
Received: July 26, 2022. Revised: September 13, 2022. 67

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.06

 A Collaborative method for Code Clone Detection Using Lexical, Syntactic,

Semantic and Structural Features

Karthik Sekar1* Rajdeepa Balasubramanian2

1Department of Computer Science, PSG College of Arts and Science (Autonomous),

Coimbatore, Tamilnadu, India
2Department of Information Technology, PSG College of Arts and Science (Autonomous)

Coimbatore, Tamilnadu, India

* Corresponding author’s Email: karthikyessekarphd@gmail.com

Abstract: Software code clones (CC) in software programs are degrading the performance of software systems. many

code clones detection (CCD) methods proposed in the literature detect only individual cloned types efficiently. This

paper proposes a collaborative code clones detection (CCCD) method by utilizing lexical, syntactic, semantic and

structural features for effectively identifying all types of clones including type-4. Initially, a large variance mapper

(LV-mapper) is utilized to identify clone pairs (CPs). Then CPs are converted into lexical features by directly applying

Word2vec. The synonyms of CPs are obtained using the WordNet tool and converted as semantic features by

Word2vec.Additionally, code size metrics (CZM) and object oriented metrics (OOM) are additionally measured as

structural features of a program’s code blocks (CBs). The syntactic features are extracted through the abstract syntax

tree (AST) from the source code. Finally, the joint feature vector is generated by combining all the features together.

In order to detect CCs in any new software, the joint feature vector of known clone type source codes is generated first

(training set) and then the joint feature vector of unknown clone types source codes is generated next. The Euclidean

distances between training and testing of joint feature vectors determine the clone type of test features. Finally, the

experimental outcome demonstrates that the proposed CCCD technique has an accuracy of 87.8%, 92.3% and 95.5%

for the dataset Apache Maven 3.8.3, Appache ant 1.10.12 and Opennlp-master 1.9.1, respectively, compared to the

existing LV-CCD, ES-CCD, TBCNN-CCD and CPVDetector methods.

Keywords: Code clone detection, LV-mapper, Clone pairs, Joint feature vector, Euclidean distances.

1. Introduction

Cloned code, abbreviated as CC, is common in

software development and is created by duplicating a

section of code with little or no changes into another

section of code. Because of CCs, errors available in a

single section of the program affected all duplicated

sections. As a result, identifying CCs in all segments

inside the source code is essential. According to

several assessments, CCs available in 20-50% of

large code size software projects [1, 2].

CCs harm many software engineering functions,

such as aspect mining, program comprehension,

software assessment, program code efficiency

evaluation, bug and virus identification. CCs also

induce bug propagation which greatly raises the cost

of software maintenance. Because of these upkeep

issues, CCD has emerged as a hot topic in research.

The types of CCs are as follows

• Type-1 clones (Lexical similarity): This type of

clone is substantially identical except for

variations in variable names, function names,

white space, formatting, and comments.

• Type-2 clones (Semantic similarity): These

clone types can be identified by different code

snippets that implement the same behaviour in a

syntactic manner.

• Type-3 clones (Structural similarity): These

CCs contain comparable software structures (for

example, design patterns and object oriented

programming class interactions). This

Received: July 26, 2022. Revised: September 13, 2022. 68

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.06

resemblance extends to the syntactic and logical

study of code structure in programs.

• Type-4 clones (Syntactic similarity): This can

be found in code snippets that are similar at the

statement level but differ at the code level.

Statements have been added, altered, or removed

in code samples.

Text, Token, Tree, metric, Semantic, and Hybrid

based methods are commonly used for CCD [3, 4].

Various tools for CCD are NICAD, CCFinderX,

Simian, and CPMiner [5, 6]. Various similarity

measures like Fingerprinting, Neural networks and

Euclidian distance are used to detect CCs [7].

However, because most of the available tools and

methodologies were designed for highly similar

clones, they are incapable of detecting large-variance

CCs (LV-CC). These high-variability clones can be

identified in a variety of software applications.LV-

CC detection is more important for software

maintenance and malware detection.

CCAligner [8] discovered LV-CCs effectively.

The duplication or alteration in a single spot is known

as “gap”, and this gap in clones typically results in an

LV-CCs. LV-CCs propagation is effectively found

across several locations rather than just one.

However, this method results in limited scalability,

also performs well only for type1 and type2 CCs.

A unique and effective detector called LV-

Mapper [9] known as LV-CCD uses a locate-filter-

verify technique which locates and filters probable

clone code by using a restricted window of

continuous lines known as seeds which determines

the dynamic threshold for CC verification. It detects

Type-1 to Type-3 clones more accurately. However,

it is incapable of producing satisfactory results for

type-4 clones.

In this research work, a CCCD approach is

proposed to recognize all sorts of clones (Type 1 to

Type 4) successfully. The proposed CCCD approach

makes use of various features such as lexical,

syntactic, semantic, and structural. This approach

tokenizes all CPs detected by LV-Mapper and utilizes

the WordNet tool to search for synonyms for tokens.

Word2vec is used to translate synonyms into

semantic features. CBs, CZM and OOM are

measured for structural features. AST is used to

capture syntactic features from the source code. The

lexical, syntactic, semantic, and structural features

are then combined to form a joint feature vector.

Euclidean distances between the training joint feature

vector and testing joint feature vector compute all

clone types with less computational challenges.

The next section of this paper explains existing

CCD approaches. Section 3 explains the proposed

methodology. Section 4 briefly describes the

outcome of the evaluation. Section 5 explains

conclusion and future scope.

2. Literature survey

A token-based CCD with an adaptive partitioning

method was developed to detect Type-3 clones [10].

