
Received:  August 12, 2022.     Revised: October 6, 2022.                                                                                                 91 

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023           DOI: 10.22266/ijies2023.0228.08 

 

 
Northern Goshawk Optimization for Optimal Allocation of Multiple Types of 

Active and Reactive Power Distribution Generation in Radial Distribution 

Systems for Techno-Environmental Benefits 

 

Manohara M1*          V. C. Veera Reddy2          Vijaya Kumar M1 

 
1Department of Electrical and Electronics Engineering, Jawaharlal Nehru Technological University, 

Anantapur (JNTUA), Ananthapuramu-515002, Andhra Pradesh, India 
2Department of Electrical and Electronics Engineering, Sri Padmavati Mahila Visvavidyalayam,  

Tirupati-517502, Andhra Pradesh, India 

* Corresponding author’s Email: muppirimanohar@yahoo.com 

 

 
Abstract: Radial distribution systems (RDSs) can work better from a technical, economic, and environmental point 

of view if they have the right mix of renewable energy-based distribution generation (DG) and reactive power 

sources like and distribution-static compensator (DSTATCOM). In this paper, the Northern Goshawk Optimization 

(NGO), a new meta-heuristic that mimics the hunting behaviour of the northern goshawk, is introduced as a way to 

figure out where and how big different types of active and reactive power DGs in RDSs should be. For the suggested 

multi-objective function, NGO is used to find the best places and sizes for photovoltaic systems (PVs), wind turbine 

systems (WTs), and DSTATCOMs. The main goals of the suggested method are to reduce distribution losses, 

improve the voltage profile, increase the voltage stability margin, and reduce greenhouse gas (GHG) emissions. Five 

different case studies are simulated to figure out how well the suggested method works with computers. Simulations 

use IEEE 33-bus feeder. When compared to the literature and other heuristic algorithms, the results show that NGO 

works. The computational efficiency of NGO is compared for four cases: (i) only PV ((ii) only WT (iii) only 

DSTATCOM and (vi) simultaneous PV, WT and DSTATCOM allocation. The results also show that the proposed 

NGO much efficient than other algorithms and also improves all techno-environmental factors and RDS 

performance in a big way. 

Keywords: Capacitor bank, Distribution-static compensator, Multi-objective optimization, Northern goshawk 

optimization, Photovoltaic system, Radial distribution system, Wind turbine system. 

 

 

1. Introduction 

In recent years, the number of people who need 

electricity has grown by a factor of ten. This is 

because of the fast growth of the world's population, 

new technologies like electric cars, and 

industrialization. On the other hand, traditional 

energy sources can't meet all of the demand because 

their fuel sources are getting less and their prices are 

going up. Most traditional energy sources also 

release greenhouse gases (GHG), which contribute 

to global warming and air pollution. Adapting 

different types of renewable energy (RE) 

technologies has become an alternative way for 

people all over the world to work toward 

sustainability [1]. As distribution generation (DG) 

units, the RE sources can be added to the electrical 

distribution system (EDS) at different voltage levels. 

But the level of DG penetration is limited because of 

the radial configuration, which causes EDS to have 

problems like high distribution losses, a low voltage 

profile, less room for stability, and low reliability. 

To help with these problems, RE-DGs must be 

integrated in the right places and at the right sizes. 

On the other hand, RE is very intermittent, which 

leads to problems with power quality, operations, 

and managing energy [2]. So, many researchers are 

trying to find the best way to integrate RE-DGs into 
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radial distribution systems (RDS) by using different 

meta-heuristic methods [3].  

