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Introduction

Malaria and ALL are two of the most dangerous blood 
diseases known today. According to the published data 
of the World Health Organization (WHO), there were 
an anticipated 241 million cases of malaria worldwide 
in 2020, with 627,000 deaths from this disease [1]. 
Whereas, ALL is a leading type of blood cancer that 
could grow rapidly to a deadly condition within weeks. 
Consequently, ALL contributed to the cause of 111,000 
deaths globally and seriously impacted the lives of at 
least 876,000 patients in 2015 [2]. 

Malaria is a life-threatening disease that occurs 
due to the invasion of red blood cells (RBCs) caused 
by plasmodium parasites through the bites of infected 
mosquitoes. Consequently, the disease can be widely 
spread and affect the lives of millions of people in the 
world. Once bitten, the infection initially occurs in the 

liver before the parasites re-enter the bloodstream and 
target RBCs. At this moment, RBCs be infected with 
plasmodium become easily “sticky”, and when they go 
through the small blood vessels inside the organs, they 
get stuck. Since the number of stuck RBCs enlarges, 
blood volume flows to the organ is reduced, which causes 
further complications such as kidney failure, coma, etc. 
If the sequential process happens inside the blood vessels 
in the brain, the result is clinically recognized as malaria 
disease - complications can emerge including impaired 
consciousness, coma, and even death [3].

Leukaemia is a term to describe a group of blood 
cancers that begin in the bone marrow, resulting in an 
excessive amount of abnormal white blood cells (WBCs). 
Four types of leukaemia cancer are ALL, acute myeloid 
leukaemia (AML), chronic myeloid leukaemia (CML), 
and chronic lymphocytic leukaemia (CLL). Among 
them, ALL occurs most frequently and it is a dangerous 
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disease that occurs when there is an uncontrollable 
proliferation of lymphoid precursors (i.e., lymphoblasts) 
in the bone marrow with restrained maturation. These 
overproduced leukemic cells cannot function properly 
and even suppress other normal WBCs from forming. 
These abnormal cells are the cause of fatigue, anaemia, 
fever, and bone pain because of the spread of these cells 
into the bone and joint surfaces, which further causes 
recurrent infections. The leukemic cells can then diffuse 
out of the bone marrow moving in the bloodstream and 
accumulate in various organs such as the lymph nodes (or 
lymph glands), spleen, liver, and central nervous system 
(brain and spinal cord) [4]. Consequently, patients 
diagnosed with ALL could die from various threats 
such as infection of bacteria, fungus, or even excessive 
bleeding in organs [3]. If left untreated, ALL disease can 
be fatal within weeks.

Among the current methods of examination and 
diagnosis, visual microscopical examination of Giemsa-
stained blood smears is the most extensively used 
approach for assessing the development stage of malaria 
and leukaemia diseases [5]. However, the quality of the 
reagents, the image resolution of microscopes, and the 
experience of laboratory physicians/specialists all play a 
role in diagnosis. Another method is a polymerase chain 
reaction (PCR), which is also used to detect parasite 
nucleic acids of malaria or leukaemia. Although the PCR 
method is slightly more sensitive than smear microscopy, 
it has some limitations in the diagnosis of patients under 
restricted health care conditions [6]. Besides, a complete 
blood count (CBC) test is also commonly used to 
diagnose ALL. However, the sensitivity of this method 
is quite low because it depends on the number of white 
blood cells, for example, when the white blood cell 
count is not large enough and the symptoms may not be 
sufficiently obvious for the clinician to be able to confirm 
whether the patient has leukaemia [7]. In summary, these 
manual approaches may sometimes be time-consuming 
and expensive because all of the methods of detecting 
malaria and leukaemia are manual and completely rely 
on the expertise and knowledge of trained medical 
doctors [8].