The volume of code segments was assessed in

filtering stage. Non-potential segments for CCs are

removed dramatically to decrease complexity.

The validation stage confirmed the candidate pairs

that are actual CCs. This two-stride method shortens

the CCD runtime. However, this method has a higher

chance of failing in the detection process while

testing bigger inputs.

A test-based approach was developed [11] for

detecting semantic clones. This approach was applied

to detect semantic clones of API methods. The test

cases for a given method were generated

automatically, and the generated test cases were used

to search for semantically equivalent API methods.

When two methods produce the same output on all of

these test cases, they are termed semantically

equivalent methods. This approach was restricted to

arbitrary chunks to reduce time complexity. However,

the appropriate selection of a test case generation tool

is an issue for this method.

A Modular, Sequential, and Multi-representation

clone search engine called Siamese was proposed for

CC search, [12]. This approach converts Java code

into four program connections for the simultaneous

identification of numerous clone varieties. A query

reduction (QR) approach was utilized to reduce query

size based on token document frequencies.

Incremental index updating, allows for quick updates

from existing indexes without having to construct the

index from scratch. The siamese clone search

technique enables real-time discovery of online code

reuse, comparable code samples and software

plagiarism detection. However, these evaluated

methodologies were too small to be indicative of the

software sector.

An efficient semantic CCD (ES-CCD) technique

was developed [13] by employing a pair-wise feature

fusion for automated identification of all four clone

types. AST and program dependency graphs (PDGs)

were efficiently utilized to prepare labelled training

features for detecting the Java code clones, including

semantic clones. Then, the full path traversal method

was used to extract the AST and PDG features and

helps to derive those features in vector formation.

The syntax of program codes was captured using

AST program features, and the semantics of program

codes using PDG features. Then the machine learning

method was employed to find the relative

Received: July 26, 2022. Revised: September 13, 2022. 69

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.06

performance of the model using these extracted

features. However, this model was acquired at a high

computational cost.

Tree-based convolution neural network

(TBCNN) was developed [14] for CCD. This method

utilizes two-pass technique to detect and classify the

clones-types based on their code features. These

features were readily captured by using the AST node

that reflects typical code patterns which was created

from code and saves time on the preparation stage.

This process uses two classification models like (i) 1-

st pass classification would detect the clone based on

the provided clone fragments. (ii) 2nd-pass

classification would classify the clone code type.

However, this model was insufficient to handle the

fine-grained code fragments.

A CCD technique was presented [15] using code

fingerprints, known as the context-enhanced and

patch-validation-based vulnerable code clone

detector (CPVDetector). In this technique, a

fingerprint database was created for functions, code

fragments, and patches that were obtained from pre-

processed susceptible source code. First, the target

code that needs to be detected was converted into

function-level fingerprints. If this coarse granularity

could not detect clones, the detector could be used to

detect them. The detector would move to check the

context of vulnerable codes after a successful

fingerprint match between the target code and the

vulnerable code segments. However, this model has

lower performance on larger datasets.

2.1 Research contribution

From the above literature survey, it is clear that

most of the existing methods that have been

developed for CCD are highly suitable to detect

general Type-1 to Type-3 clones. But not having

sufficient proof to provide better results for type-4

clones. So, the proposed work is developed using

lexical, syntactic, semantic and structure based

features which are combined together to detect all

four clone types (Type 1 to Type 4). The source code

data is taken from the open source application which

is split into training and testing data. In this research

work, four primary clone types and their similarity

features are used in this process. The further

processes of this research work are briefly explained

below.

3. Proposed methodology

3.1 Extraction of CBs

A program unit is a series of statements

surrounded by braces that normally represent a single

function. This CB is crucial in detecting CPs with

identical code sections. Lexical analysis for code in

this system entails extracting CBs from source code

and transforming them to Turing eXtender Language

(TXL) [16]. TXL is a coding language developed for

modifying program coding transcriptions and

attributes via link transformation. The Fig. 1 depicts

the reliable description of the proposed CCCD model.

TXL's guiding principle is to start with a syntax

for an existent system, define syntactic changes to the

grammar that reflect new language attributes or

expansions, and then quickly test-type these novel

attributes through code conversion to the source

language. It extracts CBs by specifying syntactical

rules in terms of hash tags (restrained signifiers),

substances (several integrity succession to be treated

as a unit), remarks (definition of articulating norms),

and more broadly, tokens\symbols, structured pattern

matching for random character concatenation. These

sentences will be useful in determining the structure

of CBs.

3.2 Tokenizing the CBs

After extracting the CBs, the tokenizing step is

carried out using a tool called fast lexical analyzer

generator (Flex). Flex tool [17] is used for the

tokenizing these extracted CBs. During the process,

the extracted CBs are used as input files, which are

generated by a lexical analyzer and may be recast in

𝑙𝑒𝑥 language. The 𝑙𝑒𝑥 compiler transforms a input

file to specific code program (C program). Then, the

specific code program will compile the input file into

an executable file or output file. From this output file,

a stream of input characters is analyzed and produces

a stream of token codes from the extracted CBs which

is then indexed to detect the clone pairs.

3.3 Detecting CPs

LV-Mapper [9] examines all operational modules

and accumulates all seeds instead of tokens to

discover clone pairs. These seeds are transformed

into hash values and saved in a hash table. The seed’s

hash is the key of the component in the hash table in

this process, and the content is an accumulation of

related unit’s ids.

Received: July 26, 2022. Revised: September 13, 2022. 70

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.06

Figure. 1 Systematic representation of the developed CCCD method

3.3.1 Identifying prospective CC pairs using the shared

seed:

It is done by searching for probable CC pairings

using the indexed seed. The purpose of this phase is

to collect as many candidates as possible while

minimising the loss of actual clone couplings. In this

strategy, the 3-line sliding frames are employed as the

seeds region to combine all potential clone sets that

contain the similar seed (s) and allow improved clone

pair determination.

