
Received: September 18, 2022. Revised: October 5, 2022. 627

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

An Enhanced Workflow Scheduling Algorithm for Cloud Computing

Environment

Sara Ahmed1* Fatma A. Omara1

1Computer Science Department, Faculty of Computers and Artificial Intelligence,

Cairo University, Giza-12611, Egypt
* Corresponding author’s Email: asara4372@gmail.com

Abstract: Cloud computing has gained many attentions worldwide. Workflow systems become a significant method

for develop scientific applications. Therefore, workflow scheduling is considered one of the most important issues in

cloud computing. It concerns about mapping tasks on cloud resources (i.e., Virtual machines (VMs)), to improve

scheduling performance. Because the existing heterogeneous earliest finish time (HEFT) algorithm is considered one

of the best and simplest algorithms, many algorithms have been proposed to improve the performance of the HEFT

algorithm. According to our previous work, a modification has been done to HEFT algorithm to enhance the

performance, called modified heterogeneous earliest finish time (M-HEFT). The goal of M-HEFT algorithm is to

reduce make span, maximize resource utilization and increase load balance. According to the work in this paper, an

enhancement has been added to our previous M-EFT algorithm to reduce the tradeoff among make span, resource

utilization, and load balance, called enhanced modified heterogeneous earliest finish time (EM-HEFT). The

enhanced EM-HEFT algorithm consists of two phases; task prioritization and task-VM mapping. In task

prioritization phase, a priority will be provided to each task in directed acyclic graph (DAG) by introducing new

factors in priority value to be more aware about task requirements. According to task-VM phase, tasks are allocated

to resources as in our previous M-HEFT algorithm. To evaluate the performance of the proposed EM-HEFT

algorithm, a comparative study has been done among the proposed algorithm and four existed algorithms (HEFT,

Efficient scheduling algorithm use critical path and static level attribute, Optimized Min-Min (OMin-Min) and our

previous M-HEFT). The experimental results show that the proposed algorithm outperforms other algorithms by

minimizing make span by 25%, improving resource utilization by 43% and load balance by 14% in average.

Keywords: Cloud computing, Task scheduling, Workflow scheduling, Heft, Make span, Resource utilization, Load

balance.

1. Introduction

High performance computing (HPC) is the

ability to process data and perform complex

calculations at high speeds by using concurrent

processing for running application programs

efficiently, reliably and quickly [1]. Cloud

computing refers to the remote manipulation,

configuration and access hardware and software

resources. It provides online data storage,

infrastructure and application [2].

There are four deployment models of cloud

computing; public, private, hybrid, and community

[3]. Public cloud allows systems and IT services to

Figure.1 Cloud computing deployment models [5]

be easily accessible to the public. Private cloud

allows systems and IT services to be easily

accessible within an organization. Hybrid cloud It is

mailto:asara4372@gmail.com

Received: September 18, 2022. Revised: October 5, 2022. 628

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

Figure.2 Cloud computing service models [7]

considered a mixture of private and public clouds,

but each one can remain as separate entities, where

critical activities are performed in private cloud

while not critical activities are performed in public

cloud [4]. Community cloud is a collaborative effort

made for sharing infrastructure between multiple

organizations (See Fig. 1) [5].

Cloud computing marked by popularity among

scitists because of its services. Three services could

be provided by cloud computing; software as a

service (SaaS) where a software is deployed over the

internet, platform as a service (PaaS) by providing a

computing platform that allows user to design web

applications quickly and easily, and infrastructure as

a service (IaaS) by distributing cloud computing

infrastructure such as servers, storage, network and

operating systems on-demand service instead of

buying them (See Fig. 2) [6].

One of the most important challenges of cloud

computing is the lack of resources where

organizations upload more workloads on the cloud

while cloud technologies continue to rapidly

advance to keep up with these needs. Resource

Management is the process of allocating computing

resource such as virtual machine (VMs), storage,

networking and indirectly energy resources to a set

of applications, to jointly meet the performance

objectives of the infrastructure providers, the users

of the cloud resources and applications [8].

Resource management includes different issues. One

of the most important issues is task scheduling.

1.1 Task scheduling

Task scheduling is the fundamental issue in

cloud environment. It is the process of allocating an

application’s tasks to suitable resources with

considering dependency/independency between

them to reduce make-span, maximize resource

utilization, improve load balance, and achieve QOS

parameters [9]. Based on the task dependency, the

tasks can be classified as independent and dependent

tasks. The tasks which do not require any

communication with other tasks are called

independent tasks. The dependent tasks differ from

the independent tasks as the former have precedence

order to be followed during the scheduling tasks,

called workflow [10].

1.2 Applications workflow

Workflow considers the applications' tasks

which presents in directed acyclic graph (DAG).

The nodes in the DAG graph represent the problem's

tasks and edges represent inter task dependencies.

Each task in the workflow can communicate with

other tasks [11]. There are two types of workflow;

simple workflow represents real work which

consists of group of tasks with sequence of activities

and mechanisms used to perform individual or

group tasks. Scientific workflow represents

scientific applications which depend on other tasks

with complexity in execution [12]. The work in this

paper focuses on scientific workflows. There are

common scientific workflows would be used as

benchmark to evaluate the performance of the task

scheduling algorithms such as MONTAGE,

CYBERSHAKE, SIPHT, LIGO and

EPIGENOMICS [13]. The work in this paper uses

LIGO and EPIGENOMICS workflows as

benchmark to implement and evaluate the proposed

EM-HEFT algorithm

1.2.1. Workflow structure

A workflow is modeled by G (T, E) where T is a

set of nodes or tasks {t1, t2, t3………, tn} and E is

the set of directed edges { eij | (Ti,Tj) ∈ E}

representing the dependencies between the tasks.

Each task is a workflow task with an associated

computation workload wli. Each edge eij represents

Ti as the parent task of Tj and Tj is said to be the

child task of Ti. After the complete execution of the

parent task, a child task can be executed. If there is

data transmission from Ti to Tj, the Tj can start only

after all the data from Ti has been received. A task

which does not have parent task is called input task,

and a task which entry does not have child task is

called exit task [14].

1.2.2. Workflow scheduling

Workflow scheduling is one of the prominent

issues in cloud computing which is aimed at

complete execution of workflows by considering

their QoS requirements [15]. Therefore, an efficient

Received: September 18, 2022. Revised: October 5, 2022. 629

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

scheduling algorithm is needed to reduce the

tradeoff between execution time of tasks, resources

utilization and satisfying load balance on various

computing resources [16].

1.2.3. Workflow scheduling algorithms

Task scheduling algorithms can be categorized

as Heuristic and Meta Heuristic, Heuristic

algorithms which is problem-based that attempt to

find solutions by applying the features of the

problem in a complete manner. Their solution is

based on learning and exploration where

comprehensive scientific research is applied to find

an optimal response and speed up the response

process, Meta Heuristic algorithms unlike heuristic

algorithms, these algorithms are problem

independent, and are used to deal with different

types of problems [17]. The work in this paper

focuses on heuristic algorithms.

Despite huge numbers of algorithms are

introduced to solve task scheduling, there are many

updates can be added to improve the algorithms. In

this paper, an algorithm has been introduced, called

EM-HEFT, to improve the performance of our

previous M-HEFT algorithm by reducing the

tradeoff among load balancing, resource utilization

and make span [18]. Enhanced EM-HEFT algorithm

consists of two phases; task prioritization and task-

VM mapping. The task prioritization is implemented

with new factors added to the rank equation to be

more aware about task characteristics which makes

the algorithm performs better. According to task-

VM mapping phase, the tasks allocate to VMs based

on the length of tasks and the load of available VMs.