Recently, blood smear microscopic image analysis 
has allowed pathologists to examine thin blood smear 
samples under optical microscopes to identify the 
presence of infected red blood cells for malaria cases or 
cancerous lymphocytes, which indicate the existence of 
malaria or ALL [9, 10]. It must be said that the analysis of 

smear films remains a challenge for pathologists not only 
due to the time-consuming assessment but also because 
of the requirement for specialized knowledge of image 
evaluation and for the massive workload that they must 
go through every day [10]. Obviously, improvements in 
image analysis, especially the applications of artificial 
intelligence (AI), are becoming increasingly popular 
and studied more widely. These advanced methods 
have the potential of automatic detecting processes 
that encourage faster and more precise diagnosis in the 
clinical microbiology field for infectious diseases [11]. 
Computer-aided diagnosis becomes more powerful and 
reliable when machine learning/deep learning approaches 
are combined with image processing techniques. The 
benefit of the machine learning/deep learning methods 
is to reduce human interaction while also improving 
the quality of the diagnostic results. Deep learning, a 
subset of machine learning, provides a better end-to-end 
approach by automatically extracting relevant features 
and learning how to employ those features in performing 
given tasks on their own in an incremental manner. Deep 
learning deals with studies that require more precision, 
more mathematics, and more computation, which are 
being used in various fields to improve the reliability 
of automated systems. Thus, biomedical image analysis 
with deep learning techniques has become a popular area 
in recent years as it eliminates the need for specialized 
expertise and complicated manual feature extraction [12].

Among the available studies on leukaemia detection, 
one of the most impressive is the work of Thanh, et al. 
(2018) [13]. Thanh’s group investigated the use of CNN-
based models to detect leukaemia. Although having an 
impressive accuracy of 96.6%, the stability of the model 
and the results of this work should take into account 
the training set contained only 108 original images. 
However, the authors suggested data augmentation 
methods such as rotation and flip/flop could overcome 
the fact of insufficiency of the training set data in [13]. 
In other studies, Jagadev, Virani (2017) [14] and Putzu, 
et al. (2014) [15] used traditional computer vision 
techniques combined with deep learning algorithms 
to detect leukaemia. Jagadev and his colleague (2017) 
[14] enhanced the image content by applying different 
traditional methods including Otsu’s algorithm and 
Kmeans clustering to segment the potential WBCs. 
However, the best performance of the ensembled model 
achieved only 90% precision and 89% recall. Putzu, et 
al. (2014) [15] proposed a mathematical morphology 
approach of mathematical expressions of sample features 
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such as shape, bending, and roundness ratio. Then, chain 
codes are extracted and fed to a support vector machine 
(SVM) classifier. As a result, their work reached a recall 
of 93%, which is promising.

For malaria detection, Hung, et al. (2017) [16] 
presented the Faster R-CNN model and pre-trained 
AlexNet model to detect each RBC in the microscopic 
blood smear images. Utilizing both transfer learning 
and object detection methods, their research reached an 
accuracy of 96% compared to the one-stage classifier. 
Another work, by Ross, et al. (2006) [17], proposed the 
identification of infected malaria cells by segmentation of 
RBCs utilizing thresholding techniques. They extracted 
the sample features by feeding images to an SVM 
classifier. The results achieved an accuracy of 81-85%. 
Later, Poostchi, et al. (2018) [18] presented a method that 
blended a multiscale Laplacian of Gaussian filter and an 
approximate centroid for the marker-controlled watershed 
to detect and segment RBCs individually. They applied a 
voting-based detection system that reached a precision of 
88%. Whereas, based only on manual extraction features, 
Sheikhhosseini, et al. (2013) [19] applied a rule-based 
system that reached a considerable sensitivity (recall of 
disease class) of 82.88%.

