al. (2010, 2012) [15-17] 
explored both numerically and experimentally a yield-
stress fluid flow over a stationary cylinder. The flow was 
laminar with and without a recirculation wake. Aspects 
such as size of the recirculation wake and unyielded zones 
were investigated. Recently, Z. Ouattara, et al. (2018) [18] 
performed a rigorous study of a cylinder translating near 
a wall in a still Herschel-Bulkley liquid. The flow was 
at a Reynolds number of Re~0 and both numerical and 
experimental approaches were employed. Effects of Od 
and cylinder-wall gap on drag force were reported. 

Regarding the flow over a rotating cylinder, several 
works have been performed, for example, with a shear-
thinning viscoelastic fluid [19] and shear-thinning power-

Interaction between a complex fluid flow 
and a rotating cylinder

Cuong Mai Bui1, Thinh Xuan Ho2*

1University of Technology and Education, The University of Danang
2Department of Computational Engineering, Vietnamese - German University

Received 27 January 2021; accepted 23 April 2021

                                               
*Corresponding author: Email: thinh.hx@vgu.edu.vn

Abstract:
The flow of a thixotropic Bingham material past a rotating cylinder is studied under a wide range of Reynolds 
and Bingham numbers, thixotropic parameters, and rotational speeds. A microstructure transition of the 
material involving breakdown and recovery processes is modeled using a kinetic equation, and the Bingham- 
Papanastasiou model is employed to represent shear stress-strain rate relations. Results show that the material’s 
structural state at equilibrium depends greatly on the rotational speed and the thixotropic parameters. A layer 
around the cylinder resembling a Newtonian fluid is observed, in which the microstructure is almost completely 
broken, the yield stress is negligibly small, and the apparent viscosity approximates that of the Newtonian fluid. 
The thickness of this Newtonian-like layer varies with the rotational speed and the Reynolds number, but more 
significantly with the former than with the latter. In addition, the lift and moment coefficients increase with the 
rotational speed. These values are found to be close to those of the Newtonian fluid as well as of an equivalent 
non-thixotropic Bingham fluid. Many other aspects of the flow such as the flow pattern, the unyielded zones, 
and strain rate distribution are presented and discussed.
Keywords: Bingham, computational fluid dynamics (CFD), non-Newtonian fluid, thixotropy, yield stress.
Classification number: 2.3

DOI: 10.31276/VJSTE.64(3).29-37



Physical sciences | EnginEEring

30 september 2022 • Volume 64 Number 3

law fluid [20] at Re≤40. Results of flow pattern as well 
as drag and lift forces were reported to depend on Re, 
the cylinder’s rotational speed, and the shear-thinning 
behaviour. In addition, P. Thakur, et al. (2016) [21] explored 
a yield stress flow over a wide range of Bingham numbers, 
i.e., 0≤Bn≤1000. Flow aspects such as streamlines, yield 
boundaries, and unyielded zones were reported. It was 
stated that flow morphology at Bn=1000 and at Re in 
the range of 0.1-40 was identical. Most recently, M.B. 
Khan, et al. (2020) [22] carried out an intensive study of 
flow and heat transfer characteristics of a FENE-P-type 
viscoelastic fluid over a rotating cylinder. It was found that 
an inertio-elastic instability was induced at low rotational 
speeds that destabilized the flow; however, at high speeds, 
this instability gradually diminished and the flow became 
steady at Re=60 and 100. For the convection heat transfer, 
a correlation for the Nusselt number was proposed.

It is worth noting that the fluid in all of the aforementioned 
works is non-thixotropic. With a thixotropic material, 
as its microstructure and rheology can change under 
shearing conditions, its flow behaviours would become 
more complex than those of a simple yield-stress fluid. 
Indeed, in the flow of a thixotropic Bingham fluid past a 
stationary cylinder at Re=45 and Bn=0.5 and 5, reported by 
A. Syrakos, et al. (2015) [23], thixotropic parameters were 
found to significantly affect the flow field, especially the 
location and size of the unyielded or yielded zones. 