If the length of the ready task is less than or equal to

the average length of all allocated tasks, it will be

allocated to the most idle VM and, in the same time,

guarantees earliest finish time. Otherwise, the task

allocates to VM that guarantees earliest finish time.

Paper is organized as follows; literature review

is presented in section 2. Section 3 illustrates the

principles of the proposed task scheduling algorithm.

The Performance criteria which used to evaluate the

enhanced EM-HEFT algorithm using the

WorkflowSim simulator are illustrated in section 4.

The experiment results of the enhanced EM-HEFT

algorithm are discussed in section 5. Finally, section

6 includes conclusion & future work.

2. Literature review

Workflow scheduling assigns tasks based on

their dependencies on the shared resources that the

workflow scheduler controls. However, it is

important to assign task to certain resources in order

to provide high quality of service [19]. Therefore,

workflow scheduling is a challenging optimization

problem with a lot of research in the last years.

Several evolutionary algorithms have been

introduced to solve this problem [20].

In [21], heterogeneous earliest finish time

(HEFT) algorithm was proposed. The goal of this

algorithm is to reduce make span. It works on two

phases; task ranking phase and task–VM mapping

phase. According to task ranking phase, a rank

assign for each task based on average execution time

of each task and the average communication time

between the resources of two tasks. After that the

tasks will be sorted in descending order in a list. In

the task–VM mapping phase, the highest rank task

will be assigned to the VM that produces earliest

finish time. Finally, this task is removed from the

list and the process is repeated until each task is

assigned. The main limitation of this algorithm is

that the algorithm cares only to minimize make span

only.

In [22], min-min scheduling algorithm was

proposed. The goal of this algorithm is to reduce

make span. It works by scheduling the task with

minimum size to the resource that has the minimum

completion time (MCT). Finally, this task is

removed from the set of unassigned tasks and the

process is repeated until each task is assigned.

However, the limitation of this algorithm is that it

schedules the small tasks at first and leave large one

at the end of scheduling process. It works fine if the

number of smaller tasks is greater than the number

of larger ones.

In [23], resource awareness scheduling

algorithm (RASA) was proposed. The goal of this

algorithm is to reduce make span. RASA is a hybrid

algorithm composed of two traditional scheduling

algorithms; max-min and min-min. RASA uses the

advantages of max-min and min-min algorithms and

covers their disadvantages. Based on concept of

completion time of each task, it works on two

phases. In the first phase, the expected completion

time for each task is calculated. In the second phase,

max-min and min-min algorithms are applied

alternatively to schedule task according to resource

ID where if resource ID is odd min-min is applied

first otherwise max-min is applied. The algorithm

advantages of this algorithm are no longer waiting

of VM for larger tasks or smaller tasks and

satisfying load balance. However, the limitation of

this algorithm is that it unable to load balance when

the number of larger tasks increases. Another issue

is that it only concerned with the number of the

resources to be odd or even.

In [24], an improved max-min task scheduling

Received: September 18, 2022. Revised: October 5, 2022. 630

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

algorithm was proposed. The goal of this algorithm

is reducing make span. It calculates the average of

execution time for all tasks in the workflow. Then,

max-min is used when receiving a task with

execution time smaller than the average of execution

time. Otherwise, a task with execution time greater

than or equal to the average of execution time is

assigned to the VM with minimum completion time

among all the VMs regardless of VM availability.

The limitation of this algorithm is that it cares about

make span only.

In [25], an efficient workflow scheduling

algorithm (EWSA) was proposed. The goal of this

algorithm is to maximize resource utilization and

meeting the deadline. The algorithm consists of two

phases; update, and task-VM mapping. The

objective of the update phase is to trace each path in

the DAG and set the execution time for each task,

and then define the VM with needed capability to

execute each task. In task-VM mapping phase, the

tasks are scheduled on proper VMs. The limitation

of this algorithm is that is not considered load

balance among VMs.

In [26], a MaxChild algorithm was proposed.

The goal of this algorithm is to improve the system

throughput with appropriate resource utilization and

high performance by obeying the required QoS

parameters which specified by the user. MaxChild

start with the task which has maximum number of

child to be scheduled first to guarantee that the

maximum number of tasks could be available for the

next schedules and resource are utilized properly.

However, the limitation of this algorithm is that

after a job is submitted to the resource and this

resource is not available, this may affect makes pan.

Also, the status of VMs is not concerned.

In [27], a modification has been done to the

heterogeneous earliest finish time (HEFT) algorithm

to enhance the performance on the cloud

environment. The goal of this algorithm is to reduce

make span. It works on two phases; first phase is

task ranking phase where assign a rank for each task.

Then, sort them descendingly based on their rank.

Second phase is task – VM mapping phase which

concerns about assigning the task to resource that

produce earliest finish time. According to this

modification, the priority for each task in the DAG

has been defined by calculating the order of

execution which define by the result of (average of

task on all the processor + max (order of task value

of predecessor task of current task) +

communication cost between predecessor task node

to current node) starting with the last node in the

DAG. The algorithm outperforms the HEFT

algorithm with respect to make span. The limitation

of this algorithm is that the algorithm cares only to

minimize make span only.

In [28], a combination between heterogeneous

earliest finish time ranking algorithm and modified

balance minimum completion time resource

selection algorithm was proposed for concurrent

workflow. The goal of this algorithm is to reduce

make span and make resources more balanced. The

modified heterogeneous earliest finish time ranking

algorithm considers a communication time of parent

task that plays a significant role when tasks have

rich communication in the workflow. Then, the

modified balance minimum completion time

resource selection algorithm is used to check load of

all machines to move the tasks between the highly

loaded machines to the lightly loaded machines. By

this modification, the algorithm outperforms the

HEFT algorithm with respect to make span. The

limitation of this algorithm is that other QoS metrics

didn't considered.

In [29], an efficient task scheduling algorithm

for DAG in cloud computing environment has been

proposed. The goal of this algorithm is reduce make

span. The algorithm works on of two phases; task

priority phase and resource selection phase. In task

priority phase, the priority of the tasks is defined

using critical path and static level (CPS) attributes.

Then, the tasks are sorted in descending order. In

resource selection phase, the selection of resource is

based on the earliest start time (EST) and the earliest

finish time (EFT). The algorithm outperforms the

HEFT algorithm with respect to make span.

However, the limitation of this algorithm is suffered

from load imbalance on VMs.

In [30], multi-objective workflow optimization

strategy (MOWOS) was proposed. The goal of this

algorithm is reducing execution cost with make span

for workflow. In the other words, the aim of

MOWOS is all tasks executed on their deadlines

with reduced time and budget. MOWOS include

three sub algorithms; task spiriting algorithm to

break down large tasks into smaller chunks to

reduce their schedule length, and two task allocation

algorithms, minimum VM (MinVM) selection

algorithm, and maximum VM (MaxVM) selection

algorithm. However, the limitation of this algorithm

is suffered from load imbalance on VMs.

In [31], a list scheduling with task duplication

(LSTD) algorithm was proposed. The goal of this

algorithm is to minimize the make span of workflow

applications. LSTD algorithm mainly consists of

three steps. In the first step, the rank of the tasks is

calculated for deciding the scheduling order. The

second step is responsible for duplicating the entry

task on the processor only if it increases the overall

Received: September 18, 2022. Revised: October 5, 2022. 631

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

efficiency and avoids processor overloading. Finally,

in the last step, the processor is assigned to the tasks

based on the popular insertion-based policy that

attempts to insert the task among two earlier

assigned tasks on a given processor in earliest idle

time. LSTD outperforms other existing algorithms

with respect to make span. Similar to other proposed

algorithms, the limitation of this algorithm is that

more QoS metrics didn't considered.