In the proposed study, a deep learning model is 
applied to analyse microscopic images of blood smear to 
determine the existence of ALL and malaria with the aid 
of deep learning. Firstly, a convolutional neural network 
(CNN) is trained to segment the components of blood 
smear images, which are WBCs and RBCs. The dataset 
of blood smear microscopic images were collected from 
several different sources that are validated by scientific 
research community. Then, for malaria detection, each 
segmented RBC component is fed to another trained 
network to determine whether the RBC is healthy or has 
a high-risk of being infected with malaria. Whereas for 
ALL detection, the same process is applied to WBCs to 
examine if they are normal or leukemic. As a result, the 
evaluation metrics of the achieved results show that this 
proposed study is promising, highly accurate, and can be 
extended further into practical application.

Materials and methods

Three major tasks of a deep learning model are 
detection, classification, and segmentation. Detection 
is concentrated on detecting objects in an image and 
marking them with a rectangle around the object, for 
example, a person or an animal. On the other hand, 
classification is defined by categorizing the whole image 

into a predefined class such as “people”, “animals”, or 
“furniture”.  Meanwhile, segmentation deals with the 
association of each pixel in an image with a class label, 
such as WBC, RBC, background, etc. It should be noted 
that segmentation models provide an exact contour of the 
classified object in the image meanwhile classification 
models identify what is in the image, and the detection 
models place a bounding box around a specific object. To 
improve the accuracy and usefulness of this study, both 
segmentation and classification models were applied in 
this approach. 

Loss functions 

Loss function is an important part of artificial neural 
networks, which is used to measure the inconsistency 
between the predicted value and actual value. The loss 
function has a non-negative value, which means that the 
robustness of the model increases along with a decrease 
of the value of the loss function. Besides accuracy, the 
loss function can also be used to evaluate whether a 
model is overfitting or underfitting. Even though there 
are several available loss functions, each function is only 
suitable for a particular task. In the scope of the proposed 
study, 2 loss functions are explained, which are soft Dice 
and categorical cross-entropy [20]. 

Categorical cross entropy (CCE) is the most 
fundamental loss function and it is commonly used in 
classification tasks. The cross entropy can be formulated 

as follows [20]: log( )
C
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i

CE t s= −∑                           (1)

where ti and si are the ground truth and the CNN score 
from class i to class C, respectively. For example, 
given C=2 (where a classification only has two classes, 
i.e., positive and negative), Eq. (1) becomes [20]: 
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where t2=1–t1 and s2=1–s1 are the ground truth and the 
score for C2. Equation (2) is often called binary cross 
entropy (BCE). Similarly, CCE only differs in the way 
of defining scores. The CCE requires the scores to be 
probabilities of one class on C classes, that is then scaled 
by a softmax function. Specifically [20],
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where t is a one-hot vector and p is the correct label. 
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If there is only one element in t, where t=tp, that 
forms the CE non-zero. Then, Eq. (4) becomes [20]: 

log
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 ∑       

(5)

where p represents the true class (i.e., positive class). 
It is noted that the CCE will go down as the prediction 
(i.e., the predicted score for the true class) becomes more 
accurate. CCE equals zero if the prediction is perfect. 
Therefore, cross-entropy can be a loss function for 
training a classification model. 

In semantic segmentation tasks, soft Dice loss is a 
commonly used object function. It was inspired by the 
Dice coefficient formula suggested by Sørensen (1948) 
[21]. The Dice coefficient measures the similarity of 
2 samples. In the context of semantic segmentation, it 
measures the overlapped region between the predicted 
mask and the ground truth. Simply, the larger the 
coefficient, the better the performance of the prediction 
model. The Dice coefficient is given by:

2 mask prediction
Dice

mask prediction
× ∩

=
+                           (6)

In contrast, soft Dice loss is defined as the subtraction 
of the Dice coefficient from 1. The larger the loss values, 
the worse the performance of the model. Given the 
fact that any image could be treated as a 2-dimensional 
matrix, where each element is equivalent to a pixel of 
that image, |A∩B| can be approximated as the element-
wise multiplication between the prediction and mask. 
Then, sum the resulting matrix.