3.3.2 Retrieval for the quantity of common seeds:

 The possibility of CBs that might be easily

duplicated is taken into account. This is the filtering

step, and it is in charge of identifying potential clone

pairings. Filtering step is especially responsible with

estimating the possibility of cloning by assessing the

quantity of common seeds between two CBs. The

resemblance of the two CBs, as measured by the

number of seeds they possess, determines the

choosing of probable CPs. In this method, the

resemblance (𝑆𝑟) of code pairs 𝐴 and 𝐵 is computed

as

 𝑆𝑟(𝐵\𝐴) =
𝑠

𝑡
 =

𝑠

𝐿−𝑘+1
 (1)

The amount of shared seeds is 𝑠 , the overall

number of seeds in code pair 𝐵 is 𝑡, and the length of

𝐵 in line is 𝐿. The greater the 𝑆𝑟(𝐵\𝐴) value for each

pair of CBs, the more likely it is that they are clone

pairs.

From the following procedures, the CPs are

detected. Once the clone pair is identified, similarity

features such as lexical and semantic similarity must

be retrieved from these pairs using various tools for

detecting clone types as detailed in detail below

whereas other two similarity features (structural and

syntactic) are extracted directly from the source code.

3.4 Lexical feature

Whole word, prefix/suffix (different

lengthsallowed), stemmed word, lemmatized word

are the most common lexical features. To detect the

CC from the clone pairs, this tool will compute the

similarity of hamming space instead of vector pairs

created by binary hash functions. For the extraction

of lexical features from the clone pairs, the word

embedding technique like word2vector (word2vec)

tool [18] is used to capture the word context in a data,

semantic and syntactic similarity, relation with other

words, etc.

To detect the CC from the CPs, this tool will

compute the similarity of hamming space instead of

vector pairs created by binary hash functions. It

parses feature text by "vectorizing" words using a

Received: July 26, 2022. Revised: September 13, 2022. 71

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.06

two-strand network. It keeps a textual sample as input

to produce a set of arrays: attribute matrix describing

a words in the article. This Word2vec tool is widely

used in natural language processing (NLP) to shorten

learning time. Word2Vec may use two distinct model

architectures to generate these word embedding

representations like the continuous bag of words

(CBOW) model and the skip-gram model. CBOW is

used in this framework because it is quicker and

provides better representations for more common and

related terms, even in greater datasets.

3.4.1 Structure of CBOW model

This model efficiently attempts to predict the

lexical feature based on the identified clone pairs'

source code words. Also, the model converts the

sentences into word pairs in the form

(𝑠𝑜𝑢𝑟𝑐𝑒_𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑤𝑜𝑟𝑑). With these

word pairs, the model attempts to predict the lexical

feature based on the source code words using the

user-adjusted window size. The Fig. 2 depicts the

CBOW model structure. In the figure, the four source

code words (𝑤𝑡−2, 𝑤𝑡−1, ⋯ 𝑤𝑡+1𝑎𝑛𝑑 𝑤𝑡+2) has

been used for the prediction of lexical features. The

input will be in the form of 1 × 𝑊 input vectors.

These input vectors are sent to the buried layer, where

they are multiplied by a 𝑊𝑋𝑁 matrix. Finally, the

1𝑋𝑁 output from the hidden layer enters the sum

layer, where the vectors are element-wise summed

before a final activation is done and the output is

generated.

The CBOW approach is constructed from a

neural network language model (NNLM) that

simultaneously develops a phrase embedding and a

language concept, with the exception that there is no

quadratic. The CBOW model is designed to forecast

the median phrase given 𝑁/2 past chronological

terms and 𝑁/2 prospective phrases. When 𝑁 = 8 is

employed, the best findings are produced. Word

arrays of 𝑁 input sentence are simply summed in the

interpreted stage. The positioning of the word has

minimal effect on determining the word vector of the

middle word, hence the term "Bag of words.

The latent factor 𝐷 is represented by the word

Continuous. The CBOW model is a simple log-linear

paradigm in which the logarithmic of the model's

outcome may be written as a quadratic combination

of the model's parameters. To get distribution over 𝑉,

an average variable is sent to the out-layer, which is

then accompanied by the recursive softmax (𝑉 is the

total number of words in the corpus). The overall

weights used in developing the CBOW system are

𝑁 × 𝐷 + 𝐷 × 𝑙𝑜𝑔(2)𝑉.

The CBOW variables are two groups of word

extracted features: "reference-edge" and "desired-

edge" vectors 𝑣𝑤 , 𝑣𝑤
, ∈ 𝑅𝑑 for each, 𝑉 lexicon

word type 𝑤 ∈ 𝑉 . A text window in a corpus

consists of a central word w o and context words

𝑤1 ,…𝑤𝑐 . For example, the dog laughed in the

window, 𝑤𝑜 = 𝑑𝑜𝑔 , 𝑤1 = 𝑡ℎ𝑒 , 𝑤1 = 𝑙𝑎𝑢𝑔ℎ𝑒𝑑 .

Given a text window, the CBOW loss is defined as:

𝑣𝑐 =
1

𝑐
 ∑ 𝑣𝑤𝑗

𝑐

𝑗=1

ℒ = − 𝑙𝑜𝑔 𝜎 (𝑣𝑤𝑂
, 𝒯𝑣𝑐) − ∑ 𝑙𝑜𝑔 𝜎 (𝑣𝑛𝑖

, 𝒯𝑣𝑐)𝑘
𝑖=1

 (2)

Where 𝑛1 … . 𝑛𝑘 ∈ 𝑉 are the negative samples of

a noise distribution 𝑃𝑛 over 𝑉 . ℒ gradients with

reference to the desired source (𝑣𝑤𝑂
,),), negotiate

source (𝑣𝑛𝑖

,) , and standard topic origin 𝑣𝑐

embeddings are produced.