In [32], an enhanced heterogeneous earlier finish

time based on rule (EHEFT-R) task scheduling

algorithm was proposed. The goal of this algorithm

is to optimize task execution efficiency, quality of

service (QoS) and energy consumption. This

algorithm, works with task ranking and VM

allocation phases in parallel. After one or more tasks

determine their execution order, they are

immediately arranged on the VM with respect to the

earliest completion time. After all tasks are sorted,

the virtual machine selection process is also

completed. The rank value does not completely

guarantee that tasks allocate on the optimal VM in

all situations if tasks have different priority levels.

But, at the same priority level, remapping rules are

applied start from the task with the highest rank

value. If two adjacent tasks are not in the same layer,

the VM assignments of the two tasks will not be

changed. Otherwise, if two adjacent tasks are in the

same layer and their earliest completion times fall

on different VM, the virtual machine allocation will

not be changed; if two adjacent tasks are in the same

layer and their earliest completion time falls on the

same VM, compare the EFT rank of the two tasks,

the one with the larger value will be assigned to this

VM. The limitation of this algorithm is that load

balance metrics need to be considered.

In [33], a new Min-Min algorithm called

Optimized Min-Min (OMin-Min) algorithm. OMin-

Min is designed for scientific workflow. The goal of

this algorithm is to reduce make span and try to

avoid neglecting execution time. OMin-Min define

tasks that have minimum and maximum execution

times (MinT and MaxT), and then the task with

minimum execution time will be assigned to

resource that produces minimum execution time.

Otherwise, the task with maximum execution time

assigns to resource that produces minimum

execution time. The limitation of this algorithm is

that load balance metrics need to be considered.

In [34], an improvement of the existing HEFT

and Enhancement-HEFT (E-HEFT) algorithms has

been introduced, called Load Balance HEFT (LB-

HEFT). The goal of this algorithm is to reduce make

span, improve load balance and reduce resource

utilization. The principle of the proposed LB-HEFT

algorithm is to allocate the application’s tasks to

VMs by considering the heterogeneous clusters. It

works on two phases; tasks ranking and Task-VM

matching phases. In the task ranking phase, a rank is

assigned to each task. In task-VM matching phase

schedules tasks on appropriate VMs taking into

account load balancing along with the earliest

execution time and optimizing resource usage. The

limitation of this algorithm is more metrics need to

be considered such cost. This algorithm would be

improved by considering the task's weight in the

Task Ranking phase. So, the work in this paper

concerns this issue.

In [18], a modification has been done to the

heterogeneous earliest finish time (HEFT) algorithm

to enhance the performance on the cloud

environment. Called modified heterogeneous

earliest finish time (M-HEFT). The goal of this

algorithm is to reduce make span, maximize

resource utilization and increase load balance. It

works on two phases; first phase is task ranking

phase where assign a rank for each task. Then, sort

tasks descendingly with respect to their ranks.

Second phase is task–VM mapping phase where,

average task length (AL) for all nodes is calculated.

Then, if the task length is greater than or equal AL,

it will be mapped to resource that produce earliest

finish time. Else, the task will be mapped to the

laziest VM that produce earliest finish time. These

will be repeated till all tasks are assigned to specific

resource. However, the limitation of this algorithm

is that make span need to be improved.

Unfortunately, most of the existed algorithms

have a problem with respect to reduce the trade of

between make span, resource utilization and load

balancing among VMs in the distributed systems.

Therefore, an enhanced modified heterogeneous

earliest finish time (E-M-HEFT) algorithm has been

introduced by the work in this paper to overcome

the limitations of other algorithms (i.e., make span,

load balance, and resource utilization).

Table 1 list the comparison between the

aforementioned algorithms.

3. The proposed task scheduling algorithm

The proposed task-scheduling algorithm is based

on our previous M-HEFT algorithm with some

modifications to improve resource utilization, and

load balance, in addition to, make span [18]. The

proposed algorithm is called enhanced modified

HEFT (EM-HEFT). The goal of EM-HEFT is to

make the task' rank to be more powerful by adding

new factors in the rank equation which will lead to

maximize resource utilization, improve load balance,

Received: September 18, 2022. Revised: October 5, 2022. 632

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

Table 1. Comparison of workflow scheduling algorithms

Scheduling algorithm
Scheduling

parameters
Finding Environment

HEFT [21] Make span
This algorithm efficient for reducing the

make span

Grid

environment

Min-Min [22] Make span
This algorithm efficient for reducing the

make span with small task length

Grid

environment

RASA [23] Make span

This algorithm outperforms Min-Min and

Max-Min and opportunistic load

balancing (OLB) algorithms with respect

to make span.

Grid

environment

An improved Max-Min task

scheduling [24]
Make span

Improved Max-Min algorithm

outperforms the Max-Min algorithm in

most of the cases with respect to make

span.

Cloud

environment

An Efficient Workflow

Scheduling Algorithm

(EWSA) [25]

Resource utilization

and deadline

This algorithm maximizes the resource

utilization and meet the deadline of the

application

Cloud

environment

MaxChild [26]
Make span and

resource utilization

MaxChild was found to be the most

efficient algorithm with respect to make

span and resource utilization comparing to

FCFS, MAX-MIN, and MAX-MAX

algorithm.

Cloud

environment

A modification has been done

to the Heterogeneous Earliest

Finish Time (HEFT)

algorithm [27]

Make span

This algorithm reduces the make span and

satisfies load balancing compare to existing

HEFT and CPOP algorithms.

Cloud

environment

A modification has been done

to the Heterogeneous Earliest

Finish Time (HEFT)

algorithm [28]

Make span and

scheduling length

ratio

This algorithm outperforms HEFT with

respect to make and schedule length ratio.

Cloud

environment

An efficient task scheduling

algorithm for DAG in cloud

computing environment [29]

Make span, speed,

efficiency and

scheduling length

ratio

The algorithm outperforms the HEFT

algorithm with respect to make span,

speed, efficiency and scheduling length

ratio.

Cloud

environment

 Multi-Objective Workflow

Optimization Strategy

(MOWOS) [30]

Make span, cost and

resource utilization

The proposed MOWOS algorithm has less

execution cost, better execution make

span, and utilizes the resources than the

existing HSLJF and SECURE algorithms.

Cloud

environment

List Scheduling with Task

Duplication (LSTD)

algorithm [31]

Make span and

scheduling length

ratio

The LSTD outperforms other existing

algorithms with respect to make span and

schedule length ratio.

Cloud

environment

Enhanced Heterogeneous

Earlier Finish Time Based

on Rule (EHEFT-R) [32]

Make span, energy

consumption and

QOS

The proposed EHEFT-R algorithm has

better make span and energy consumption

than HEFT and NSGAII algorithms.

Cloud

environment

Optimized Min-Min (OMin-

Min) [33]
Make span

The algorithm outperforms the Round

Robbin, Modified Max-Min (MMax-Min)

Min-Min and Max-Min algorithms with

respect to make span.

Cloud

environment

Load Balance

Heterogeneous Earlier

Finish Time (LB-HEFT)

[34]

Make span, resource

utilization and load

balance

The algorithm outperforms the HEFT, and

E-HEFT with respect to make span,

resource utilization and load balance

Cloud

environment

M-HEFT [18]

Make span, resource

utilization and load

balance

The algorithm outperforms the HEFT,

algorithm in [30], and algorithm in [33]

with respect to make span, resource

utilization and load balance

Cloud

environment

Received: September 18, 2022. Revised: October 5, 2022. 633

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

and reduce make span.

