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Introduction

Dielectric capacitors have attracted great attention 
as pulse-power energy storage devices due to their 
high power density, fast charge/discharge speed, and 
excellent thermal and cycling stabilities compared with 
other energy storage systems such as fuel, chemical 
batteries, and electromechanical capacitors [1-5]. Indeed, 
dielectric thin film capacitors with improved performance 
are becoming eagerly demanded as microelectronics 
devices are rapidly developing toward miniaturization, 
light weight, and easy integration. Moreover, dielectric 
materials in film form usually show an increased electric 
breakdown strength,  which gives rise to larger energy 
storage density as compared with their bulk-ceramic 
counterpart [3, 6]. Among dielectric thin film capacitors, 
relaxor-ferroelectric (RFE) thin films have been 
extensively investigated due to their slim polarization 

hysteresis (P-E) loop, low remanent polarization (Pr), 
low coercive field (Ec), and high breakdown strength 
(EBD). These properties are a result of a phase transition 
from a long-range ordered polar state with macroscopic 
domains in normal ferroelectrics (FEs) to a short-range 
polar state with nano-scale domains (known as polar 
nanoregions, or PNRs) in RFEs [7-10], which makes 
them good candidates for energy storage applications 
[11-14]. Another feature that distinguishes FEs from 
RFEs is the frequency dependence of the dielectric 
constant versus temperature. Dielectric studies on FEs 
indicate a narrow dielectric constant peak at a high 
transition temperature (Tm), which corresponds to the 
maximum value of the dielectric constant. Meanwhile, 
the existence of a broadened phase transition peak in the 
temperature-dependent dielectric constant is observed in 
RFEs [15-17].
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In general, the volumetric energy storage density 
(Ustore), recoverable energy storage density (Ureco), and 
energy storage efficiency (η) of a dielectric capacitor can 
be calculated from the P-E loop as follows [18]:

                                                                                           (1)
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where Pr and Pmax are the remanent polarization and maximum polarization (polarization 
at the maximum applied electrical field Emax), respectively. 

There are various methods that can be used to fabricate perovskite-oxide 
ferroelectric thin films such as pulsed laser deposition (PLD) [19, 20], electron beam 
deposition [21], sputtering [22], and sol-gel spin coating [23-25]. Among these methods, 
ferroelectric thin films grown by PLD exhibit excellent ferroelectric and piezoelectric 
properties [26-29]. However, all methods except sol-gel spin coating require advanced 
and expensive equipment. Therefore, sol-gel spin coating is particularly suitable for 
ferroelectric thin film fabrication because of its simplicity, low cost, and, more 
importantly, easy-to-control stoichiometry and composition in multicomponent films.  

In this study, we compared the ferroelectric and energy storage properties of 
relaxor Pb0.92La0.08(Zr0.52Ti0.48)O3 (PLZT) thin films grown on (111)Pt/Ti/SiO2/Si(100) 
(Pt/Si) substrates using PLD and sol-gel spin coating. The Pt/Si substrates were chosen 
because they are widely used in the production of microsystems with ferroelectric films 
and are well suited to industrial applications [30]. The relaxor behaviour of PLZT films 
is influenced by the frequency dispersion of the dielectric constant and the increase in 
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There are various methods that can be used to fabricate 
perovskite-oxide ferroelectric thin films such as PLD 
[19, 20], electron beam deposition [21], sputtering [22], 
and sol-gel spin coating [23-25]. Among these methods, 
ferroelectric thin films grown by PLD exhibit excellent 
ferroelectric and piezoelectric properties [26-29]. 
However, all methods except sol-gel spin coating require 
advanced and expensive equipment. Therefore, sol-gel 
spin coating is particularly suitable for ferroelectric thin 
film fabrication because of its simplicity, low cost, and, 
more importantly, easy-to-control stoichiometry and 
composition in multicomponent films. 

In this study, we compared the ferroelectric and energy 
storage properties of relaxor Pb0.92La0.08(Zr0.52Ti0.48)O3 
(PLZT) thin films grown on (111)Pt/Ti/SiO2/Si(100) 
(Pt/Si) substrates using PLD and sol-gel spin coating. 
The Pt/Si substrates were chosen because they are widely 
used in the production of microsystems with ferroelectric 
films and are well suited to industrial applications [30]. 
The relaxor behaviour of PLZT films is influenced 
by the frequency dispersion of the dielectric constant 
and the increase in Tm with increasing frequency [31]. 
Experimental results illustrate that EBD slightly improves 
with a dense microstructure that is accompanied by a 
degradation of Pmax and a slight increase of Pr in sol-gel-
deposited PLZT thin films. Finally, the Ureco and η values 
achieved in PLZT thin films deposited by PLD were 33.2 
J/cm3 and 67.5% (at EBD=2100 kV/cm), that of the sol-gel 
method were 27.5 J/cm3 and 62.2% (at EBD=2200 kV/cm).