At first, this problem was solved with traditional 

numerical approaches, but later, heuristic 

approaches became more useful because they were 

simple, easy to adapt, and able to solve problems 

with multiple objectives, multiple constraints, and 

multiple types of variables [4]. In [5], different types 

of DGs are best integrated into RDSs using the 

whale optimization algorithm (WOA) to reduce 

losses (f1), improve voltage profiles (f2), make the 

system more stable (f3), and keep operational costs 

as low as possible (f4). In [6], the ant-lion 

optimization (ALO) and particle swarm 

optimization (PSO) algorithms are combined with 

the fuzzy logic controller (FLC) to find the best way 

to connect photovoltaic (PV) and wind turbine 

(WT)-based distributed generators (DGs) to meet 

multiple goals (i.e., f1, f2, f3, and f4). In [7], multi-

objective PSO (MOPSO) is used to handle load 

changes with RE-DG allocation in the Portuguese 

distribution network while taking into account 

multiple goals (i.e., f1, f2, and f3). In [8], the 

modified sine cosine algorithm (MSCA) is 

introduced for handling techno-economic multi-

objective functions (i.e., f1, f3, and f4) while solving 

optimal PV and WT type DGs integration. In [9], 

loss sensitivity factors (LSFs) and voltage stability 

indices (VSIs) are used to find locations, and 

improved-PSO (IPSO) is used to find the best sizes 

for PV-type DGs to reduce real and reactive power 

loss and improve the voltage profile.  

Some researchers also focused on reactive power 

(VAr) compensation devices in EDSs, such as 

capacitor banks (CBs), short and series reactors, and 

custom power devices, such as automatic voltage 

regulators (AVR), tap-changing transformers, 

distribution static compensator (DSTATCOM), 

unified power quality controller (UPQC), and static 

synchronous series compensator (SSSC), etc. [10]. 

Most EDSs are radial and have a low voltage profile, 

so dynamic VAr compensation is needed to keep 

operations running smoothly. Compared to other 

VAr compensation devices, DSTATCOM is unique 

because it responds quickly to regulatory changes, 

produces fewer harmonics, costs less, and takes up 

less space. Like other active power DGs, the 

location and size of DSTATCOM need to be 

systematically optimised to get the techno-economic 

benefits that are wanted. 

In [11], the goal is to minimise real power loss. 

The bat algorithm (BA) is used to optimise the 

location and size of DSTATCOMs in RDSs, and its 

effect on voltage stability and net savings is studied. 

In [12], the whale optimization algorithm is used to 

optimise multiple goals, such as reducing loss (f1), 

improving the voltage profile (f2), and making the 

system more stable (f3) (WOA). VSIs are used to set 

the locations ahead of time. In [13], a multi-

optimization approach f1, f2, and net savings (f4) 

are shown by using the gravitational search 

algorithm to find the best way to distribute 

DSTATCOMs (GSA). Harmony search algorithm 

(HSA) [14], cuckoo search algorithm (CSA) [15], 

differential evolution (DE) [16], improved student 

psychology based algorithm (ISPBA) [17], 

improved bacterial search algorithm (IBSA) [18], 

and discrete-continuous PSO [19] are also recent 

works that focus on the techno-economic benefits of 

running and controlling EDS. 

On the other hand, a lot of research is also done 

on how to use both DGs and DSTATCOMs at the 

same time to get the most out of both. Along with 

different multi-objectives like f1, f2, f3, and f4, 

these works also think about f5, which is the 

reduction of GHG emissions from conventional 

power sources. Recent works include the Improved 

Cat Swarm Optimization (ICSO) [20], the Bacterial 

Foraging Optimization Algorithm (BFOA) [21], the 

Cuckoo Search Algorithm (CSA) [22, 23], the 

Improved PSO [24], the Modified Bat Algorithm 

(MBA) [25], the Gray Wolf Optimization (GWO) 

[26], the Firefly Algorithm (FA) [27], and the 

Modified FA-PSO [28].  

In recent years, many heuristic approaches that 

are inspired by nature and can be used to solve a 

wide range of complex optimization problems have 

been developed. But the no-free-lunch (NFL) 

theorem [32] says that a single algorithm might not 

be able to solve all kinds of optimization problems. 

This is why researchers are still trying to come up 

with new algorithms that are simple and work well. 

In the same way, Northern Goshawk Optimization 

(NGO) is a new meta-heuristic created by that 

mimics how the northern goshawk hunts [33].  