The proposed EM-HEFT algorithm consists of

two phases; task prioritization phase to assign

priority for each task in the DAG, and Task-VM

mapping phase to allocate each task in the DAG to

suitable VM. The Task-VM phase is implemented as

in our previous M-HEFT algorithm [18]. The

novelty of EM-HEFT is in task prioritization phase

that will be discussed in details.

3.1 Task prioritization phase

A modification has been done to enhance task

prioritization phase of our previous M-HEFT

algorithm with respect to make span. The

modification has been done based on four

algorithms max child algorithm [26] which concerns

the number of the childs to define the rank of tasks,

load balancing scheduling algorithm for concurrent

workflow algorithm [28] which concerns average

computation cost of the task on all VMs and the

communication cost between predecessor tasks with

respect to current task, modified HEFT algorithm

for task scheduling in cloud environment [27] which

concerns the predecessor of each task, and an

efficient list scheduling algorithm with task

duplication for scientific big data work flow in

heterogeneous computing environments algorithm

[31] which concerns the weight speed of successor

task beside communication.

According to the work in this paper, the task's

rank is defined by summation of weight speed as in

[31], maximum of predecessor rank and its

communication [28], maximum of communication

of task and its successor as in [27] and the number

of task’s successor [26]. Therefor the task’s rank is

calculated using Eq. (1).

𝑅𝑎𝑛𝑘(𝑇𝑖) = 𝑤𝑖 + max
 tk∈tpred{ti}

(𝑐(𝑖, 𝑗) + 𝑟𝑎𝑛𝑘(𝑇𝑗))

+ max
Tk∈tsucc{Ti}

𝑐(𝑖, 𝑘) +

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑜𝑓 𝑇𝑖 (1)

Where, Wi is the difference between the highest

and lowest computation time of task Ti on VMm and

VMn, respectively divided by speedup of these VMs.

Tpred is the set of predecessors of Ti, c (i, j) is the

average communication cost between task Ti and Tj,

Tj is the successor of Ti, Tsucc is the set of successors

of Ti, and C (i, k) is the average communication cost

between task Ti and Tk.

Therefore, the proposed EM-HEFT algorithm is

become more knowledgeable because it concerns

communication cost for task’s successors and

predecessors and number of successors, to make the

Algorithm 1: Task ranking phase of EM-HEFT

algorithm.

Input: DAG and VMs configuration.

Output: list of tasks in decreasing order based on

their rank

.

1: set the computation cost for each task on each

resource CCTi,j

2: set the communication cost between tasks and

their successors Ci,k , and their predecessor Ci,j

3: set the number of successors for each task Ti in

DAG

4: for each task i=1 to Ti in DAG

𝑅𝑎𝑛𝑘(𝑇𝑖) = 𝑤𝑖 + max
 tk∈tpred{ti}

(𝑐(𝑖, 𝑗) + 𝑟𝑎𝑛𝑘(𝑇𝑗))

+ max
Tk∈tsucc{Ti}

𝑐(𝑖, 𝑘)

+ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑜𝑓 𝑇𝑖.

5: end for

6: arrange tasks in a list in decreasing order based on

their rank

rank value more valuable and effective.

The task priority phase starts by computing

computation cost (CCT) for each task Ti in the DAG

on each VMj using Eq. (2).

𝐶𝐶𝑇(𝑇𝑖, 𝑉𝑀𝑗) =
𝑇𝑖.𝑙𝑒𝑛𝑔𝑡ℎ

𝑉𝑀𝑗.𝑀𝐼𝑃𝑆
 (2)

Where, Ti.length is the needed time to execute

Ti, and VMj.MIPS is the speed of VMj.

Then, the communication cost is calculated

between tasks and their successors C (Ti,Tk), and

their predecessor C (Ti,Tj). Then, set number of

children for each task. After that, the rank for each

task Ti is calculated using the Enhanced M-HEFT

algorithm (see Eq. (1)). Finally, the tasks are sorted

in a list in decreasing order based on their rank value.

3.1.1. Pseudo code of the task ranking phase of EM-

HEFT algorithm

The pseudo code of the task ranking phase is

described in Algorithm. 1.

3.2 Task – VM mapping phase

The task-VM Mapping phase in our previous M-

HEFT algorithm will be used to select the best VM

for each task by calculating the average task Length

(AL) for all tasks using Eq. (3) [18].

Received: September 18, 2022. Revised: October 5, 2022. 634

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

Figure. 3 The flow chart of the proposed EM-HEFT algorithm

𝐴𝐿 =
∑ 𝑇𝑖 𝑙𝑒𝑛𝑔𝑡ℎ

𝑇𝑎𝑠𝑘𝑁𝑢𝑚
 (3)

Where, Ti length is the needed computation time

of task Ti, and taskNum is the number of tasks in

the DAG.

If the length of the ready task less than (AL), the

task will be assigned to the idlest VM that has the

largest available time, in the same time, ensures

earliest finish time of the task. Else, map the task to

VM that guarantees earliest finish time using Eq. (4),

Eq. (5).

𝐹𝑖𝑛𝑖𝑠ℎ 𝑇𝑖𝑚𝑒(𝑇𝑖, 𝑉𝑀𝑗) =

𝐶𝐶𝑇(𝑇𝑖, 𝑉𝑀𝑗) + 𝑆𝑇(𝑇𝑖, 𝑉𝑀𝑗) (4)

𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒(𝑇𝑖, 𝑉𝑀𝑗) =

𝑚𝑎𝑥{𝑇𝑎𝑣𝑖𝑙(𝑉𝑀𝑗), 𝐹𝑇(𝑇𝑘) + 𝐶(𝑇𝐾 , 𝑇𝑖)} (5)

After assigning the task on suitable VM

according to Eqs. (4), (5), remove the task from the

list. Repeat the steps till all tasks are assigned to the

VMs.

3.2.1 Pseudo code of the task-VM mapping phase of

EM-HEFT algorithm

The pseudo code of the task-VM mapping phase

of EM-HEFT algorithm is described in Algorithm. 2.

Algorithm 2: Task-VM mapping phase.

Input: List of tasks based on their rank and VMs

configuration.

Output: Mapping scheme for the requested tasks

cloudlets on the available resources VMs.

1: compute Average task length (AL) for all tasks

in the DAG

2: for each task in ready list

3: check if task length greater than or equal AL

4: map task to VM which has the earliest finish

time

5: else if the task length less than AL

6: map task to the most idle VM which has earliest

finish time

7: end for

8: end

Received: September 18, 2022. Revised: October 5, 2022. 635

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

3.3 Flowchart of the proposed EM-HEFT

algorithm

Fig. 3 represents the flowchart of scheduling

tasks of DAG according to the proposed EM-HEFT

algorithm.

4. Performance evaluation of the proposed

EM-HEFT algorithm

4.1 Performance metrics

Three metrics are used to evaluate the

performance of the proposed EM-HEFT algorithm;

make span, resource utilization rate, and ideal load

balance.

Make span is the maximum time required to

complete the entire DAG tasks. Make span should

be reduced. Eq. (6) is used to calculate make span

[35].

𝑀𝑎𝑘𝑒 𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥{𝐶𝑇𝑖} (6)

Here CTi is the completion time of the longest

task Ti.

Resource utilization rate (RUR) is the ratio

between the total occupied time of VMi and the

make span of the parallel application in percentage

(see equation Eq. (7), and Eq. (8)) [37]. Resource

utilization should be maximized.