To quantify |A| and |B|, one can apply the squared sum 
of each matrix. Therefore, the mathematical expression 
of soft Dice loss is defined as follows:
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Metrics 

To evaluate the model on a dataset, different 
metrics are applied. Some commonly used metrics for 
classification tasks are the confusion matrix, sensitivity, 
precision, and accuracy. The confusion matrix illustrates 
the performance of a model with two or more classes. A 
confusion matrix contains 4 components including True 
Positive (TP), True Negative (TN), False Positive (FP), 
and False Negative (FN) where TP is defined as a total 
number of accurate predictions that are “positive”, FP 
is defined as the total number of inaccurate predictions 
that are “positive”, TN is defined as the total number 

of accurate predictions that are “negative” and FN is 
defined by the total number of inaccurate predictions that 
are “negative”.

Precision (also called positive predictive value) is the 
probability that subjects having a positive test precisely 
have the disease. Meanwhile, the recall of a test (also 
called the true positive rate) is defined as the proportion 
of subjects having the disease that have a positive result. 
In other words, the recall is a high value when a model is 
highly sensitive. The precision and recall can be defined 
as follows:

Precision
( )

TP
TP FP

=
+

                        (8)

Recall
( )

TP
TP FN

                                             (9)

Classification accuracy is the number of correct 
predictions made as a ratio of all predictions made. This 
is the most common evaluation metric for classification 
problems. However, it is only suitable when there are 
an equal number of observations in each class (which is 
rarely the case), while most of the models often face an 
imbalanced dataset. When a dataset is imbalanced, the 
dominance in a proportion of the majority class can make 
classification accuracy a misleading evaluation. 

Semantic segmentation uses different metrics for 
evaluation compared to classification tasks. The most 
widely used metrics for segmentation models are the 
Dice coefficient and intersection over union (IoU). IoU is 
a metric that allows the evaluation of how much overlap a 
predicted bounding box has on the ground truth bounding 
box. The IoU compares the ratio of the area where the 
two boxes overlap to the total combined area of the two 
boxes. 

Assuming the predicted mask is bounded by a 
rectangle and the ground truth is also placed within 
another rectangle, the coordinates of these two rectangles 
are used to simplify the calculation and implementation 
of the IoU algorithm as described in Fig. 1.
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Fig. 1. Implementation of IoU calculation.
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Transfer learning with VGG16 & UNET 

The transfer learning technique allows pre-trained 
models to achieve the expected accuracy with fewer training 
epochs on a new dataset. Especially when the dataset is 
small, reusing knowledge from pre-trained models will 
help the trained models make better predictions because 
the models are learning from both knowledge sources, that 
is, new data and old data. Due to the advantages of using 
pre-trained models and the goals of this study, two popular 
models were selected including VGG16 [22] for the 
classification task and UNet [23] for the segmentation task. 
VGG16 is a CNN model that took first and second place in 
the localization and classification tasks respectively in the 
2014 ImageNet challenge. The pretrained VGG16 has the 
ability of learning and extracting sufficient features for the 
classification task. UNet was presented by Ronneberger, 
et al. (2015) [23] to segment neural structures in human 
brain in 2012. The UNet architecture consists of two 
U-shaped symmetrical paths: the contraction (also called 
the encoder) is on the left and the extension (also called 
the decoder) is on the right. The contraction path is used 
to do the feature extraction task of capturing the context 
of the image. This path is called contraction because the 
size of the layers are decreasing. Simultaneously, the depth 
of layers increases gradually from 3 to 512. The extension 
path contains symmetrical layers corresponding to the 
layers of the contraction path. The decoder process is 
applied to help increase the layer size gradually. Finally, 
a segmented mask is obtained to show the prediction label 
of each pixel. The unique feature of UNet architecture is 
that it applies a symmetric skip connection between the 
encoder and decoder path.