𝜕𝐿

𝜕𝑣𝑤𝑂
, = (𝜎(𝑣𝑤𝑂

, 𝒯𝑣𝑐)– 1)𝑣𝑐

𝜕𝐿

𝜕𝑣𝑛𝑖

, = (𝜎(𝑣𝑛𝑖

, 𝒯𝑣𝑐)𝑣𝑐

𝜕𝐿

𝜕𝑣𝑐
= (𝜎(𝑣𝑤𝑂

, 𝒯𝑣𝑐)– 1) 𝑣𝑤𝑂
, + ∑ = (𝜎𝑘

𝑖=1

(𝑣𝑛𝑖

, 𝒯𝑣𝑐) 𝑣𝑛𝑖

,

(3)

Hence, in the case of a source context embedding,

by the chain rule:

𝜕𝐿

𝜕𝑣𝑤𝑗

=
1

𝐶
[(𝜎(𝑣𝑤𝑂

, 𝒯𝑣𝑐)– 1) 𝑣𝑤𝑂
, +

 ∑ = (𝜎(𝑣𝑛𝑖

, 𝒯𝑣𝑐)𝑘
𝑖=1 𝑣𝑛𝑖

, (4)

In this method, the building-method will be used

to tokenize every feature in the source context and try

to fit the word in the tokenizer. The total number of

features will be calculated for further use. The

window size is then determined by the greatest

distance between the target words (lexical

characteristics) and their contextually adjacent words.

Then, a function is created to match the context and

target terms. The function that was made takes the

widths of the target window and the context window

separately and makes pairs of contextual words and

target words (lexical features).

3.5 Semantic feature

The word net tool comprises a lexical database of

words in over 200 languages, with adjectives,

Received: July 26, 2022. Revised: September 13, 2022. 72

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.06

adverbs, nouns, and verbs arranged separately into a

series of conceptual analogues, and all phrases in the

database will expresses a separate conception.

Intellectual analogues, also known as synsets, are

provided by utilizing conceptual-semantic and lexical

linkages. WordNet looks to function similarly to a

lexicon, by clustering terms collectively depending

on their definitions. Nonetheless, there are numerous

distinctive traits.

• Initially, WordNet integrates not only phrase

structures and letter strings, but also actual word

meanings. As a result, the channel's contextually

linked terms are meaningfully interpreted.

• Second, WordNet recognizes meaningful links

between phrases, whereas thesaurus word

classifying does not predefined structure other

than meaning similarity.

 Algorithm for the extraction of tokens

Require𝑑 = 𝑑{𝑤𝑖, … . , 𝑤𝑛 }: 𝑤𝑖 ∈
𝑙𝑒𝑥𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 (𝑊𝑜𝑟𝑑𝑛𝑒𝑡)

Require: 𝑙𝑑 = 𝑙𝑒𝑥𝑖𝑐𝑎𝑙 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

function Source(𝑑, 𝑙𝑑) \\ 𝑑 - document containing

words 𝑤𝑛, 𝑙𝑑 - lexical data base

2. 𝑙𝑖𝑠𝑡−𝑜𝑓− 𝑡𝑜𝑘𝑒𝑛𝑠 = ⦰

3. 𝑭𝒐𝒓 𝑖 = 0 𝑡𝑜 𝑛 𝒅𝒐

4. 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 𝑠𝑦𝑛𝑠𝑒𝑡𝑠(𝑤𝑖, 𝑙𝑑)

5. 𝐼𝑓 𝑖 ≠ 0 ⩘ 𝑖 ≠ 𝑛 𝑡ℎ𝑒𝑛

6. 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = 𝑠𝑦𝑛𝑠𝑒𝑡𝑠(𝑤𝑖−1, 𝑙𝑑)

7. 𝑛𝑒𝑥𝑡 = 𝑠𝑦𝑛𝑠𝑒𝑡𝑠(𝑤𝑖+1, 𝑙𝑑)

8. 𝒆𝒍𝒔𝒆 𝒊𝒇 𝑖 = 0 𝒕𝒉𝒆𝒏

9. 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = ⦰

10. 𝑛𝑒𝑥𝑡 = 𝑠𝑦𝑛𝑠𝑒𝑡𝑠(𝑤𝑖+1, 𝑙𝑑)\

11. 𝒆𝒍𝒔𝒆

12. 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = 𝑠𝑦𝑛𝑠𝑒𝑡𝑠(𝑤𝑖−1, 𝑙𝑑)

13. 𝑛𝑒𝑥𝑡 = ⦰

14.𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑡𝑎𝑒𝑠 =
⦰, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 =
 ⦰, 𝑎𝑛𝑑 𝑛𝑒𝑥𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = ⦰

15. 𝒇𝒐𝒓 𝑠𝑝𝑟 ∈ {𝑝𝑟𝑒𝑠𝑒𝑛𝑡}, 𝑠𝑝𝑖 ∈
{𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠} 𝑎𝑛𝑑 𝑠𝑛 ∈ {𝑛𝑒𝑥𝑡} 𝑑𝑜 \\where 0 ≤
𝑐 ≤ 𝑄, 0 ≤ 𝑓 ≤ 𝑅 and 0 ≤ 𝑙
16. 𝑰𝒏𝒔𝒆𝒓𝒕 𝑠𝑦𝑛𝑠𝑒𝑡 −