𝑅𝑈𝑅(𝑉𝑀𝑗)% = (
∑ 𝑣𝑚𝑗 𝐵𝑢𝑠𝑦 𝑇𝑖𝑚𝑒

𝑀𝑎𝑘𝑒 𝑠𝑝𝑎𝑛
) 𝑋100 (7)

𝑅𝑈𝑅 𝑓𝑜𝑟 𝐷𝐴𝐺 =
∑ 𝑅𝑈𝑅(𝑉𝑀𝑗)

𝑉𝑚𝑁𝑢𝑚
 (8)

Ideal load balance (ILB) is the ratio between the

total number of tasks and the number of VMs, which

is calculated by Eq. (9) [36].

𝐼𝑑𝑒𝑎𝑙 𝐿𝑜𝑎𝑑 𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝐼𝐿𝐵) =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑑 𝑉𝑀⁄ (9)

Difference from ideal rate of load balance

(DLB) is the difference between actual load balance

and the ideal load balance (ILB) in VMi. It is

calculated using Eq. (11) [36]. DLB should be

minimized.

𝐷𝐿𝐵(𝑉𝑀𝑗)% =

∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠(𝑉𝑀𝑗) − 𝐼𝐿𝐵 (𝑉𝑀𝑗) (10)

Average difference from ideal rate of load

balance (ADLB) is the ratio between the total

Table 2. Vm configuration and used workflow

Entities Values

Workflows
Ligo 100, 1000

Epigenomics 100,1000

 Data center 1 1

VMs
Quantity 5,10,15,20

Speed 50-1000

 CPU

Quantity 1

Ram 512

Bandwidth 1000Mbps

summations of DLB for each VMi over their number.

It is calculated using Eq. (12) [38].

𝐴𝐷𝐿𝐵(𝑉𝑀𝑗) =
∑ 𝐷𝐿𝐵(𝑉𝑀𝑗)𝑚

𝑗=1

𝑉𝑚𝑁𝑢𝑚
 (11)

Improvement rate (IRm) in terms of used

metrics (make span, resource utilization and load

balance), this ratio will define the improvement rate

with respect to used metrics (M) using EM-HEFT

relative to the current HEFT and the strategies

mentioned in [21, 29, 33, 18]. It is computed using

Eq. (12).

𝐼𝑅𝑚 =

(
𝐴𝐵𝑆(𝑀(𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)−𝑀(𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚))

𝑀(𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)
) 𝑋100

(12)

Here ABS is the absolute value that neglects the

sign of the number.

4.2 Experimental environment

The proposed algorithm has been implemented

using WorkflowSim1.0 toolkit integrated into Net

Beans IDE 8.0.2 with the configurations shown in

Table 2. WorkflowSim is an extension of the

CloudSim framework [39]. The experiments have

done using two type of workflows; Ligo, and

Epigenomics.

5. Performance evaluation of the proposed

EM-HEFT algorithm

To evaluate the performance of the proposed

algorithm, a comparative study has been contacted

among the proposed EM-HEFT algorithm, the

heterogeneous earliest finish time (HEFT) algorithm

[21], the algorithm mentioned in [29], the algorithm

mentioned in [33] and our previous M-HEFT

algorithm [18] with respect to make span, resource

utilization, and load balancing metrics. This study

has been implemented with considering

heterogeneous environment using WorkflowSim,

Received: September 18, 2022. Revised: October 5, 2022. 636

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

Table 3. Make span results for 100 tasks of Ligo

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT [21] 43195.33 10043.61 4784.83 3360.40

Algorithm [29] 34479.03 17224.36 9383.23 6204.83

Algorithm [33] 34674.23 17598.23 10173.00 7820.00

M-HEFT[18] 31710.37 9023.57 4646.04 2836.96

Enhanced EM-HEFT 31267.74 8972.39 4017.25 2817.72

Figure. 4 Make span results for 100 tasks of Ligo

Table 4. Make span results for 1000 tasks of Ligo

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT [21] 316515.75 255772.84 62360.67 105685.84

Algorithm [29] 307040.59 87822.00 50968.25 29652.74

Algorithm [33] 308075.18 87945.32 51598.46 30757.41

M-HEFT [18] 304147.05 87225.67 40624.22 22723.30

Enhanced EM-HEFT 295315.59 79820.98 39227.75 21491.95

Figure. 5 Make span results for 1000 tasks of Ligo

1.00
4.00
7.00

10.00
13.00
16.00
19.00
22.00
25.00
28.00
31.00
34.00
37.00
40.00
43.00

5 10 15 20

M
a

k
es

p
a

n
 i

n
 (

m
se

c
.)

Vm Number

Heft [21]

Proposed Algorithm [29]

Proposed Algorithm [33]

Proposed M-Heft [18]

Enhanced EM-Heft

1.00
3.00
5.00
7.00
9.00

11.00
13.00
15.00
17.00
19.00
21.00
23.00
25.00
27.00
29.00
31.00
33.00
35.00

5 10 15 20

M
a

k
es

p
a

n
 i

n
 (

m
se

c
.)

Vm Number

Heft [21]

Proposed Algorithm [29]

Proposed Algorithm[33]

Proposed M-Heft[18]

Enhanced EM-Heft

Received: September 18, 2022. Revised: October 5, 2022. 637

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

Table 5. Make span results for 100 tasks of epigenomics

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT [21] 569754.69 193399.72 141876.45 114244.72

Algorithm [29] 656837.59 411631.95 189023.29 164725.11

Algorithm [33] 675509.87 413795.00 225311.52 250584.03

M-HEFT [18] 544848.60 183010.05 111433.28 81473.38

Enhanced EM-HEFT 533676.02 165486.02 106814.13 79425.13

Figure. 6 Make span results for 100 tasks of epigenomics

Table 6. Make span results for 1000 tasks of epigenomics

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT [21] 5178814.39 2921063.95 4249865.15 2230593.05

Algorithm [29] 5191570.65 1653208.62 867429.26 532190.83

Algorithm [33] 5202232.30 1691359.69 898372.57 559629.85

M-HEFT [18] 5155803.00 1420166.50 714205.34 451127.66

Enhanced EM-HEFT 5155713.76 1418864.24 696630.71 407408.56

Figure. 7 Make span results for 1000 tasks of epigenomics

10.00

110.00

210.00

310.00

410.00

510.00

610.00

710.00

5 10 15 20

M
a

k
es

p
a

n
 i

n
 (

m
se

c
.)

Vm Number

Heft [21]

Proposed Algorithm [29]

Proposed Algorithm [33]

Proposed M-Heft [18]

Enhanced EM-Heft

200.00
550.00
900.00

1250.00
1600.00
1950.00
2300.00
2650.00
3000.00
3350.00
3700.00
4050.00
4400.00
4750.00
5100.00

5 10 15 20

M
a

k
es

p
a

n
 i

n
 (

m
se

c
.)

Vm Number

Heft [21]

Proposed Algorithm [29]

Proposed Algorithm [33]

Proposed M-Heft [18]

Enhanced EM-Heft

Received: September 18, 2022. Revised: October 5, 2022. 638

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

and two benchmarks, Ligo and Epigenomics with

100 and 1000 tasks, and 5, 10, 15 and 20 VMs.

5.1 Make span

The implementation results of the comparative

study among our enhanced EM-HEFT algorithm,

HEFT [21], the algorithm in [29], the algorithm in

[33], and our previous M-HEFT algorithm in [18]

with respect to make span with considering Ligo and

Epigenomics benchmark with 100 and 1000 tasks

using 5, 10, 15 and 20 VMs are discussed as follows.