The main goal of this work is to introduce a new 

optimization method based on NGO for improving 

the performance of RDS by integrating multiple PVs, 

WTs, and DSTATCOMs at the same time. NGO is 

used to figure out the best places and sizes for things. 

When making the multi-objective function, real 

power distribution loss, voltage profile, voltage 

stability, and GHG emissions are all taken into 

account. Four different scenarios are simulated to 

figure out how well the suggested method works 

with computers. For analysis, IEEE 33-bus RDS is 

used. When compared to the literature and other 

heuristic algorithms, the results show that NGO 

works. Also, the results show that the proposed 
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NGO improves all technological and environmental 

factors in RDS operation and control in a big way.  

Here's how the rest of the paper is put together: 

In Section 2, the math models of PV-based DG, 

DSTATCOM, and their power injection modelling 

are shown. In Section 3, we talk about the proposed 

multi-objective function and the different 

operational and planning constraints. In Section 4, 

the idea of DA and how it can be modelled 

mathematically are talked about. In Section 5, the 

simulation results for IEEE 33-bus RDS in different 

situations are shown. In Section 6, the full and most 

important results of this research are given.  

2. Modelling of distribution generation 

This section explains how to model PV, WT, 

and DSTATCOM mathematically for 

backward/forward load flow study [34] by looking 

at their net-effective active and reactive power 

injections at its connected bus.  

2.1 Photovoltaic/wind turbine systems 

As everyone knows, DC/AC or AC/AC power 

converters are used to connect RE-based DGs to the 

grid. The power factor of the converter can be used 

to control how much active and reactive power RE-

DGs put into the grid [35].  

 

𝑃𝑑(𝑘) = 𝑃𝑑0(𝑘) − 𝑃𝑑𝑔(𝑘), ∀𝑘 = 1: 𝑛𝑑𝑔         (1) 

 

𝑄𝑑(𝑘) = 𝑄𝑑0(𝑘) − 𝑃𝑑𝑔(𝑘) × 𝑡𝑎𝑛 (𝑐𝑜𝑠−1(𝑝𝑓𝑑𝑔(𝑘))), 

∀𝑘 = 1: 𝑛𝑑𝑔                          (2) 

 

where 𝑃𝑑0(𝑘)  and 𝑄𝑑0(𝑘)  are the real and reactive 

power loads of a bus-k at base case/ before RE-DG 

integration, respectively; 𝑃𝑑(𝑘)  and 𝑄𝑑(𝑘)  are the 

real and reactive power loads of a bus-k after DG 

integration, respectively; 𝑃𝑑𝑔(𝑘)  is the real and 

reactive power injection by DGs, respectively; 𝑛𝑑𝑔 

are the number of RE-DGs, respectively. The power 

factor (𝑝𝑓𝑑𝑔) of a PV-DG is usually treated as unity 

and thus, reactive power injection is zero. On the 

other hand, it is controllable in the range of 0.3 to 1 

for WT-DGs [6].  

2.2 DSTATCOM 

The possible active and reactive power flows 

from DSTATCOM at a grid-connected point or 

point of common coupling (PCC) are given by [36],  

 

𝑃𝐷𝑆 =
1

𝑋𝑖𝑝
[|𝑉𝑖||𝑉𝑝|𝑠𝑖𝑛(𝛼𝑖𝑝)]                  (3) 

𝑄𝐷𝑆 =
1

𝑋𝑖𝑝
{|𝑉𝑝| (|𝑉𝑝| − |𝑉𝑖|𝑐𝑜𝑠(𝛼𝑖𝑝))}       (4) 

 

where 𝑃𝐷𝑆  and 𝑄𝐷𝑆  are the active and reactive 

power exchanges between DSTATCOM unit and 

PCC/grid connecting point, respectively; |𝑉𝑖|  and 

|𝑉𝑝|  are the inverter/converter and PCC/grid point 

voltage magnitudes, respectively; 𝛼𝑖𝑝 = (𝛼𝑖 − 𝛼𝑝), 

where 𝛼𝑖 and 𝛼𝑝 are the load angle between inverter 

and PCC point, respectively. For small load angles, 

𝛼𝑖 ≅ 𝛼𝑝, then  𝛼𝑖𝑝 ≅ 0. Thus, the active power by 

DSTATCOM becomes zero. The reactive power 

supplied by DSTATCOM is given by, 

 