Data collection

Table 1 presents two segmentation datasets that were 
collected and utilized to train RBC and WBC segmentation 
models. The combined datasets are called the WBC Image 
Dataset, which was published by X. Zheng (2018) [24] and 
“erythrocytesIDB” proposed by Universidad de Oriente 
of Cuba [25], respectively, for WBCs and RBCs. For 
WBCs, the dataset contains three hundred 120×120 px 
sub-images of a single WBC and one hundred 300×300 
px colour images (including neutrophils, eosinophils, 
basophils, monocytes, and lymphocytes). These samples 
were taken by a motorized auto-focus microscope, then 
were processed with a developed haematology reagent 
for rapid WBC staining. For RBCs, the erythrocytesIDB 
dataset contains images of peripheral blood smear samples 
taken from patients with sickle cell disease that contain 
full-field images and individual cells classified as circular, 
elongated, or other. These samples were fixed with absolute 
alcohol and stained with Giemsa in a proportion of 2% of 

reagent to 1 ml of distilled water. The RBC segmentation 
model treated each sample as a full-sized blood smear 
microscopic image with a binary mask including red blood 
cell pixels that were coloured white. After segmentation, 
the number of samples in the datasets changed in size, as 
shown in Table 2.

Table 1. Segmentation database.

Dataset name Number of images/Cell type Release year

ErythrocytesIDB 320/RBCs 2017

WBC image dataset 400/WBCs 2018

Table 2. Distribution of samples for classification.

Class name Sample size

Normal 1503

ALL 1503

Malaria 891

Table 3 shows the sample size for the training, 
validation, and testing subsets. The percentages for 
training, validation, and testing were chosen as 50%, 
25%, and 25%, respectively. The dataset, in fact, is 
made up of blood smear microscopic pictures gathered 
from different sources. Table 4 shows the distribution of 
samples organized by database name.

Table 3. Sample size of each data subset.

Data set Sample size

Training set 1948 (50%)

Validation set 974 (25%)

Testing set 975 (25%)

Table 4. Distribution of dataset by sources.

Database name Disease Number of images

ALL-IDB Leukaemia 1503

MLSRC Malaria 668

MP-IDP Malaria 223

ALL-IDB Normal 1503

Implementation of model

 System overview
Figure 2 illustrates the three-stage classifier system 

that was created to detect ALL or malaria on blood smear 
microscopic images. The system took each fed-in block to 
predict the mask for each block, and then combined all masks 
to generate the binary mask for the entire image in the first 
step. Then, the system segregated each blood cell (i.e., RBC 
and WBC) into every single image using contour finding and 
the watershed method.

In the second stage, each WBC was isolated and sent 
into a CNN classifier, which verifies whether the WBC is 
leukemic or malignant. Meanwhile, each RBC was loaded 
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into a second CNN model to determine the probability of 
an RBC becoming infected with malaria parasites. Only the 
maximum predicted probability for each type of RBC/WBC 
was reserved because an image might contain both numerous 
RBCs and WBCs. The two probabilities were concatenated 
and given to a perceptron network in the last stage of the 
system, which determines whether the studied image was a 
normal cell, infected with malaria, or ALL.

Implementation 
Stage 1: blood cell separation: two segmentation models 

were developed, which were the WBC segmentation model 
for WBCs and the RBC segmentation model for RBCs. Every 
image was divided into numerous 128x128 px images to 
save time and prevent system crash owing to the large size 
of the images. Each sub-image was then supplied to one of 
the two segmentation models based on the UNet pre-trained 
model. The predicted binary masks of all sub-images were 
then concatenated together for each segmentation model to 
generate the total binary masking for the original image. The 
whole process for the first stage is visualized in Fig. 3.

Fig. 3. Visualization the first stage of the system.

The results of the UNet training process were the RBC mask, 
in which positive pixels (i.e., white pixels) correspond to RBCs, 
and the WBC mask, in which each white pixel corresponded to 
WBCs. These masks are commonly used in fully convolutional 
networks for segmenting biological molecules. After that, each 
binary mask was subjected to contour finding and minimum 
enclosing rectangle to produce rectangle images with only one 
cell of interest in the centre. The models were trained using the 
soft Dice loss function and the customized IoU measure, which 
was adapted from the original UNet.