5.1.1. For 100 and 1000 tasks of ligo

Make span for 100 tasks of Ligo are presented in

Table 3, and Fig. 4. While make span for 1000 tasks

of Ligo are presented in Table 4, and Fig. 5.

By considering 100 tasks in Ligo and the

implementation results presented in Table 3 and Fig.

4, it is found that the enhanced EM-HEFT algorithm

improves make span by 18% with respect to HEFT

algorithm [21], 42% with respect to algorithm in

[29], 46% with respect to algorithm in [33], and 4%

with respect to our previous M-HEFT algorithm

[18] in average. A By considering 100 tasks in Ligo

and results presented Table 4 and Fig. 5, the

enhanced EM-HEFT algorithm improves make span

by 48% with respect to HEFT algorithm [21], 16%

with respect to algorithm in [29], 17% with respect

to algorithm in [33], and 5% with respect to our

previous M-HEFT algorithm in [18] in average.

5.1.2. 100 and 1000 tasks of epigenomics

Make span for 100 tasks of Epigenomics are

presented in Table 5, and Fig. 6. While make span

for 1000 tasks of Epigenomics VMs are presented in

Table 6, and Fig. 7.

By considering 100 tasks in Epigenomics and

implementation results presented in Table 5 and Fig.

6, it is found that the enhanced EM-HEFT algorithm

improves make span by 19% with respect to HEFT

algorithm [21], 43% with respect to algorithm in

[29], 50% with respect to algorithm in [33] and 5%

with respect to our previous M-HEFT algorithm in

[18] in average. By considering 1000 tasks in

Epigenomics and results presented results in Table 6

and Fig. 7, it is found that the enhanced EM-HEFT

algorithm improves make span by 54% with respect

to HEFT algorithm [21], 15% with respect to

algorithm in [29], 14% with respect to algorithm in

[33] and 3% with respect to our previous M-HEFT

algorithm in [18] in average.

Table 7. Resource utilization rate results for 100 tasks of Ligo

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT [21] 38.94 41.87 40.25 31.28

Algorithm [29] 48.80 24.41 19.92 16.94

Algorithm [33] 47.58 24.31 18.62 15.34

M-HEFT [18] 53.04 46.60 42.25 37.05

Enhanced EM-HEFT 53.45 47.01 43.40 37.20

Figure. 8 Resource utilization rate results for 100 tasks of Ligo

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

5 10 15 20

R
es

o
u

rc
e
 U

ti
li

za
ti

o
n

R
a

te

Vm number

Heft [21]

Proposed Algorithm [29]

Proposed Algorithm [33]

Proposed M-Heft [18]

Enhanced EM-Heft

Received: September 18, 2022. Revised: October 5, 2022. 639

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

Table 8. Resource utilization rate results for 1000 tasks of Ligo

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT [21] 57.55 20.81 32.46 18.18

Algorithm [29] 58.74 51.38 39.71 38.39

Algorithm [33] 58.14 50.95 38.56 37.15

M-HEFT [18] 60.05 52.25 50.54 50.10

Enhanced EM-HEFT 60.35 54.20 50.75 50.30

Figure. 9 Resource utilization rate results for 1000 tasks of Ligo

5.2 Resource utilization evaluation

The implementation results of the comparative

study among our enhanced EM-HEFT, HEFT [21],

algorithm in [29], algorithm in [33], and our

previous M-HEFT algorithm in [18] with respect to

resource utilization with considering Ligo and

Epigenomics benchmark with 100 and 1000 tasks

using 5, 10, 15 and 20 VMs are discussed as the

follow.

5.2.1. For 100 and 1000 tasks of Ligo

Resource utilization results for 100 tasks of Ligo

are presented in Table 7, and Fig. 8. While resource

utilization results for 1000 tasks of Ligo are

presented in Table 8, and Fig. 9.

By considering 100 tasks in Ligo and resource

utilization results presented in Table 7 and Fig. 8, it

is found that the enhanced EM-HEFT algorithm

improves resource utilization by 19% with respect to

HEFT algorithm [21], 85% with respect to algorithm

in [29], 95% with respect to algorithm in [33], and

1% with respect to our previous M-HEFT algorithm

in [18] in average. By considering 1000 tasks in

Ligo and resource utilization presented in Table 8

and Fig. 9, it is found that the enhanced EM-HEFT

algorithm improves resource utilization by 99% with

respect to HEFT algorithm [21], 17% with respect to

algorithm in [29], 19% with respect to algorithm in

[33], and 1% with respect to our previous M-HEFT

algorithm in [18] in average.

5.2.2. For 100 and 1000 tasks of epigenomics

Resource utilization results for 100 tasks of

Epigenomics are presented in Table 9, and Fig. 10.

While resource utilization results for 1000 tasks of

Epigenomics are presented in Table 10, and Fig. 11.

By considering 100 tasks in Epigenomics and

resource utilization results presented in Table 7 and

Fig. 8, it is found that the enhanced EM-HEFT

algorithm improves resource utilization by 22% with

respect to HEFT algorithm [21], 83% with respect to

algorithm in [29], 100% with respect to algorithm in

[33], and 8% with respect to our previous M-HEFT

algorithm in [18] in average. By considering 1000

tasks in Epigenomics and results presented Table 8

and Fig. 9, the enhanced EM-HEFT algorithm

improves resource utilization by 99% with respect to

HEFT algorithm [21], 16% with respect to algorithm

in [29], 22% with respect to algorithm in [33], and

2% with respect to our previous M-HEFT algorithm

in [18] in average.

5.3 Load balance rate

The implementation results of the comparative

study among our enhanced EM-HEFT, HEFT [21],

0.00

10.00

20.00

30.00

40.00

50.00

60.00

5 10 15 20

R
es

o
u

rc
e
 U

ti
li

za
ti

o
n

R
a

te

Vm number

Heft [21]

Proposed Algorithm [29]

Proposed Algorithm [33]

Proposed M-Heft [18]

Enhanced EM-Heft

Received: September 18, 2022. Revised: October 5, 2022. 640

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

Table 9. Resource utilization rate results for 100 tasks of epigenomics

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT [21] 56.64 41.72 25.27 17.66

Algorithm [29] 49.13 19.60 18.97 12.24

Algorithm [33] 48.76 18.81 16.42 10.56

M-HEFT [18] 59.23 44.09 32.18 24.76

Enhanced EM-HEFT 59.80 45.00 32.90 25.50

Figure. 10 Resource utilization rate results for 100 tasks of epigenomics

Table 10. Resource utilization rate results for 1000 tasks of epigenomics

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT [21] 59.15 26.39 20.06 18.04

Algorithm [29] 59.40 46.63 39.50 36.22

Algorithm [33] 59.13 46.24 36.32 33.48

M-HEFT [18] 60.45 54.29 47.98 42.72

Enhanced EM-HEFT 60.32 54.10 49.10 44.20

Figure. 11 Resource utilization rate results for 1000 tasks of epigenomics

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

5 10 15 20

R
es

o
u

rc
e
 U

ti
li

za
ti

o
n

R
a

te

Vm number

Heft [21]

Proposed Algorithm [29]

Proposed Algorithm [33]

Proposed M-Heft [18]

Enhanced EM-Heft

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

5 10 15 20

R
e

so
u

rc
e

 U
ti

liz
at

io
n

 R
at

e

Vm number

Heft [21]

Proposed Algorithm [29]

Proposed Algorithm [33]

Proposed M-Heft [18]