𝑄𝐷𝑆 =
1

𝑋𝑖𝑝
{|𝑉𝑝|(|𝑉𝑝| − |𝑉𝑖|)}              (5) 

 

By controlling inverters voltage magnitude |𝑉𝑖|, 

w.r.t. PCC voltage magnitude|𝑉𝑝|, DSTATCOM can 

be used for multi-purposes, as follows: 

• Reactive power sink (Q+): In this mode, 

DSTATCOM acts like reactive power sink and 

absorb the VAr form grid to reduce the voltage 

magnitudes by maintaining |𝑉𝑝| greater than |𝑉𝑖|.   

• Reactive power source (Q–): For the condition 

|𝑉𝑝|  less than |𝑉𝑖| , DSTATCOM acts under 

capacitive mode and injects VAr into the grid for 

improving the voltage magnitudes.  

On the other hand, the reactive power injections 

by DSTATCOM or their effect can be realized by 

offsetting the DSTATCOM size directly from the 

reactive load at a bus and it is expressed by, 

 

𝑄𝑑(𝑘) = 𝑄𝑑0(𝑘) ± 𝑄𝑑𝑠(𝑘), ∀𝑘 = 1: 𝑛𝑑𝑠        (6) 

 

where 𝑄𝑑𝑠  and 𝑛𝑑𝑠  are the reactive power support 

by DSTATCOM and number of DSTATCOM 

locations, respectively. 

3. Problem formulation 

The formulation of multi-objective function 

using real power loss ( 𝑓1 ), voltage profile ( 𝑓2 ), 

voltage stability (𝑓3 ), and GHG emission (𝑓4 ) is 

given here with different constraints.  

3.1 Real power loss 

The load flow technique [34] can be used to 

figure out the real power distribution losses. This 

can be written as, 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐼𝑘
2𝑟𝑘

𝑛𝑏𝑟
𝑘=1                       (7) 
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where 𝑟𝑘  and 𝐼𝑘  are the resistance and current 

through branch-k, 𝑛𝑏𝑟 is the number of branches in 

the network. 

3.2 Average voltage deviation index 

In EDS, the connected loads are sensitive to 

voltage, so the magnitude of the voltage on each 

load bus needs to stay close to the nominal value. 

But the radiality configuration can't keep the voltage 

profile the same. So, the voltage deviation index 

tells us something about the overall voltage profile 

of the network, 

 

𝐴𝑉𝐷𝐼 =
1

𝑛𝑏𝑢𝑠
∑ ||𝑉𝑛| − |𝑉𝑖||𝑛𝑏𝑢𝑠

𝑖=1             (8) 

 

The higher values of  𝐴𝑉𝐷𝐼  indicates lower 

voltage profile in the network and lower 𝐴𝑉𝐷𝐼 

indicates good voltage profile. 

3.3 Voltage stability index 

The voltage stability index (VSI) is a way to 

figure out how stable a bus's voltage is. Higher VSI 

values mean that something is stable. So, the 

minimum VSI of all the buses in a network should 

be thought of as the minimum voltage stability of 

the whole network [36]. After doing load flow and 

looking at the voltage profile, VSI j for a bus-j is 

written as,  

 

𝑉𝑆𝐼𝑗 = |𝑉𝑖|4 − 4(𝑃𝑑(𝑗)𝑥𝑖𝑗 − 𝑄𝑑(𝑗)𝑟𝑖𝑗)
2

− 

4(𝑃𝑑(𝑗)𝑟𝑖𝑗 + 𝑄𝑑(𝑗)𝑥𝑖𝑗)|𝑉𝑖|2, ∀𝑗 = 2: 𝑛𝑏𝑢𝑠 (9) 

 

where |𝑉𝑖| is the voltage magnitude of bus-i, 𝑟𝑖𝑗 and 

𝑥𝑖𝑗  are the resistance and reactance of branch-k, 

connected between buses i and j, respectively. 