In this work, we aim to further explore the flow 
behaviours of this type of fluid. In particular, we 
investigate the interaction of a thixotropic Bingham fluid 
with a rotating cylinder over a relatively wide range of 
Re, i.e., Re=20-100, and a dimensionless rotational speed 
of up to 5. Such a flow is expected to span from steady 
to unsteady laminar regimes. Special focus will be on a 
fluid layer surrounding the cylinder where the strain rate 
is large because of the rotation. Within this layer, the 
microstructure can be substantially broken resulting in an 
apparent viscosity as small as plastic viscosity, and thus the 
fluid can behave like a Newtonian one. This layer’s effects 
on hydrodynamic forces will be examined.

Theory background
Governing equations
The mass and momentum equations for the fluid flow 

are, respectively, as follows:
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where u  is the velocity, ρ the fluid density and pIσ τ= − +  
the total stress tensor. Moreover, p is the pressure, I  the 
unit tensor, and γ  the deformation rate tensor defined as 
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Here, K is the consistency, 1 :
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with m being the regularization parameter, which takes on a value of 40000 in this work. 
Note that when m→, Eq. (4) approaches Eq. (3) for an ideal HB fluid.  

The Reynolds number is defined as Re=ρu∞D/K and the Bingham number as 
Bn=τyD/Ku∞ where D is the diameter of the cylinder, u∞ the far field velocity, and τy the 
maximum yield stress. Furthermore, a dimensionless rotational speed αr is defined as 
αr=ωD/2u∞ with ω being the angular speed. 
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where α and β are, respectively, the recovery and breakdown parameters. Accordingly, the 
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breakdown phenomena. The yield stress is determined as τ0=λτy [29] with τy being the yield 
stress at λ=1. When λ=0, τ0=0, and the fluid becomes Newtonian. 
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Fig. 1. It is a circular domain with a diameter D∞=200D. The inlet velocity condition is 
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low, i.e., 20≤Re≤100, the viscous-laminar model is employed. 
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condition is applied to the front half of the domain’s 
boundary while outlet pressure is applied to the rear half. 
In addition, a no-slip boundary condition is applied to the 
cylinder’s surface. A structured mesh consisting of 92000 
elements is generated in the domain. Results for strain 
rate profiles at several positions are shown in Fig. 2 and it 
is obvious that the mesh of 92000 elements is sufficient. 
Computation is carried out using ANSYS FLUENT 
augmented with User-Defined Functions (UDF) taking 
into account Eqs. (4) and (5). As Re is relatively low, i.e., 
20≤Re≤100, the viscous-laminar model is employed.

Fig. 1. Computational domain and mesh. 

Fig. 2. Comparison of strain rate profiles along (A) x=0.501D, 
(b) x=0.51D, (C) y=-0.501D, and (D) y=-0.51D at Re=100, bn=0.5, 
αr=5, α=0.05 and β=0.05 between a mesh of 92000 and a mesh of 
133000 elements.

Results and discussion

Validation

For a stationary cylinder, results for the streamline 
pattern, the near-field unyielded zones, and the structural 
parameter of a thixotropic Bingham liquid at Re=45 
and Bn=0.5 are shown in Fig. 3. Here, the breakdown 

parameter is β=0.05, and the recovery parameter takes 
on various values as α=0.01, 0.05, and 0.1. It is observed 
that under these conditions, the flow around the cylinder 
is in a steady laminar regime with a flow recirculation 
wake behind the cylinder. With a greater value of α, the 
fluid is more structured (large λ) especially inside the 
recirculation wake. The wake becomes smaller, whereas 
the unyielded zones become larger when α increases. 
These trends are well in line with those at the same 
conditions reported by A. Syrakos, et al. (2015) [23].

Fig. 3. Unyielded zones (left, dark areas) and distribution of λ (right) 
of a thixotropic flow at Re=45, Bn=0.5, β=0.05, and different values 
of α. Streamlines are shown on both sides; the cylinder is stationary.