𝑣𝑒𝑐(𝑠𝑝𝑟, 𝑠𝑝𝑖 , 𝑠𝑛) 𝒕𝒐 𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠,

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝑛𝑒𝑥𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

17. 𝑢 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑐𝑎
 {𝑐𝑜𝑠𝑖𝑛𝑒 −

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠,
𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)}

18. 𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑐𝑏
 {𝑐𝑜𝑠𝑖𝑛𝑒 −

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑝𝑟𝑒𝑠𝑒𝑛𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠,
𝑛𝑒𝑥𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)}

19. 𝑰𝒏𝒔𝒆𝒓𝒕 𝑠𝑦𝑛𝑠𝑒𝑡 (𝑠𝑐𝑎 𝑜𝑟 𝑠𝑐𝑏)

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

𝒕𝒐 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑡𝑜𝑘𝑒𝑛𝑠

20. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑡𝑜𝑘𝑒𝑛𝑠

The 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑡𝑜𝑘𝑒𝑛𝑠 from the above algorithm is

considered as synonyms.
Finally, the produced synonyms are converted as

synset-based vector representations which are then

used as an input in a word2vec with CBOW as the

training algorithm for the extraction of semantic

features between synsets.

3.6 Structural feature

The rational and syntactic investigation of source

scripts is part of clone structural analysis. The

software's layout patterns are utilized in the

evaluation of structural clones as a representation of

rational assessment. CZM and OOM [19] are used to

indicate the attributes in source code for combining

structural similarities of Functionality.

(A) CZM: When the programs of the items are

exactly duplicated and exploited without

modifications, the dimension parameters may be

utilised to detect clones.

The following names have been used for this

CZM:

(i) Line score: The entire volume of lines in the

code program

(ii) Total integer of comments: The maximum

integer of comments in the source code.

(iii) Lines of code commented and

uncommented: The overall amount of commented

and uncommented LOC in the source code.

(iv) Token count: The total score of tokenized

Lines Of Code (LOC) in the source code.

(v) Addition of entire identifier: The value of

tokenized identifiers in the program as a whole

(B) OOM: Several key aspects of an object-oriented

language are required to construct object-oriented

software. Abstraction, polymorphism, and

inheritance are examples of these characteristics. The

inclusion of all components required for an entity to

perform successfully, most notably methods and data,

is referred to as abstraction. Any sub-type that is

formed after an object class is declared may acquire

the definitions of one or multiple universal labels.

The various names used for object-oriented metrics

are as follows:

(i) Depth in the tree: A class's number of

inheritance tiers

Purpose: Same depth value of classes in the

project that are architecturally comparable to each

other.

file://///where

Received: July 26, 2022. Revised: September 13, 2022. 73

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.06

Figure. 2 Sample AST with generate features vector

(ii) Number of users who use another class: The total

number of additional classes utilised in the class.

Purpose: The same number class value is utilised

in all classes in the program, even if they are

substantially identical.

(iii) Total number of children: The overall

number child in the class.

Purpose: The goal is to have the same amount of

child values of classes in the program that are

architecturally comparable to each other.

(iv) Number of other classes that use: Total

amount of class times used by others

Proposal: Use the identical employed

occurrences values of labels by other conceptually

relevant objects in the application.

(v) Amount of arguments: The total number of

parameters supplied to the method

Proposal: The goal is to have the same argument

number value of methods in the project that are

architecturally comparable to each other.

(vi) The number of parameters returned Method

returns the total number of parameters.

Purpose: The objective is for all methods in the

project that are structurally equivalent to have the

same returning argument number value.

(vii) The number of times you've called other

methods: The total number of calling methods in a

single method.

Purpose: Use the same amount of calls to other

method values in the project, which might have

comparable structures.

This statistic is used to determine which grades

are functionally related to each other by quantifying

the proximity among observation variables. A linear

array of evaluated results is represented by each

source code that is being evaluated for each of its

labels. If the cosine and jaccard functions [19] both

yield normalized resemblance findings towards a

certain pair of classes that are within the set threshold

values, these classes are retained as structural features.

3.7 Syntactic feature

An AST is a tree representation of a code

fragment. To extract the syntactic features from the

code fragment, code fragments is fragmented into

different parts, then the code is converted into a set of

tokens, and the list of tokens is turned into an AST

[20]. Each node of the AST tree structure has a type

specifying what it is representing. For example, a

type could be a “MethodDeclaration” representing a

method definition or a “FormalParameter”

representing a parameter for a method declaration.

There are two “FormalParameter” subtrees, each with

a “ReferenceType” of “str”, that is, String.

3.7.1 Vector representation of AST

To facilitate data mining on code and an

interpretation of the data mining results, syntax trees

should be transformed into continuous vectors for

representing the code. Vector representation of the

code enables a much more comprehensive range of

analysis. Since machine learning algorithms take

vectors as their inputs, the vector embedding

techniques [21] is used to transform AST into vectors.

The code vectors capture properties of code

fragments, such that similar code fragments have

similar vectors. Fig. 2 represents the sample AST

with generates feature vectors.

Type your main text in 11-point Times New

Roman, single-spaced. Do not use double-spacing.

All paragraphs should be indented 1.5 times character

size. Be sure your text if fully justified—that is, flush

left and flush right. Please do not place any additional

blank lines between paragraphs.