3.4 Greenhouse gas emission 

GHG emissions from conventional power plants 

that are connected to the grid is one of the biggest 

concerns for sustainability. Before DGs are added to 

the network, the grid needs to meet the total network 

demand (load plus losses). With PV-DGs, the 

amount of power brought in from the grid can be cut 

down, and so can GHG emissions, which can be 

measured by, 

 

𝐺𝐻𝐺𝑒𝑚 = (𝐶𝑂2 + 𝑁𝑂𝑥 + 𝑆𝑂2) × 𝑃𝑠𝑠        (10) 

 

where 𝐺𝐻𝐺𝑒𝑚  is the total GHG emission by the 

grid-associated conventional power sources, 𝐶𝑂2 , 

𝑁𝑂𝑥  and 𝑆𝑂2  are the most accounted emissions 

[37]; 𝑃𝑠𝑠 is the total active power demand (includes 

load and losses) on the substation/grid. 

3.5 Constraints 

The following are the major constraints 

considered while optimizing the aforementioned 

objective functions. 

Real and reactive power imports at sub-station 

bus are equal to summation of distribution losses, 

total load minus total DGs/CBs power.  

 

𝑃𝑠𝑠 = 𝑃𝑙𝑜𝑠𝑠(𝑐) + ∑ 𝑃𝑑(𝑖)
𝑛𝑏𝑢𝑠
𝑖=1 − ∑ 𝑃𝑑𝑔(𝑘)

𝑛𝑑𝑔
𝑘=1    (11) 

 

𝑄𝑠𝑠 = 𝑄𝑙𝑜𝑠𝑠 + ∑ 𝑄𝑑(𝑖)
𝑛𝑏𝑢𝑠
𝑖=1 − ∑ 𝑄𝑑𝑔(𝑘)

𝑛𝑑𝑔
𝑘=1 −  

∑ ∑ 𝑄𝑐(𝑘)
𝑛𝑐
𝑘

𝑛𝑐𝑏
𝑖=1  (12) 

 

where 𝑄𝑠𝑠  is the total reactive power demand 

(includes load and losses) on the main grid or power 

imported by the sub-station bus.  

Real and reactive power compensation limits, 

bus voltage magnitude limits, branch current limits, 

as expressed in Eqs. (13) to (16), respectively. 

 

𝑃𝑑𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑑𝑔 ≤ 𝑃𝑑𝑔

𝑚𝑎𝑥                    (13) 

 

𝑄𝑑𝑠
𝑚𝑖𝑛 ≤ 𝑄𝑑𝑠 ≤ 𝑃𝑑𝑠

𝑚𝑎𝑥                    (14) 

 

|𝑉𝑖|𝑚𝑖𝑛 ≤ |𝑉𝑖| ≤ |𝑉𝑖|𝑚𝑎𝑥                (15) 

 

𝐼𝑘 ≤ 𝐼𝑘
𝑚𝑎𝑥                        (16) 

 

where 𝑃𝑑𝑔
𝑚𝑖𝑛  and 𝑃𝑑𝑔

𝑚𝑎𝑥  are the minimum and 

maximum limits for RE-DG’s real power, 

respectively; 𝑄𝑑𝑠
𝑚𝑖𝑛 and 𝑄𝑑𝑠

𝑚𝑎𝑥  are the minimum and 

maximum limits for DSTATCOM’s reactive power, 

respectively; |𝑉𝑖|𝑚𝑖𝑛  and |𝑉𝑖|𝑚𝑎𝑥  are the minimum 

and maximum limits for bus voltage magnitudes, 

respectively; 𝐼𝑘  and 𝐼𝑘
𝑚𝑎𝑥  are current flow and its 

limit of the branch-k, respectively. 