For a rotating cylinder, results for drag (Cd) and lift 
(Cl) coefficients of a Newtonian fluid are compared 
with existing data. This is done for αr=1 and Re=20, 40, 
and 100, and the results are presented in Table 1. It is 
noted that Cl can be positive or negative depending on 
the rotation direction; however, only its magnitude is 
shown. As can be seen, good agreement is achieved for 
all the cases. Furthermore, flow field morphology of a 
(non-thixotropic) Bingham liquid at αr=0.5 and Re=0.1, 
20, and 40 is presented in Fig. 4. Size and shape of the 
near-field unyielded and yielded zones are found to be in 
great agreement with those obtained by P. Thakur, et al. 
(2016) [21].
Table 1. Cd and Cl of a Newtonian fluid on a rotating cylinder at 
αr=1.

Present work Reference data

Cd Cl Cd Cl

Re=20 1.83 2.73 1.84 [20]; 1.84 [12] 2.75 [20]; 2.72 [12]

Re=40 1.32 2.59 1.32 [20]; 1.32 [12] 2.60 [20]; 2.60 [12]

Re=100 1.10 2.49 1.10 [12]; 1.11 [11] 2.50 [12]; 2.50 [11]
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Fig. 4. Flow morphology of Bingham fluid at αr=0.5, bn=10, and 
Re=0.1, 20, and 40. Two unyielded zones are located above and below 
the cylinder.

Effect of the rotational speed

The effect of αr on the flow field at Re=20, 45, and 
100 is investigated in this section. To this end, various 
values of αr ranging from 0 to 5 are realized. All the 
simulations are conducted at Bn=0.5, and with the 
thixotropic parameters of α=0.05 and β=0.05. Results 
for the streamlines and the near-field unyielded zones are 
shown in Fig. 5. It is obvious that when the cylinder is 
stationary (αr=0), the flow is symmetrical at Re=20 and 45. 

A static, rigid zone is observed at Re=20, whereas three 
moving unyielded zones appear in the recirculation 
bubble behind the cylinder at Re=45. This finding is 
in line with A. Syrakos, et al. (2015) [23]. When the 
cylinder rotates (αr≠0), the symmetry no longer exists, 
and the rigid zones are pushed upward and away from 
the cylinder along the rotation direction. These zones are 
indeed not seen in proximity to the cylinder at αr=3 and 
5. At Re=100 (the highest Re investigated), the flow past 
the stationary cylinder is unsteady with periodic vortex 
shedding behind the cylinder. In addition, no rigid zones 
are observed near the cylinder at any rotational speeds.

Contours of the vorticity magnitude are shown in Fig. 6. 
As can be seen, the vortex shedding manifests only at 
Re=100 and αr=0 and 1 although the vortex pattern is 
somewhat pushed upward at αr=1. The flow becomes 
steady at greater rotational speeds, i.e., αr=3 and 5.

Fig. 6. Contours of the vorticity magnitude at different rotational 
speeds (rows) and Re (columns).

Results for the Strouhal number, St=fD/u∞, where f is 
the vortex frequency, at αr=0, 0.5, and 1 are provided in 
Table 2. It is noticed that St (thus f) of the non-thixotropic 
Bingham flow is smaller than that of the thixotropic 
Bingham and Newtonian flows at the same αr. This 
trend of St can be attributed to the viscous effect, which 
is supposed to be greatest in non-thixotropic flows and 
smallest in Newtonian flows. In addition, St is found to 
slightly increase as αr increases, especially for Bingham 
flows since their viscous effect becomes less important. 
It is worth mentioning that our results for the Newtonian 
flow at αr=0 match perfectly with the experimental results 
of E. Berger and R. Wille (1972) [30] (St=0.16-0.17) and 
Williamson (1989) [31] (St=0.164).

Fig. 5. Streamline pattern and unyielded zones (dark areas) at 
different rotational speeds (rows) and Re (columns).
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Table 2. Strouhal number St at Re=100 and bn=0.5.