Experimental procedure

Fabrication of Pt/Si substrate

For the Pt/Si substrate, a 15-nm-thick Ti adhesive layer 
and a 100-nm-thick Pt bottom electrode were deposited at 
room temperature by sputtering on a 500-nm-thick SiO2 
layer formed on a Si(100) substrate using wet oxidation 
at 1150oC. 

Pulsed laser deposition of PLZT thin films  

The PLZT thin films were deposited on Pt/Si substrates 
from a stoichiometric target (Pb0.92La0.08(Zr0.52Ti0.48)O3) 
using PLD. The base pressure of the PLD vacuum 
chamber was below 10-6 mbar. The optimized deposition 
conditions of the PLZT thin film were a laser repetition 
rate 10 Hz, energy density 2.5 J/cm2, oxygen pressure 
0.1 mbar, and substrate temperature 600oC [28]. After 
deposition, the films were cooled to room temperature 
in a 1-bar oxygen atmosphere with at a ramp rate of 8oC/
minute. 

Sol-gel spin coating of PLZT thin films

The precursor materials selected for the fabrication of 
the PLZT thin film by sol-gel consisted of lead acetate 
trihydrate (Pb[CH3COO]2.3H2O), lanthanum nitrate 
(La[NO3]3), titanium iso-propoxide (Ti[i-OPr]4), and 
zirconium n-propoxide (Zr[n-OPr]4). These materials 
were dissolved in 2-methoxyethanol (MOE) solvent 
with 15% lead-excess to compensate for lead loss during 
annealing. The 0.4 M PLZT precursor solution was 
dripped onto the Pt/Si substrate and spin coated at 2000 
rpm for 30 s, followed by pyrolysis at 400oC for 10 min. 
The number of spin coatings were controlled to achieve 
a desired thickness, and each coating was about 50 nm 
thick. Finally, the films were annealed at 650oC for 60 
min in air. The final thickness of the films was about 250 
nm. More information on sol-gel spin coating of PLZT 
thin films [32]. The schematic diagram of the PLZT thin 
film fabricated by the sol-gel method is shown in Fig. 1. 

Fig. 1. The schematic representation of the sol-gel spin coating 
process of PLZT thin films.
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Fabrication of thin film capacitors

For electrical measurements, the capacitors 
(size: 200×200 µm2) were patterned by a standard 
photolithography process and structured by argon-beam 
etching of the Pt top electrodes (100 nm thick), and 
wet etching of the PLZT films with HF-HCl solution to 
expose the bottom electrodes.

Analysis and characterization

The crystallographic properties of the thin films were 
analysed by X-ray diffraction (XRD) θ-2θ scans using a 
PANalytical X-ray diffractometer (Malvern PANalytical) 
that used Cu-Kα radiation with a wavelength of 1.5405 
Å. Atomic force microscopy (Bruker Dimension 
Icon) and cross-sectional high-resolution scanning 
electron microscopy (HRSEM, Zeiss-1550, Carl Zeiss 
Microscopy GmbH) were performed to investigate the 
surface morphology, microstructure, and thickness of the 
as-grown thin films. The polarization-electric field (P-
E) hysteresis loops and switching current-electric field 
(ISW-E) curves were collected with using the dynamic 
hysteresis measurement (DHM) of the ferroelectric 
module of an aixACCT TF-2000 Analyzer (aixACCT 
Systems GmbH).

Results and discussion

The XRD pattern shown in Fig. 2A reveals that all 
the PLZT thin films grown on Pt/Si substrates have the 
desired perovskite phase without the pyrochlore phase 
within the detection limit of the XRD. The PLZT thin film 
deposited by PLD had a (100)/(110) mixed orientation, 
meanwhile a (100)/(111) mixed orientation was observed 
in the sol-gel-deposited PLZT thin film. A qualitative 
analysis of the thin film orientation was calculated as: 
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indices, and I is the intensity of a peak position of the 
PLZT thin films. The percentages of the (100), (110), 
and (111) orientations of the sol-gel-deposited PLZT 
thin film were 63.3, 5.2, and 31.5%, respectively, and 
61.5, 38.5, and 0% for the PLZT thin film deposited by 
PLD. The out-of-plane lattice parameters derived from 
the corresponding (200) orientation were about 4.027 
and 4.042 Å, respectively, for the films deposited using 
sol-gel and PLD methods. As the out-of-plane lattice 
parameters in the PLZT thin films were close to the a-axis 
lattice parameters in corresponding PLZT bulk ceramics 
[33], therefore, it was concluded that the PLZT thin films 
grown on Pt/Si substrates in this study contained mainly 
a-domains.