The AST represented for syntactic feature

extraction [22] is used in this work, which is directly

applied to the source code for extracting syntactic

features of functionality. For example, 𝐶 is a code

snippet, and 𝑁𝑟𝑜𝑜𝑡 is the AST entry node that

corresponds to it. The beginning section of 𝑁𝑟𝑜𝑜𝑡 is

iterated over all the nodes of AST in preorder to

extract the syntactic representation of 𝐶. There is an

identifier, such as symbols and variable names, in

each AST node. The identification sequence 𝑆𝑒𝑞 =
 {𝑖𝑑𝑒𝑛𝑡1, 𝑖𝑑𝑒𝑛𝑡2, . . . , 𝑖𝑑𝑒𝑛𝑡𝑛 } is formed, and it may

be used to express 𝐶's syntactic information.

Each method in source code is now represented

as a sequence of identifiers. Average pooling used in

Received: July 26, 2022. Revised: September 13, 2022. 74

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.06

[22] is applied to all identifier vectors in each

procedure to provide a syntactic feature vector.

Following that, each method's syntactic information

is encoded as a fixed-length feature vector marked a

𝑚𝑣 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(ℎ𝑖), 𝑖 = 1, . . . , 𝑁 (5)

Where ℎ𝑖 is the identifier's feature vector,

Average pooling method provide the relevant

syntactic feature for each functionality (i.e., the

related methods). Each functionality's syntactic

information is expressed as a fixed-length feature

vector

𝑓𝑣 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑚𝑣𝑖), 𝑖 = 1, . . . , 𝑁 (6)

Where 𝑚𝑣𝑖 is the syntactic feature vector of each

method.

After obtaining all the similarity features, the

joint feature vector is generated by combining all

features together for training (clone type known

source codes) and testing (unknown clone type

source code) datasets.

3.8 Generating joint feature vector

Only CC types of a matching tuple in the

derivation tree are considered in this technique.

Developers will occasionally embed a CC type within

a larger context. The parents may not be recognised

as clones due to considerable differences in the

surrounding nodes. The four step of characteristic

vector creation, known as vector merging, is used to

detect CC types by summing the indices of specific

vertex patterns

 𝐸 = 〈𝐴&𝐵&𝐶&𝐷〉 (7)

𝐸’ = Joint feature vector; 𝐴 = lexical similarity;

𝐵 = Semantic Similairity; 𝐶 =Structural similarity;

𝐷 = Syntactic similarity;

Using the aforementioned Eq. (2), a sliding frame

is moved along a fictionalised form of the parse tree,

and the windows are adjusted so that the combined

column has a sufficient CC. The decision of which

node in the tree to merge is an important one since

these nodes will take better boundaries among cloned

CCs rather than containing big sub trees. For merging

vectors, the origins of statement trees, which are

equivalent to quantum units for duplicate, will be a

superior alternative. These selected nodes are known

as joint feature vectors. These joint feature vectors

are used to build the training data for detecting CCs

from known source code.

3.9 CCD using joint feature vector

From the joint features, the similarity features are

collectively joined together. The LV-mapper, which

is derived from the source code, recognises all of

these properties. The source code is compiled into

training and testing data. Now these training and

testing data are enhanced and converted together to

calculate the distance between the both for better

identification of clone and its types.

The Euclidian distance is used to detect the clone

type by calculating the distance between the training

(known source code) and the testing (unknown

source code). In which the training data is derived

from the joint feature vector and testing data is taken

from the given source code. The clone type is

calculated for four similarity features which are

directly compared as the 𝑛-dimensional vectors. The

Euclidean distance for given similarity features are

calculated as

𝑑 (𝑝, 𝑞𝑖) =

min (√∑ 𝑞𝑖 (1) − 𝑝𝑖
𝑛
𝑖=1 , √∑ 𝑞𝑖 (2) − 𝑝𝑖

𝑛
𝑖=1 , … … … ,

√∑ 𝑞𝑖 (𝑚) − 𝑝𝑖
𝑛
𝑖=1) (8)

From Eq. (8), 𝑞𝑖(𝑚) is 𝑖𝑡ℎ join feature vector of

𝑚𝑡ℎ type clone from training data and pi is the 𝑖𝑡ℎ join

feature vector of test data. The distance value below

threshold is identifies as clone. The unique feature

vector extracted for each clone type.

Algorithm for the detection of CC types

Step 1: The training and testing data is splitted up

from the original source code data.

Step 2: The CBs are extracted using TXL and it is

tokenized using flex tool.

Step 3: The hash indexing has been used to detect the

CPs by collecting all seeds (tokens), converting them

to hash value and indexing them in a hash table.

Step 4: From the detected clone pairs, the lexical

features (Type -I) is extracted by using the

mechanism of CBOW tool (a type of word2vector).

Step 5: The synonyms are extracted from the CPs

using word-net tool (sysnet) and extracted synonyms

are urged to detect the semantic features (Type -II)

with the help of word2vdector (shallow neural

network).

Step 6: The structural CC (Type -III) is extracted

directly from the source code by using software

metrics like CZM and OOM.

Step 7: Again from the source code program, the

syntactic features (Type IV) has been extracted using

AST model.

Received: July 26, 2022. Revised: September 13, 2022. 75

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.06

Figure. 3 Evaluation of accuracy

Figure. 4 Evaluation of precision

Step 8: These determined similarity features are

integrated together in a joint feature vector for the

identification of CC types.

Step 9: By using the Euclidean distance Eq (6), the

clone type are identified.

4. Performance evaluation

The clone type known dataset is used for

generating training feature vector. A benchmark

dataset BigCloneBench is used to generate the

training dataset. This is consisting of a large number

of manually approved clones from the IJaDataset-2.0

source.

 The testing datasets details are:

Apache maven 3.8.3 is a toolkit for managing and

comprehending software projects. Maven depends

upon the presumption of a Project Entity Paradigm

(POM), can manage a project's development,

monitoring, and information from a primary source

of contact [23].