Enhanced EM-Heft

Received: September 18, 2022. Revised: October 5, 2022. 641

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

Table 11. The average difference from ideal load balance (ILB) results for 100 tasks of Ligo

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT [21] 8.8 4.0 3.20 2.70

Algorithm [29] 7.0 3.8 2.3 1.4

Algorithm [33] 7.1 3.9 2.5 1.7

M-HEFT [18] 6.8 2.0 2.0 1.0

Enhanced EM-HEFT 6.7 1.9 1.9 1.0

Figure. 12 The average difference from ideal load balance (ILB) results for 100 tasks of Ligo

Table 12. The average difference from ideal load balance (ILB) results for 1000 tasks of Ligo

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT [21] 79.5 63.4 33.3 34.3

Algorithm [29] 78.6 38.0 30.3 22.5

Algorithm [33] 78.8 38.2 30.5 22.8

M-HEFT [18] 78.4 36.3 27.4 19.4

Enhanced EM-HEFT 78.2 35.8 27.21 19.2

Figure. 13 The average difference from ideal load balance (ILB) results for 1000 tasks of Ligo

0

1

2

3

4

5

6

7

8

9

10

5 10 15 20

D
if

fe
r
en

ce
 f

ro
m

 i
d

ea
l

 L
o

a
d

B
a

la
n

ce

Vm number

Heft [21]

Proposed Algorithm [29]

Proposed Algorithm [33]

Proposed M-Heft [18]

Enhanced EM-Heft

0

10

20

30

40

50

60

70

80

90

5 10 15 20

D
if

fr
e
en

ce
 f

ro
m

 I
d

ea
l

L
o

a
d

B
a

la
n

ce

Vm number

Heft [21]

Proposed Algorithm [29]

Proposed Algorithm [33]

Proposed M-Heft [18]

Enhanced EM-Heft

Received: September 18, 2022. Revised: October 5, 2022. 642

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

algorithm in [29], algorithm in [33], and our

previous M-HEFT algorithm in [18] with respect to

load balance rate with considering Ligo and

Epigenomics benchmark with 100 and 1000 tasks

using 5, 10, 15 and 20 VMs are discussed as the

follow.

5.3.1. For 100 and 1000 tasks of ligo

Load balance rate results for 100 tasks of Ligo

are presented in Table 11, and Fig. 12. While load

balance rate results for 1000 tasks of Ligo are

presented in Table 12, and Fig. 13.

According to the results presented in Table 11

and Fig. 12, it is found that the enhanced EM-HEFT

algorithm improves load balance by 45% with

respect to HEFT algorithm [21], 25% with respect to

algorithm in [29], 31% with respect to algorithm in

[32], and 3% with respect to our previous M-HEFT

algorithm in [18] in average by considering 100

tasks in Ligo. According to the results presented in

Table 12 and Fig. 13, the enhanced EM-HEFT

algorithm improves load balance by 27% with

respect to HEFT algorithm [21], 8% with respect to

algorithm in [29], 8% with respect to algorithm in

[32], and 0.8% with respect to our previous M-

HEFT algorithm in [18] in average by considering

1000 tasks in Ligo.

5.3.2. For 100 and 1000 tasks of epigenomics

Load balance rate results for 100 tasks of

Epigenomics are presented in Table 13, and Fig. 14.

While load balance rate results for 1000 tasks of

Epigenomics are presented in Table 14, and Fig. 15.

Table 13. The average difference from ideal load balance (ILB) results for 100 tasks of epigenomics

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT [21] 10.8 4.6 2.70 2.10

Algorithm [29] 9.6 5.0 3.00 2.1

Algorithm [33] 9.7 5.1 3.2 2.3

M-HEFT [18] 8.0 4.4 2.6 2.1

Enhanced EM-HEFT 7.9 4.0 2.4 2.0

Figure. 14 The average difference from ideal load balance (ILB) results for 100 tasks of epigenomics

Table 14. The average difference from ideal load balance (ILB) results for 1000 tasks of epigenomics

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs

HEFT [22] 140.20 80.30 49.60 36.95

Algorithm [30] 77.60 49.70 33.40 23.75

Algorithm [33] 77.70 50.55 34.46 23.85

M-HEFT [35] 77.40 39.70 28.16 23.65

Enhanced M-HEFT 77.30 39.60 26.40 22.31

0

2

4

6

8

10

12

5 10 15 20

D
if

fr
e

n
ce

 f
ro

m
 Id

e
al

 L
o

ad

B
al

an
ce

Vm number

Heft [21]

Proposed Algorithm [29]

Proposed Algorithm [33]

Proposed M-Heft [18]

Enhanced EM-Heft

Received: September 18, 2022. Revised: October 5, 2022. 643

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

Figure. 15 The average difference from ideal load balance (ILB) results for 1000 tasks of epigenomics

According to the results presented in Table 11

and Fig. 12, the enhanced EM-HEFT algorithm

improves load balance by 14% with respect to

HEFT algorithm [21], 6% with respect to algorithm

in [29], 7% with respect to algorithm in [33], and

7% with respect to our previous M-HEFT algorithm

in [18] in average by considering 100 tasks in

Epigenomics. According to the results presented in

Table 12 and Fig. 13, the enhanced EM-HEFT

algorithm improves load balance by 45% with

respect to HEFT algorithm [21], 12% with respect to

algorithm in [29], 13% with respect to algorithm in

[33], and 3% with respect to our previous M-HEFT

algorithm in [18] in average by considering 1000

tasks in Epigenomics.

Conclusion and future work

Workflow scheduling is one of the eminent

issues that work on allocating workflows tasks on

VMs based on different requirements related to

tasks and VMs in cloud computing. In this paper, an

enhanced task scheduling algorithm, called EM-

HEFT, has been introduced to improve the

performance of our previous M-HEFT [18] with

respect to make span, resource utilization, and load

balance. To evaluate the performance of the

proposed EM-HEFT algorithm, a comparative study

has been contacted using two benchmarks, LIGO

and EPIGENOMICS, with 100 and 1000 tasks and

implemented on WorkflowSim simulator

considering 5, 10, 15 and 20 VMs.

According to the implementation results, it is

found that the enhanced EM-HEFT improves the

make span algorithm by 35% in average with

respect to the original HEFT [21] algorithm, by 29%

in average with respect to the proposed algorithm

[29], by 33% in average with respect to the

algorithm in [33], and by 4% in average with respect

to our previous M-HEFT algorithm in [18]. The

resource utilization has been improved using the

enhanced EM-HEFT algorithm by 50% in average

with respect to the original HEFT [21] algorithm, by

34% in average with respect to the proposed

algorithm [29], by 53% in average with respect to

the algorithm in [33], and by 35% in average with

respect to our previous M-HEFT algorithm in [18].

In addition, the load balance has been improved

using the enhanced EM-HEFT algorithm by 26% in

average with respect to the original HEFT [21]

algorithm, by 11% in average with respect to the

proposed algorithm [29], by 8 % in average with

respect to the algorithm in [33], and by 11% in

average with respect our previous M-HEFT the

algorithm in [18].

As a future work, there is a need to enhance our

enhanced EM-HEFT algorithm by considering extra

performance criteria such as budget, power

consumption, and deadline.

Table of abbreviations

Name Abbreviation

VM Virtual machine.

T T is stand for Task.

wi Weight of the task which

is the difference between

the highest and lowest

computation time of

task Ti on VMm and VMn,

respectively divided by

speedup of these VMs.

Ci,j Communication cost

between two tasks.

CCTi,j Computation cost for task

Ti on VMj.