Fig. 2. (A) XRD patterns, (B, C) cross-sectional SEM, and (D, E) 
surface topographic AFM images of PLZT thin films deposited by 
sol-gel (B, D) and PLD methods (C, E).

The microstructures of PLZT thin films observed 
from the cross-sectional SEM and topographic AFM 
images are shown in Figs. 2B-2E. Figures 2B and 2C 
indicate that the sol-gel-deposited PLZT thin film had a 
dense structure while the PLD-deposited film exhibited a 
columnar structure. The thickness of the PLZT thin films 
was about 250 nm. The root-mean-square (RMS) surface 
roughness measured from the AFM images were about 
4.4 nm and 7.1 nm for the films deposited by sol-gel and 
PLD, respectively. The RMS roughness combined with 
cross-sectional SEM reveal that the films with columnar 
structure had a larger surface roughness. 

Figure 3 shows the P-E hysteresis loops and ISW-E 
switching curves of PLZT thin films measured at 1000 
kV/cm and 1 kHz. As seen in Fig. 3A, all the P-E loops 
were quite narrow with low Pr and small Ec values. The 
Pmax, Pr, and Ec values were 36.04, 6.98 µC/cm2, and 29.4 
kV/cm for the PLZT films deposited by sol-gel and 39.81, 
2.06 µC/cm2, and 42.1 kV/cm for those deposited by PLD. 
The Pr and Ec values of both films were significantly lower 
than those of normal ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) 
thin films, i.e., Pr≈20.65 µC/cm2 and Ec≈160 kV/cm 
measured at 1000 kV/cm and 1 kHz, meanwhile, the 
Pmax value (≈46.28 µC/cm2) was slightly higher [32]. In 
normal FEs, polarization domains have a polarization 
vector that points along the direction of the applied 
electric field. The rotation of dipoles is considered to be 
the main contribution to the total polarization (or Pmax at 
the maximum applied field of 1000 kV/cm in this case). 
When the external electric field is removed, most of the 
spontaneous polarization will retain the poled direction, 
which results in a large Pr in normal ferroelectric P-E 
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loops. In contrast, the long-range ordered polar state in 
RFEs is destroyed, leading to the formation of a short-
range polar state with PNRs, which can spontaneously 
return back to their initial short-range ordered state and 
result in a small Pr in P-E loops [34-36]. These above 
data confirm the existence of relaxor behaviour in the 
PLZT thin films in this study.  

Figure 3B presents the corresponding ISW-E 
switching current curves of the PLZT thin films. Another 
characteristic feature of RFEs is the presence of double-
switching peaks corresponding to the coercive field, 
which was observed in the low electric field region of 
the sol-gel-deposited PLZT thin films. Meanwhile, in the 
low electric field region of the ISW-E curve of the PLD-
deposited thin films, four peaks were observed, which 
are similar to the ISW-E curve of antiferroelectric films 
but with much higher Ec values [37]. Indeed, the PLD-
deposited thin films did exhibit antiferroelectric-like 
switching behaviour [18]. The difference observed in the 
ISW-E curves of the PLZT thin films in this study can be 
explained by the change in the crystalline quality of the 
films. The full width at half maximum (FWHM) of the 
rocking curve of the PLZT(200) peaks in Fig. 3A inset 
were 9.7 and 5.5o, respectively, for the PLZT thin films 
deposited by sol-gel and PLD. The FMHM value is a 
measure of the range over which the lattice structure in 
the different grains tilts with respect to the film normal 
[38] and is therefore an indication of the homogeneity of 
the films. The crystalline quality of the PLD-deposited 
PLZT thin films was much better than those deposited 
by sol-gel. The previous paper indicated that PLZT 
thin films of better crystalline quality have a larger Pm 
and lower Pr, as well as a higher intensity of the four 
switching peaks [20]. 

In general, the diffuseness factor can be used describe 
the degree of relaxor behaviour. The diffuseness factor 
varies from 1 (normal FEs) to 2 (ideal RFEs) [39, 40]. 
The diffuseness factor in RFEs can be attributed to 
the film quality in which RFE thin films with higher 

crystalline quality exhibit a larger diffuseness factor or 
stronger relaxor behaviour [41].