Appache ant 1.10.12 is a Java library and function

tool that manages operations indicated in construct

documents as objectives and extensibility endpoints.

The well-known use of Ant is the creation of Java

applications, as it has a collection of built-in tasks for

compiling, assembling, testing, and executing Java

programs [24].

Appache opennlp-master 1.9.1 is a natural

language information retrieval toolkit based on

machine learning. Among the most common NLP

operations supported are indexing, sentence

classification, part-of-speech labelling, named entity

identification, stacking, and processing [25]

Using these datasets, the proposed method's

efficiency is compared to that of existing methods

such as LV-CCD [9], ES-CCD [13], TBCNN-CCD

[14], and CPVDetector [15] in terms of accuracy,

precision, recall, time period, memory space, and

clone types for detecting all four types of CC

detection and its similarity features.

4.1 Accuracy

It is calculated by dividing the number of properly

recognised CCs by the total CCs and non-CCs in the

clone repository (actual).

Fig. 3 displays the results of accuracy achieved

for proposed and existing methods to detect clone

types. For the dataset apache maven 3.8.3, Appache

ant 1.10.12 and Opennlp-master 1.9.1, it is observed

that the accuracy of proposed model increased

23.37%, 26.62%, and 26.46% than LV-CCD ,

17.93%, 17.09% and 22.52% than ES-CCD, 12.35%,

13.22% and 14.41% than TBCNN-CCD, 2.39%,

1.66% and 3.22% than CPVDetector respectively.

From this analysis, it is proved that the proposed

model attains a higher accuracy than the other

existing methods.

4.2 Precision

It is computed by calculating the total number of

identified CCs by the No. of accurately detected CCs

(predicted).

Fig. 4 displays the results of precision achieved

for proposed and existing methods to detect clone

types. For the given dataset Apache Maven 3.8.3,

Appache ant 1.10.12 and Opennlp-master 1.9.1 , it is

observed that the precision of proposed model

increased 14.32%, 26.79%, and 21.35% than LV-

CCD, 8.66%, 16.09% and 11.65% than ES-CCD,

4.77%, 9.48% and 6.73% than TBCNN-CCD, 1.66%,

2.24% and 2.10 % than CPVDetector respectively.

From the analysis, it is proved that the proposed

model attains a higher precision than the other

existing methods.

Received: July 26, 2022. Revised: September 13, 2022. 76

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.06

Figure. 5 Evaluation of recall

Table 4. Comparison of time (processing) period and

memory storage

k

LV-CCD

2 3 4

Time 126 mts 68 mts 38 mts

Memory 1894 mb 979 mb 964 mb

k

ES-CCD

2 3 4

Time 114 mts 57 mts 30 mts

Memory 1803mb 966 mb 951 mb

k

TBCNN-CCD

2 3 4

Time 103 mts 46 mts 24 mts

Memory 1714 mb 954 mb 938mb

k

CPVDetector

2 3 4

Time 94 mts 35 mts 18 mts

Memory 1624 mb 954 mb 925 mb

k

CCCD

2 3 4

Time 86 mts 27 mts 12 mts

Memory 1532 mb 942 mb 912 mb

4.3 Recall

The recall is obtained by splitting the total count

of CCs in the database by the number of successfully

recognized CCs (actual).

Fig. 5 displays the results of recall achieved for

proposed and existing methods to detect clone types.
For the given dataset Apache Maven 3.8.3, Appache

ant 1.10.12 and Opennlp-master 1.9.1, it is observed

that the recall of proposed model increased 26.95%,

11.98%, and 13.14% than LV-CCD, 7.48%, 7.02%

and 8.26% than ES-CCD, 3.11%, 3.45% and 3.45%

than TBCNN-CCD, 0.58%, 1.28% and 2.45% than

CPVDetector respectively.

According to the results of the analysis, the

suggested model has a higher recall than the existing

technique.

Table 5. Comparison of LV-CC types

LV-CCD

Type- 1 & 2 Type 3 ALL

Apache

Maven 3.8.3

259 267 717

Appache ant

1.10.12

2334 471 2591

Opennlp-

master 1.9.1

306 474 540

ES-CCD

Type- 1 &

2

Type 3 ALL

Apache

Maven 3.8.3

252 460 708

Appache ant

1.10.12

2325 462 2643

Opennlp-

master 1.9.1

294 465 610

 TBCNN-CCD

Type- 1 &

2

Type 3 ALL

Apache

Maven 3.8.3

247 454 699

Appache ant

1.10.12

2318 451 2697

Opennlp-

master 1.9.1

281 452 678

 CPVDetector

Type- 1 &

2

Type 3 ALL

Apache

Maven 3.8.3

242 447 689

Appache ant

1.10.12

2309 439 2748

Opennlp-

master 1.9.1

269 437 706

 CCCD

Type- 1 &

2

Type 3 ALL

Apache

Maven 3.8.3

238 440 678

Appache ant

1.10.12

2248 427 2675

Opennlp-

master 1.9.1

257 420 776

4.4 Processing period and storage AND

comparison of LV-CC types

Processing duration and memory storage with

various parameterizations, where k = seed length is

depicted in Table 4 and 5 pfor the comparison of

existing and proposed method for detecting all clone

types. Time is represented in minutes (mts) and

memory in megabytes (mb) .