Stage 2: blood cell type classification: following Stage 1, 
each isolated cell was fed into one of two models in Stage 2 as 
shown in Fig. 4. The first classifier determines the likelihood 
of a malaria-infected RBC. The second model identified the 
likelihood that a WBC is leukemic. Both models were trained 
in 30 epochs on the same training dataset and then validated on 
the same validation dataset using the same VGG16 structures 
with the same modifications. The last layer was removed and 
replaced with a sigmoid-activated layer of 2 units. Stage 2 
generates a list of probabilities for RBCs being infected with 
malaria and a list of probabilities for WBCs being leukemic 
lymphoblasts from an image containing numerous RBCs and 
WBCs. Nonetheless, only the highest probability of each vector 
was preserved for processing in the next stage.

Fig. 4. Visualization of Stage 2 of the proposed model.

Fig. 5. Visualization of the perceptron architecture.

Fig. 2. The process of classifier.
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Stage 3: classification utilizing perceptron as the 
combining model: the two maximum probabilities from 
Stage 2 were used as the two input neurons for a perceptron 
model in the third stage of this technique. The perceptron 
model was made up of three layers as illustrated in Fig. 5. 
The first layer is the input layer, which has two neurons that 
correspond to the two maximum probabilities mentioned. 
The middle layer is a hidden layer of neurons. The last layer 
is the output of 16 nodes, which have a softmax activation 
function and indicate the probabilities of the original input 
classified as “malaria”, “ALL”, or “normal”. As a combined 
classifier, the perceptron model is used. On the training set, 
the perceptron was trained for 20 epochs.

Results and discussion
Figures 6 and 7 show the results of the two WBC and RBC 

segmentation models, respectively. The training loss and 
validation loss for the WBC segmentation model significantly 
reduced throughout epochs indicating that the model is 
accurately and effectively trained. After 85 epochs, the model 
learns and begins to converge at a mean IoU of 0.91. A 0.91 
mean IoU score simply means that the projected segmentation 
region overlaps the ground truth by 91%, which is a good and 
promising precision for the segmentation challenge. With a 
mean IoU of 0.94, the RBC segmentation model’s training 
and validation losses saturate after 90 epochs.

In the second stage, two CNN classification models are 
built. Fig. 8 shows the loss and accuracy values of the malaria 
detection model over epochs. Fig. 9 illustrates the same 
parameters for ALL. Both models achieved a high accuracy 
of validation when training.

A confusion matrix is developed to infer the meaning of 
precision, recall, and accuracy to evaluate the performance 
of an entire system on the testing dataset. Fig. 10 and Table 
5 provide more information on these metrics. Fig. 10 depicts 
the confusion matrix’s insight, which provides readers with 
a numerical expression of the model’s performance. Table 
5 summarizes the overall performance of the system on the 
testing dataset.

Fig. 10. Confusion matrix for evaluation of whole system on 
testing set.

Fig. 6. Training and validation losses / IoUs of WBC segmentation 
model.

Fig. 7. Training and validation losses/IoUs of RBC segmentation 
model.

Fig. 8. Training and validation losses/accuracies of the malaria 
detection model.

Fig. 9. Training and validation losses/accuracies for the ALL 
detection model.
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Table 5. The results of precision, recall for each class and whole 
accuracy of the system.

               Class name

Metrics (%)
Normal ALL Malaria

Precision 95 94 88

Recall 91 95 92

Whole accuracy of the system 93

With the help of ensemble learning, the overall 
performance of the classification system reaches an accuracy 
of 93%. Individually, each sub-performance model is rather 
good and acceptable. For the segmentation task, the average 
IoU is over 0.9 indicating that the system can forecast 
masks with over 90% overlapped area with true ground 
truths. Both CNN detection models were found to have an 
accuracy of more than 90%. The accuracy of the malaria 
detection model is less than that of the model for detecting 
acute lymphoblastic leukaemia (89 vs 92%). Furthermore, 
the loss plots of all the models show that the models are 
correctly trained without overfitting or underfitting. Tables 
6 and 7 compare the precision and recall of classification 
among the proposed system and other publications.
Table 6. Comparison of the proposed method in malaria detection 
with other studies by precision and recall.