Similar to Fig. 4 (A, B) shows that both energy storage 
densities (Ustore and Ureco) and the energy storage efficiency 
(η) of the PLD-deposited PLZT thin films measured at 
1000 kV/cm and 1 kHz are higher than those deposited 
by sol-gel. This was due to the larger (Pmax-Pr) value and 
slimmer P-E loop that was just discussed above. Under 
an applied field of 1000 kV/cm, the Ureco and η values 
were 9.7 J/cm3 and 69.7%, and 13.3 J/cm3 and 74.3%, 
respectively, for the PLZT thin films deposited by sol-gel 
and PLD.
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in Fig. 5A. Fig. 5B illustrates the thin film capacitors before and after breaking. The 
critical breakdown strength (taking  as EBD) of a specific type of capacitor is extracted 
from the intercept of each line with the line Y=0 [12]. As can be seen from Fig. 5A, the 
EBD values are about 2200 kV/cm and 2100 kV/cm for the PLZT thin films deposited 
by sol-gel and PLD, respectively. Compared with the PLD-deposited PLZT thin films 
with a columnar structure, the dense structure leads to a slight increase in breakdown 
strength in the sol-gel-deposited PLZT thin films. 
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where Ei is the breakdown field of capacitor i in a series of 
n devices of the same sample type. The breakdown fields 
are in increasing order, which reflects the decreasing 
survival chance for a specific field estimated by the value 
Si=(1-i⁄(n+1)). The Weibull distribution plots for the 
breakdown strength of the PLZT thin films are shown 
in Fig. 5A. Fig. 5B illustrates the thin film capacitors 
before and after breaking. The critical breakdown 
strength (taking E0 as EBD) of a specific type of capacitor 
is extracted from the intercept of each line with the line 
Y=0 [12]. As can be seen from Fig. 5A, the EBD values 
are about 2200 kV/cm and 2100 kV/cm for the PLZT 
thin films deposited by sol-gel and PLD, respectively. 
Compared with the PLD-deposited PLZT thin films with 
a columnar structure, the dense structure leads to a slight 
increase in breakdown strength in the sol-gel-deposited 
PLZT thin films.
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Fig. 3. (a) P-E hysteresis loops and (b) Isw-E switching current curves 
of PLZT thin films deposited by sol-gel and PLD methods. Inset in 
Fig. 3A shows the rocking curves (omega scans) of the PLZT(200) peaks.
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Fig. 5. (A) Weibull distribution of breakdown strength for the 
capacitors of PLZT thin films deposited by sol-gel and PLD and 
(B) optical images of thin film capacitors before (upper) and after 
breaking (lower).

Figure 6 compares the P-E hysteresis loops of the PLZT 
thin films measured at 1000 kV/cm and their corresponding 
EBD values. Similar to the P-E loops measured at 1000 kV/cm, 
the P-E loop of PLD-deposited PLZT thin films at EBD 
(2100 kV/cm) were slimmer than those deposited by sol-
gel (EBD=2200 kV/cm). Moreover, the Pmax of the P-E loop 
measured at the EBD of the PLD-deposited PLZT thin films 
was higher than that of the sol-gel PLZT thin films, even 
as a lower EBD value was achieved in the PLD-deposited 
films. As a result, the Ureco and η values, measured at their 
corresponding EBD, were 27.5 J/cm3 and 62.2% for the 
PLZT thin films deposited by sol-gel and 33.2 J/cm3 and 
67.5% for those deposited by PLD.

Fig. 6. P-E loops of the PLZT thin films deposited by (A) sol-gel 
and (B) PLD measured at 1000 kV/cm and their corresponding EBD 
values.

Conclusions
In summary, we studied the ferroelectric properties 

and energy storage performance of relaxor PLZT thin 
films deposited on Pt/Si substrates by PLD and sol-gel 
spin coating. The sol-gel-deposited PLZT thin films with 
dense structure exhibited a mixed orientation of (100) 
and (111), meanwhile a mixed orientation of (100) and 
(110) was observed in the columnar PLZT thin films 
deposited by PLD. We found that the relaxor behaviour 

was enhanced with improvements in the crystalline 
quality of the film. On the other hand, the PLD-deposited 
PLZT thin films had stronger relaxor behaviour with a 
slimmer P-E loop and lower Pr value due to its higher 
crystalline quality. Together with a larger Pm, higher Ureco 
and η values were achieved in the PLD-deposited PLZT 
thin films. Despite the even lower values of Ureco (-17%) 
and η (-8%) obtained in the sol-gel-deposited PLZT thin 
films, sol-gel can be still an effective method for the 
development of thin film capacitors for energy storage 
applications because of their low cost, great versatility 
in composition, simplicity, and scalable fabrication 
technique.
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