Fluid αr=0 αr=0.5 αr=1

Newtonian 0.163 0.165 0.165

Thixotropic Bingham 0.160 0.165 0.165

Non-thixotropic Bingham 0.152 0.156 0.160

Furthermore, the distribution of the structural 
parameter λ at equilibrium is shown in Fig. 7 for Re=45 
and αr=5. The material is found to be substantially broken 
and becomes little structured (λ≤0.05) in a small region 
surrounding the cylinder. As the broken material passes 
the cylinder and moves to the downstream, its structure is 
gradually recovered and it reaches a fully structured state 
far behind the cylinder.

Fig. 7. Distribution of the structural parameter at Re=45, bn=0.5, 
and αr=5.

Additionally, the distribution of λ in close proximity 
to the cylinder is shown in Fig. 8 for various values of Re 
and αr. It is noted that only λ≤0.1 is shown. A Newtonian-
like layer is defined as λ≤0.01, which is equivalent to 
99% of the microstructure having been broken, making 
the fluid essentially behave like a Newtonian one. This 

layer turns out to be very thin and noticeable only at 
high values of Re (e.g., 45 and 100) and great rotational 
speeds (e.g., αr=3 and 5).

The apparent viscosity of the Newtonian-like layer is 
expected to approach that of a Newtonian fluid, which is 
K according to Eq. (4). The results for the distribution of 
the apparent viscosity are presented in Fig. 9 in detail, 
which it is cut off at 1.1K.

Fig. 9. Distribution of the apparent viscosity at Re=20 (top row) 
and Re=100 (bottom row) and different values of αr.

It is obvious that the viscosity is not uniform, and in 
general it increases from the surface of the cylinder to the 
outside. For the stationary cylinder (αr=0), the viscosity 
transition is quite smooth. However, for the rotating 
cylinder, the viscosity distribution is not continuous as 
small islands of greater viscosity appear within zones 
of small and constant viscosity. This phenomenon takes 
place below or on the lower part of the cylinder where 
two fluid motions meet and surpass each other. One fluid 
motion is caused by the rotation of the cylinder the other 
is the incoming flow. It is worth mentioning that the 
velocity of the former changes its direction as it flows 
along the surface. Fluid deformation is therefore expected 
to rapidly change from one point to another and can take 
on negative or positive values. As a consequence, the 

strain rate magnitude, defined as 1 :
2

γ γ γ=   , can be 

non-continuous as well as apparent viscosity. As Re and/
or αr increases, the viscosity distribution becomes more 
monotonous; indeed, at Re=100 and αr=5, the mentioned 
viscosity islands are not found.

The non-continuous distribution of strain rate is 
observed also with Newtonian and non-thixotropic Fig. 8. Distribution of λ around the cylinder at different values of αr 

(rows) and Re (columns).



Physical sciences | EnginEEring

34 september 2022 • Volume 64 Number 3

Bingham fluids, as evident from Fig. 10 for Re=45 
and αr=5. In addition, it is noticed that the strain rate 
distribution of the three fluids in close proximity to the 
cylinder is almost identical, which can be attributed to 
the high rotational speed and thus high shear.

Fig. 10. Distribution of the strain rate for different fluids at Re=45 
and αr=5.

The Newtonian-like layer can be alternatively 
defined using the apparent viscosity, that is, μapp≤1.01K. 
This definition is pertinent to non-thixotropic fluids. 
Accordingly, as can be observed from Fig. 9, the 
thickness of this layer increases significantly as αr 
increases, however, the effect of Re is less important. It 
is noteworthy that the two approaches (structure-wise 
and viscosity-wise) to defining the Newtonian-like layer 
result in a deviation of its thickness. Nevertheless, this 
follows the same trend as Re and/or αr are varied (see 
Figs. 8 and 9).

Effect of the thixotropic parameters

Simulations for Re=45, Bn=0.5, αr=1, and varying α 
and β (in the range from 0.001 to 1) are conducted. Here, 
focus is paid on the structural state λ in the region around 
the cylinder.