4. Northern goshawk optimization 

Northern Goshawks are Accipiter. It eats small 

and large birds, raptors, mice, rabbits, squirrels, 

foxes, and raccoons. Northern goshawks hunt twice. 

Once it spots something, it chases it with its tail. The 

northern goshawk moves fast in the first stage. The 

second stage is tail-chase. [33]. 

The northern goshawk searches for the 

population-based NGO. Each NGO member 

symbolises a prospective problem solution, giving 

them varying values. Randomization determines 

who searches first.  
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𝑔𝑖𝑗 = 𝑔𝑗,𝑢𝑝 + 𝑟𝑎𝑛𝑑 × (𝑔𝑗,𝑢𝑝 − 𝑔𝑗,𝑙𝑏), 

𝑖 = 1,2, … , 𝑛𝑑, 𝑗 = 1,2, … , 𝑛𝑝            (17) 

 

where 𝑔𝑖𝑗 is the jth variable of ith solution, 𝑛𝑑 is the 

dimension of search space, 𝑛𝑝  is the number of 

search variables, 𝑟𝑎𝑛𝑑 is a random number between 

0 and 1, 𝑔𝑗,𝑙𝑏 and 𝑔𝑗,𝑢𝑝 are the lower and upper limit 

of jth search variable, respectively. 

For this initial population, NGO determines the 

best fitness function value and correspondingly its 

population and stores as pre-iterative solution. 

4.1 Exploration phase 

A Northern Goshawk will assault an 

undetermined target during the preliminary phase of 

the hunt. It is simpler for the NGO to search if the 

prey are chosen at random in this phase. Following 

this, the entire search region is carefully examined 

to determine the optimal area. 

 

𝑃𝑝𝑖 = 𝐺𝑘,𝑖 = 1,2, … , 𝑛𝑝, 

𝑘 = 1,2, … , 𝑖 − 1, 𝑖, 𝑖 + 1, . . . , 𝑛𝑝            (18) 

 

𝑔𝑖𝑗
𝑛,𝑃1 = {

𝑔𝑖𝑗 + 𝑟1(𝑝𝑖𝑗 − 𝑁. 𝑔𝑖𝑗), 𝑂𝐹𝑝𝑖 < 𝑂𝐹𝑖

𝑔𝑖𝑗 + 𝑟1(𝑔𝑖𝑗 − 𝑝𝑖𝑗),    𝑂𝐹𝑝𝑖 ≥ 𝑂𝐹𝑖

 (19) 

 

𝐺𝑖 = {
𝐺𝑖

𝑛,𝑃1, 𝑂𝐹𝑝𝑖
𝑛,𝑃1 < 𝑂𝐹𝑖

𝐺𝑖 ,    𝑂𝐹𝑝𝑖
𝑛,𝑃1 ≥ 𝑂𝐹𝑖

               (20) 

where 𝑃𝑝𝑖  is the ith northern goshawk’s prey 

position, 𝑂𝐹𝑝𝑖  is the fitness function value, k is a 

random value between [1, 𝑛𝑝], 𝐺𝑖
𝑛,𝑃1

 is the current 

new location of ith solution, 𝑔𝑖𝑗
𝑛,𝑃1

 is its jth 

dimension, 𝑂𝐹𝑝𝑖
𝑛,𝑃1

 is new fitness function value at 

the exploration phase, 𝑟1  is uniformly distributed 

random number, 𝑁 is randomly generated as 1 or 2.  

4.2 Exploitation phase 

After being attacked, northern goshawk prey 

flees. Northern goshawks tail their prey. Northern 

goshawks are fast and can hunt anywhere. This 

behaviour simulation improves local search. NGO 

assumes hunting within R of an attack point. 

First and second NGO iterations change all 

population members. The best solution, new 

population statistics, and objective function are then 

chosen. The program updates population members 

using Eqs. (18) to (23) until the last iteration.  