Received: July 26, 2022. Revised: September 13, 2022. 77

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.06

5. Conclusion

In this research work, CCCD systems are

proposed to detect all types of clones (Type 1 to Type

4) effectively by utilizing the lexical, syntactic,

semantic and structural features. The joint feature

vector is constructed by combining lexical, syntactic,

semantic feature and structural features are termed as

training data (known clone type). The testing data

(unknown clone type) is taken from the source code

where both the data are measured using Euclidean

distances to calculate the clone type and its similarity

features with less computational complexity. The

results proved that proposed model increased average

accuracy of 25% than LV-CCD, 18 % than ES-CCD

and 14.41% than TBCNN-CCD methods. Machine

learning and deep learning will be utilized for CCCD

systems instead of Euclidian distance. The supervised

learning methods will give precise results.

Conflict of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, methodology, software,

validation, Karthik; formal analysis, investigation,

Rajdeepa; resources,data curation, writing—original

draft preparation, Karthik; writing—review and

editing, Karthik; visualization,; supervision,
Rajdeepa.

References

[1] C. K. Roy and J. R. Cordy, “A survey on

software clone detection research”, Queen’s

School of Computing Tech, Vol. 541, No. 115,

pp. 64-68, 2007.

[2] R. Koschke, I. D. Baxter, M. Conradt, and J. R.

Cordy, “Software Clone Management Towards

Industrial Application”, Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, Vol. 2, No. 2,

pp. 21-57 2012.

[3] C. K. Roy, J. R. Cordy and R. Koschke,

“Comparison and evaluation of CC detection

techniques and tools: A qualitative approach”,

Science of Computer Programming, Vol. 74, No.

7, pp. 470-495, 2009.

[4] N. Saini and S. Singh, “Code clones: Detection

and management”, Procedia Computer Science,

Vol. 132, pp. 718-727, 2018.

[5] C. K. Roy and J. R. Cordy, “An empirical study

of function clones in open source software”, In:

Proc. of 2008 15th Working Conference on

Reverse Engineering, pp. 81-90, 2008.

[6] C. K. Roy and J. R. Cordy, “NICAD: Accurate

detection of near-miss intentional clones using

flexible pretty-printing and code normalization”,

In: Proc. of 16th IEEE International Conference

on Program Comprehension, pp. 172-181, 2008.

[7] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam,

and B. Maqbool, “A systematic review on code

clone detection”, IEEE Access, Vol. 7, pp.

86121-86144, 2019.

[8] P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K.

Roy, “CCAligner: a token based large-gap clone

detector”, In: Proc. of the 40th International

Conference on Software Engineering, pp. 1066-

1077, 2018.

[9] M. Wu, P. Wang, K. Yin, H. Cheng, Y. Xu, and

C. K. Roy, “LVMapper: A Large-Variance

Clone Detector Using Sequencing Alignment

Approach”, IEEE Access, Vol. 8, pp. 27986-

27997, 2020.

[10] M. A. Nishi and K. Damevski, “Scalable code

clone detection and search based on adaptive

prefix filtering”, Journal of Systems and

Software, Vol. 137, pp. 130-142, 2018.

[11] G. Li, H. Liu, Y. Jiang, and J. Jin, “Test-Based

Clone Detection: an Initial Try on Semantically

Equivalent Methods”, IEEE Access, Vol. 6, pp.

77643-77655, 2018.

[12] C. Ragkhitwetsagul and J. Krinke, “Siamese:

scalable and incremental code clone search via

multiple code representations”, Empirical

Software Engineering, Vol. 24, No. 4, pp. 2236-

2284, 2019.

[13] A. Sheneamer, S. Roy and J. Kalita, “An

Effective Semantic Code Clone Detection

Framework Using Pairwise Feature Fusion”,

IEEE Access, Vol. 9, pp. 84828-84844, 2021.

[14] Y. B. Jo, J. Lee and C. J. Yoo, “Two-Pass

Technique for Clone Detection and Type

Classification Using Tree-Based Convolution

Neural Network”, Applied Sciences, Vol. 11,

No.14, p. 6613, 2021.

[15] J. Guo, H. Li, Z. Wang, L. Zhang and C. Wang,

“A Novel Vulnerable Code Clone Detector

Based on Context Enhancement and Patch

Validation”, Wireless Communications and

Mobile Computing, Vol. 2022, 2022.

[16] J. R. Cordy, “The TXL source transformation

language”, Science of Computer Programming,

Vol. 61, No. 3, pp. 190-210, 2006.

[17] Paxson, “Flex_Fast Lexical Analyzer Generator.

Berkeley”, CA, USA: Lawrence Berkeley

National Laboratory, 1995.

[18] H. Mittal and D. Mandalika, “WordNet Tool in

Natural Language Processing”, CSI

Communications, Vol. 40, No. 7, 2016.

Received: July 26, 2022. Revised: September 13, 2022. 78

International Journal of Intelligent Engineering and Systems, Vol.16, No.1, 2023 DOI: 10.22266/ijies2023.0228.06

[19] M. Kapdan, “Structural code clone detection

methodology using software metrics”,

International Journal of Software Engineering

and Knowledge Engineering, Vol. 26, No. 2, pp.

307-332, 2016.

[20] Y. B. Jo, J. Lee, and C. J. Yoo, “Two-Pass

Technique for Clone Detection and Type

Classification Using Tree-Based Convolution

Neural Network”, Applied Sciences, Vol. 11, No.

14, p. 6613, 2021.

[21] U. Alon, M. Zilberstein, O. Levy, and E. Yahav,

“code2vec: Learning distributed representations

of code”, In: Proc. of the ACM on Programming

Languages, Vol. 3, No. POPL, pp. 1–29, 2019.

[22] D. Chandrasekaran and V. Mago, “Evolution of
semantic similarity - a survey”, ACM

Computing Surveys (CSUR), Vol. 54, No. 2, pp.

1-37, 2021.

[23] [https://github.com/apache/maven]

[24] [https://github.com/apache/ant].

[25] [https://github.com/apache/opennlp].