Study Malaria detection
precision (%)

Malaria detection
recall (%)

Our method 88 92

Hung, et al. [16] 98 97

Ross, et al. [17] 81 85

Poostchi, et al. [18] 88 91

Sheikhhosseini, et al. [19] Not mentioned 82.28

Table 7. Comparison of the proposed method in ALL detection 
with other studies by precision and recall.

Study ALL detection
precision (%)

ALL detection
recall (%)

Our method 94 95

Chowdhury, et al. [9] 90 89

Thanh, et al. [13] 97 97

Putzu, et al. [15] Not mentioned 93

Compared to other studies, the proposed study 
outperforms Chowdhury, et al. (2018) [9] and Putzu, et al. 
(2014) [15], but lags behind Thanh, et al. (2018) [13] in 
detecting ALL in a blood smear microscopic image. The 
algorithm of Thanh, et al., on the other hand, appears to 
be overfitted, as their study used only 108 unique images 
for the dataset. Even though augmentation can expand 
datasets, it is not recommended to use augmented images 
on testing, as group of Thanh did, because this might lead 
to overfitting issues. In terms of malaria detection, the 
proposed study outperforms Poostchi, et al. (2018) [18], 

Sheikhhosseini, et al. (2013) [19], and Ross, et al. (2006) 
[17], but falls short of Hung, et al. (2017) [16]. Hung’s 
group built a two-stage detection approach with Faster-
RCNN, which is comparable to our proposed solution, 
however, their method requires hard-core training and 
does not directly flag up problematic cells.

Although the proposed study is not among the top 
performances, the suggested method still has several 
advantages than other studies in some respects. Firstly, the 
proposed method can perform both abnormal leukocytes 
for ALL and malaria-infected blood cells identification 
while other studies only detected one type of disease. 
Secondly, compared to related works that suggested 
only one CNN classifier, the proposed system is more 
interpretable as it can indicate the locations of not only 
ALL in white blood cells but also malaria-infected blood 
cells. Obviously, the detecting result of multiple diseases 
from blood smear microscopic images will provide 
more information for the histopathologist to evaluate the 
sample. Due to the proposed study indicating the potential 
subjects for detection, haematologists can have a quick 
look through those potential objects to verify the results 
faster and more precisely. In addition, if diagnosed with 
a disease, haematologists can also see why the proposed 
system classified the disease and in which cell(s) the 
model recognized the disease(s).

The system, in fact, has a number of challenges. The 
method takes longer to process an image than other 
alternatives, which is the most evident shortcoming. 
This is owing to the time-consuming nature of merging 
multiple models and processes at once. However, if 
parallel-computation techniques are used, this problem 
can be solved. Another issue that has been brought up is 
a lack of training data. Ideally, one would want hundreds 
of thousands of images to train a deep learning system. 
This difficulty can be solved by collecting more data or 
using the synthetic minority over-sampling technique 
(SMOTE).

Conclusions
This study has proposed a learning-based method that 

consists of three stages to segment white blood cells and 
red blood cells in blood smear microscopic images by 
the UNet model. The probability of acute lymphoblastic 
leukaemia and malaria is calculated by the VGG16 model 
and then those diseases are classified by the perceptron 
model. The performance of the proposed study achieves 
an average IoU of 90% for the segmentation task and an 
overall classification accuracy of 93% for the three types 
of conditions (malaria, acute lymphoblastic leukaemia, 
and normal). Overall, the achieved results indicate 
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that the proposed system has promising potential for 
the development of learning-based approaches for 
automated diagnosis of blood diseases utilizing blood 
smear microscopic images.
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