 

𝑔𝑖𝑗
𝑛,𝑃2 = 𝑔𝑖𝑗 + 𝑅(2𝑟2 − 1)𝑔𝑖𝑗              (21) 

𝑅 = 0.02 (1 −
𝑖𝑡

𝑖𝑡𝑚𝑎𝑥
)                  (22) 

 

𝐺𝑖 = {
𝐺𝑖

𝑛,𝑃2, 𝑂𝐹𝑝𝑖
𝑛,𝑃2 < 𝑂𝐹𝑖

𝐺𝑖 ,    𝑂𝐹𝑝𝑖
𝑛,𝑃2 ≥ 𝑂𝐹𝑖

             (23) 

 

where 𝑖𝑡  and 𝑖𝑡𝑚𝑎𝑥  is the current iteration and 

maximum number of iterations, respectively; 𝐺𝑖
𝑛,𝑃2

 

is the current new location of ith solution, 𝑔𝑖𝑗
𝑛,𝑃1

 is 

its jth dimension, 𝑂𝐹𝑝𝑖
𝑛,𝑃2

 is new fitness function 

value at the exploitation phase, 𝑟2  is uniformly 

distributed random number.  

5. Results and discussion 

For each scenario, IEEE 33-bus RDSs are 

simulated [37]. Case 1 optimises PV-position DGs 

and size. Case 1 optimises WT-DG placement and 

dimensions. Case 3 optimises DSTATCOM 

placement and size. In the fourth case, one PV, WT, 

and DSTATCOM are given. NGO's efficiency is 

compared to other heuristic algorithms and the 

literature.  

5.1 IEEE 33-bus RDS 

Real power loads for the base IEEE 33-bus RDS 

are 3715 kW, and reactive power loads are 2300 

kVAr. It operates at a voltage of 12.66 kV. By 

performing load flow, it can see that the system 

loses 210.9976 kW of actual power and 143.0325 

kVAr of reactive power when there is no 

compensation. The lowest voltage is found at bus 18, 

where it is 0.9038 p.u. The system is believed to 

have low voltage stability with a VSI estimated in 

accordance with [36] of 0.6685. The rate of GHG 

emission for this mode of operation is 8.0391e+6 

lb/h.  

5.2 PV-DG allocation 

The greatest power a PV system can produce is 

3715 kW. The suggested NGO chooses the ideal site 

between buses 2 and 33. The ideal location is bus 6, 

and the ideal PV system size is 2590.2409 kW. The 

system performance is altered by having this PV 

system in the following ways: it losses 111.0298 kW 

of actual power and 81.684 kVAr of reactive power. 

The lowest voltage is found at bus 18, where it is 

0.9424 p.u. The VSI in this instance is predicted to 

be 0.7901 and the GHG emission to be 2.5305e+6 

lb/h. 2589.6. In comparison to the results of WOA 

[5], BFOA [21], HPO [38] and MOA [39], the 

proposed NGO is resulted for global optima.  
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Table 1. System performance for different cases 

Parameters  Base Case Case 1 Case 2 Case 3 Case 4 

PV (kW/Bus#) – 2590.24/ 6 – – 817.72/ 13 

WT (kW/p.f./Bus#) – – 2558.18/ 0.824/ 6 – 1116.48/ 0.733/ 30 

DSTATCOM (kVAr/Bus#) – – – 1258/ 30 443.07/ 11 

Ploss (kW) 210.998 111.030 67.868 151.378 28.613 

Qloss (kVAr) 143.032 81.684 54.832 103.820 20.375 

Vmin (p.u.) 0.9038 0.9424 0.9583 0.9165 0.9802 

Vmin_Bus # 18 18 18 18 25 

VSI 0.6685 0.7901 0.8450 0.7069 0.9345 

GHG emission ×106 (lb/h) 8.039108 2.530476 2.507746 7.917028 3.705076 

 

  
Figure. 1 Voltage profile for different cases Figure. 2 Convergence characteristics of NGO for different 

cases 
 

5.3 WT-DG allocation 

The WT-DG allocation results are as follows: 

Bus-6 and 2558.18 kW are the best options for 

location and size. Power factor 0.824 is the most 

optimal setting for this application. The system 

losses are 67.868 kW of actual power and 54.832 

kVAr of reactive power as a result of the addition of 

this WT system. The lowest voltage is found on bus 

18, at 0.9583 p.u. The VSI is 0.845, and the GHG 

emissions are 2.5077e+6 lb/h under these conditions. 