The distribution of λ at equilibrium is shown in Fig. 11 
for different values of α, and that of the apparent viscosity 
is also shown therein. It is obvious that the material is 
more structured when α is greater, i.e., a greater structural 
recovery rate compared with the breakdown rate. 
Accordingly, the Newtonian-like layer defined by λ≤0.01 
is thinner and becomes hardly observed for α=1. The 
same trend is observed when it is defined by μapp≤1.01K.

In a similar manner, the effect of β representing the 
breakdown rate is demonstrated in Fig. 12. As can be 
expected, it is opposite to the effect of α. The Newtonian-
like layer can be clearly observed for β=1 but hardly 
noticed for β=0.001. Like the previous case and as 
mentioned earlier, the Newtonian-like layer is somewhat 
thicker and thus easier to be noticed when defined by 
μapp≤1.01K than by λ≤0.01.

Fig. 11. Distributions of λ (left and middle) and apparent viscosity 
(right) for β=0.05 and various values of α; Re=45, bn=0.5, and αr=1.

Fig. 12. Distributions of λ (left and middle) and apparent viscosity 
(right) for α=0.05 and various values of β; Re=45, bn=0.5, and αr=1.

Effect of Bn

The effect of the Bingham number on the thixotropic 
flow at Re=45 and 100 is examined here. To that end, 
simulations for Bn=1, 2, and 5 are performed. The other 
parameters are kept constant, that is, α=0.05, β=0.05, and 
αr=1. Results for the streamline pattern and the unyielded 
zones are presented in Fig. 13. It is observed that no 
static rigid zones are formed under these conditions, 
similar to the case of Bn=0.5 presented in Fig. 5. Moving 
rigid zones are found to scatter in the flow field. They 
are closer to the cylinder at higher Bn. At Re=100, the 
flow regime is found to transition from a non-stationary 
laminar regime at Bn=1 to a stationary one at Bn=2 or 
higher. In addition, Fig. 14 shows the distribution of λ 
and the vorticity contours at Re=100 and Bn=1 and 2. It 
is noticed that the material is less structured in the wake 
of the cylinder, especially in areas of great vorticity. As 
Bn increases the wake (especially its less structured core 
resembling a tail) becomes narrower.
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Fig. 13. Streamline pattern and unyielded zones (dark areas) of the 
thixotropic flow at Re=45 (left) and 100 (right), and different values 
of bn; αr=1.

Fig. 14. Distribution of λ at bn=1 and 2; Re=100 and αr=1. Vorticity 
contours are also shown.

Furthermore, the distribution of the apparent viscosity 
is shown in Fig. 15. It is obvious that at a relatively low 
rotational speed, i.e., αr=1, viscosity islands are found 
to exist and the Newtonian-like layer is not continuous, 
substantially thin, and becomes negligible as Bn increases 
to as high as 5.

Hydrodynamic forces

 Results for Cd, Cl, and Cm are presented in Fig. 16 
for various values of Re, Bn, and αr. It is noted that 

( )/ 0.5C M u AL∞  is the moment coefficient with M 
being the moment about z-axis, A the reference area, and 
L the length of the cylinder.

At the same Bn and rotational speed, the drag 
coefficient is found to be smaller at higher Re. At αr=1, 
it increases approximately linearly with Bn with a slope 
being greater for Re=45 than for Re=100. In addition, it 
is noticed that the drag coefficient has a minimum value 
at αr=3 for all Re conducted. S.K. Panda and R. Chhabra 
(2010) [20] also observed a similar trend for power-law 
liquids. However, more research may be needed for a 
better understanding of its governing mechanisms.

It is worth mentioning that as the rotation of the 
cylinder is counter-clockwise, Cl and Cm are always 
negative. Their magnitude (positive) is found to increase 
with increasing the rotational speed. The effect of Re on 
Cl is relatively small at αr≤3 and significant at higher αr. 
Unlike Cd, Cl does not change its trend at this critical 
speed. The magnitude of Cm is seen to increase linearly 
with increasing αr and Bn; this trend is more pronounced 
at smaller Re than at higher Re.