The simulation results given by BFOA [21] are 

compared with the proposed NGO and it is observed 

that the NGO is attained better results in terms of 

global optima.  

5.4 DSTATCOM allocation 

The following are the DSTATCOM allocation 

results: The greatest possibilities in terms of size and 

location are Bus-30 and 1258 kVAr. Due to the 

addition of this WT system, the system losses are 

151.378 kW of actual power and 103.82 kVAr of 

reactive power. Bus 18 has the lowest voltage at 

0.9165 p.u. Under these circumstances, the VSI is 

0.7079 and the GHG emissions are 7.9171 + 6 lb/h. 

The simulation results given by GSA [13] and 

BFOA [21] are compared with the proposed NGO 

and it is observed that the NGO is attained better 

results in terms of global optima. 

5.5 PV, WT and DSTATCOMs allocation 

In this instance, PV, WT, and DSTATCOM's 

size and placement are all optimised simultaneously. 

The best NGO results are as follows: The size of the 

PV system, which is located on Bus-13, is 817.72 

kW. The WT system, which is situated at bus-30 

and has a power factor of 0.733, is 1116.48 kW in 

size. DSTATCOM is located on bus 11 and has a 

power output of 443.07 kVAr. The system lost 

20.375 kVAr of reactive power and 28.613 kW of 

real power as a result of the addition of this WT 

system. Bus 25 has the lowest voltage, with 0.9802 

p.u. The VSI is 0.9345 and the GHG emissions are 

3.7051e+6 lb/h under these circumstances. 

The optimal DG sizes and the effectiveness of 

the RDS in each of these four scenarios are shown in 

Table 1. The voltage profile and convergence of 

NGO are depicted in Fig. 1 and 2, respectively. 

This can be solved using the NFL principle. No 

algorithm can solve all optimization problems, 

according to the NFL theorem. This theorem states 

that an optimization algorithm's ability to solve 

some problems does not guarantee success with 
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others. In this connection, researchers are still 

inspiring to develop new algorithms such as 

Stochastic Komodo Algorithm (SKA) [40] and 

Fixed Step Average and Subtraction Based 

Optimizer (ASBO) [41] etc. Thus, evaluation of 

proposed NGO efficiency with respect to newly 

introduced algorithms is still an interesting issue and 

can be considered as future scope of this research. 

6. Conclusion 

The RDSs can perform better technically, 

economically, and environmentally by integrating 

DG and reactive power sources (DSTATCOM). The 

Northern Goshawk Optimization (NGO) is a new 

meta-heuristic that replicates the northern goshawk's 

hunting behaviour for locating and sizing active and 

reactive power DGs in RDSs. NGO determines PV, 

WT, and DSTATCOM locations and sizes for the 

multi-objective function. The suggested solution 

reduces distribution losses, improves voltage profile, 

and boosts voltage stability margin. The proposed 

method's computational efficiency is tested using 

five case studies. IEEE 33-bus RDS simulates. 

Integrating stand-alone PV, WT, DSTATCOM, and 

their combinations reduces losses to 111.03 kW, 

67.868 kW, 151.378 kW, and 28.613 kW from 

210.988 kW. By integrating PV, WT, DSTATCOM, 

and their combinations, the VSI is improved to 

0.7901, 0.8445, 0.7069, and 0.9345 from 0.6685. 

Optimally integrating PV, WT, DSTATCOM, and 

their combinations reduces GHG emissions (in106 

lb/h) to 2.530476, 2.507746, 7.917028, and 

3.705076 from 8.039108. NGO's results compare 

favourably to literature and heuristics. The proposed 

NGO enhances techno-environmental and RDS 

factors. 
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