Fig. 16. Cd, Cl, and Cm versus αr at Bn=0.5 (top row) and versus Bn 
at αr=1 (bottom row).

A comparison of the hydrodynamic coefficients 
between Newtonian, thixotropic, and non-thixotropic 
Bingham fluids at Re=45 is presented in Fig. 17. It is 
noticed that Cd of the thixotropic fluid is somewhat 
smaller than that of the non-thixotropic fluid. They are 
both at Bn=0.5, however, as the microstructure of the 
former can be broken, its yield stress and thus apparent 
viscosity reduce especially in regions surrounding the 
cylinder and its wake. Cd of the equivalent Newtonian 

Fig. 15. Apparent viscosity at different values of Bn and Re=45 
(top row) and 100 (bottom row).
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fluid is considerably smaller. A negligible difference 
between Cl and Cm among the three fluids is observed. 
It is worth mentioning that the strain rate distribution of 
these fluids at αr=5 in proximity to the cylinder is almost 
identical (see Fig. 10). The lift and moment coefficients 
can thus be postulated to be dictated by the fluid layer 
around the cylinder, which is typically the Newtonian-
like layer.

Fig. 17.  Comparison of Cd, Cl, and Cm between three types of fluid 
at Re=45, Bn=0.5, and various values of αr.

Furthermore, Fig. 18 shows the distribution of the 
static pressure coefficient, ( ) ( )2

02 /pC p p uρ ∞= − , on the 
cylinder’s surface for various values of αr. It is noticed 
that the pressure curve is symmetrical only for the case of 
stationary cylinder and at relatively low Re, i.e., Re=20 
and 45. At Re=100, the flow becomes unsteady with 
periodic vortex shedding behind the cylinder and the 
Cp curve at any particular time instant is not necessarily 
symmetrical although it can be if averaged over a long 
enough time. For the case of a rotating cylinder (αr≥0), 
the symmetry is completely lost, and a minimum value of 
Cp is observed at ~270°. This minimum value decreases 
(negative) significantly with increasing rotational speed. 
Accordingly, the lift force (pointing downward) increases 
considerably as the rotational speed increases, which 
agrees with the Cl-αr curve shown in Fig. 16.

Fig. 18. Distribution of the static pressure on the cylinder’s surface 
at various values of αr; bn=0.5.

Conclusions

The flow of a thixotropic Bingham fluid over a 
rotating cylinder has been studied using a numerical 
approach. The effects of the rotational speed, thixotropic 
parameters, Bn, and Re on the flow behaviours were 
investigated. Under the conditions realized, e.g., Re=20-
100, Bn≤5, and αr≤5, the flow was laminar and steady 
except for the case of Re=100, Bn=0.5, and αr=1 where it 
was unsteady with vortex shedding behind the cylinder.

The thixotropic material was less structured at higher 
rotational speeds. A region of low λ was observed around 
the cylinder, in which the yield stress and the apparent 
viscosity were small, and the fluid was believed to behave 
like a Newtonian one. Two definitions of the Newtonian-
like layer were proposed, that is, λ≤0.01 and μapp≤1.01K. 
Its thickness was found to greatly depend on the rotational 
speed (i.e., greater at higher αr) and, at relatively smaller 
extent, on the thixotropic parameters Re and Bn.

Results of Cd, Cl, and Cm were reported and discussed. 
They were found to significantly depend on the rotational 
speed, Re, and Bn. The magnitude of Cl and Cm increases 
with αr and Bn, however, Cd was found to change its 
trend as it obtained a minimum value at αr=3. More 
importantly, Cl and Cm of the Newtonian, thixotropic, and 
non-thixotropic Bingham fluids at Re=45 and Bn=0.5 
were found to be close to one another and this was 
attributable to the Newtonian-like layer.
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