AL Average length for all

tasks in the DAG.

Tavil It is the available time of

VM.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

5 10 15 20

D
if

fe
r
en

ce
 f

ro
m

 I
d

ea
l

L
o

a
d

 B
a

la
n

ce

Vm number

Heft [21]

Proposed Algorithm [29]

Proposed Algorithm [33]

Proposed M-Heft [18]

Enhanced EM-Heft

Received: September 18, 2022. Revised: October 5, 2022. 644

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

ST Start Time of task on VM.

FT Finish time of task on VM.

CTi Is the completion time of

the longest task Ti.

RUR Resource Utilization Rate.

ILB Ideal Load Balance.

DLB Difference from Ideal Rate

of load balance.

ADLB Average difference from

Ideal Rate of load balance.

IRM Improvement rate in terms

of used metrics (make

span, resource utilization

and load balance).

ABS It is the Absolute value of

a number.

M (proposed algorithm) M is stand for metrics such

as (make span, resource

utilization rate and load

balance rate).

Conflicts of interest

There is no conflict of interest.

Author contributions

Conceptualization, Fatma A. Omara, Sara

Ahmed; methodology, Sara Ahmed; software, Sara

Ahmed; validation, Fatma A. Omara and Sara

Ahmed; formal analysis, Sara Ahmed; investigation,

Fatma A. Omara, Sara Ahmed; resources, Fatma A.

Omara, Sara Ahmed; data curation, Fatma A. Omara,

Sara Ahmed; writing original draft preparation, Sara

Ahmed; writing review and editing, Fatma A.

Omara, Sara Ahmed; visualization, Fatma A. Omara,

Sara Ahmed; supervision, Fatma A. Omara.

References

[1] M. R. Prasad, R. L. Naik, and V. Bapuji,

“Cloud Computing: Research Issues and

Implications”, International Journal of Cloud

Computing and Services Science (IJ-CLOSER),

Vol. 2, No. 2, pp. 134-140, 2013.

[2] M. K. Aery, Cloud Computing Introduction,

2018.

[3] P. Srivastava and R. Khan, “A Review Paper on

Cloud Computing”, International Journal of

Advanced Research in Computer Science and

Software Engineering, Vol. 8, No. 7, pp. 17-20,

2018.

[4] A. Sharma and S. Tyagi, “Task Scheduling in

Cloud Computing”, International Journal of

Scientific & Engineering Research, Vol. 7, No.

12, pp. 1-5, 2016.

[5] P. Srivastava and R. Khan, “A Review Paper on

Cloud Computing”, International Journal of

Advanced Research in Computer Science and

Software Engineering, Vol. 8, No. 7, pp. 17-20,

2018.

[6] D. C. V. Raghavendran, D. G. N. Satish, D. P.

S. Varma, and D. G. J. Moses, “A Study on

Cloud Computing Services”, International

Journal of Engineering Research and

Technology (IJERT-ICACC), Vol. 4, No. 34, pp.

1-6, 2016.

[7] A. Kanwal, A. Kumar, and C. O. V, “Review

paper on Cloud Computing”, International

Journal of Research in Science & Engineering

(IJRSE), Vol. 1, No. 1, pp. 60-65, 2011.

[8] E. M. Kumar, “Cloud Computing in Resource

Management”, International Journal of

Engineering and Management Research, Vol. 8,

No. 6, pp. 93-98, 2018.

[9] A. Kanwal, A. Kumar, and C. O. V, “Review

paper on Cloud Computing”, International

Journal of Research in Science & Engineering

(IJRSE), Vol. 1, No. 1, pp. 60-65, 2011.

[10] R. A. J., A. B. W., and Shriram, “A Taxonomy

and Survey of Scheduling Algorithms in Cloud:

based on Task Dependency”, International

Journal of Computer Applications, Vol. 82, No.

15, pp. 20-26, 2013.

[11] N. Sharma and S. Tyagi, “Task Scheduling in

Cloud Computing”, In: Proc. of Vivechana:

National Conf. on Advances in Computer

Science and Engineering (ACSE), Kurukshetra,

pp. 249-252, 2016.

[12] S. Jaybhaye and V. Attar, “A review on

scientific workflow scheduling in cloud

computing”, In: Proc. of the 2nd International

Conf. on Communication and Electronics

Systems (ICCES), Coimbatore, India, pp. 218-

223, 2017.

[13] M. A. Rodriguez and R. Buyya, “A taxonomy

and survey on scheduling algorithms for

scientific workflows in IaaS cloud computing

environments”, Journal of Concurrency

Computat, Vol. 29, No. 8, pp. 1-23, 2017.

[14] A. Thushara, “Scientific Workflow Scheduling

in Cloud Computing Environment: A Survey”,

International Journal of Computer Engineering

and Technology, Vol. 9, No. 6, pp. 83-91, 2018.

[15] M. Masdari, S. ValiKardan, Z. Shahi, and S. I.

Azar, “Towards workflow scheduling in cloud

computing: A comprehensive analysis”,

Received: September 18, 2022. Revised: October 5, 2022. 645

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

Journal of Network and Computer Applications,

Vol. 66, pp. 64-82, 2016.

[16] A. Kanwal, A. Kumar, and C. O. V, “Review

paper on Cloud Computing”, International

Journal of Research in Science & Engineering

(IJRSE), Vol. 1, No. 1, pp. 60-65, 2011.

[17] N. Soltani, B. Soleimani, and B. Barekatain,

“Heuristic Algorithms for Task Scheduling in

Cloud Computing: A Survey”, International

Journal Computer Network and Information

Security, Vol. 9, No. 8, pp. 16-22, 2017.

[18] S. Ahmed and F. A. Omara, “A Modified

Workflow Scheduling Algorithm for Cloud

Computing Environment”, International

Journal of Intelligent Engineering and Systems,

Vol. 15, No. 5, pp. 336-352,2022, doi:

10.22266/ijies2022.1031.30.

[19] N. Almezeini and A. Hafez, “An Enhanced

Workflow Scheduling Algorithm in Cloud

Computing”, In: Proc. of the 6th International

Conf. on Cloud Computing and Services

Science (CLOSER), Rome, Italy, pp. 67-73,

2016.

[20] A. Mohammadzadeh and M. Masdari,

“Scientifc workfow scheduling in multi‑cloud

computing using a hybrid multi‑objective

optimization algorithm”, Journal of Ambient

Intelligence and Humanized Computing, pp. 1-

21, 2021.

[21] M. Wieczorek, R. Prodan, and T. Fahringer,

“Scheduling of scientific workflows in the

ASKALON grid environment”, Sigmod Record,

Vol. 34, No. 3, pp. 56-62, 2005.

[22] M. Rahman, R. Hassan, R. Ranjan, and R.

Buyya, “Adaptive Workflow Scheduling For

Dynamic Grid And Cloud Computing

Environment”, Journal of Concurrency and

Computation on Practice and Experience, Vol.

25, No. 13, pp. 1816-1842, 2013.

[23] S. Parsa and R. E. Maleki, “RASA: A new task

scheduling algorithm in grid environment”,

Journal of World Applied Sciences, Vol. 4, No.

3, pp. 152-160, 2009.

[24] A. S. A. A. Haboobi, “Improving Max-Min

scheduling Algorithm for Reducing the

Makespan of Workflow Execution in the

Cloud”, International Journal of Computer

Applications, Vol. 177, No. 3, pp. 5-7, 2017.

[25] M. Adhikari and T. Amgoth, “Efficient

algorithm for workflow scheduling in cloud

computing environment”, In: Proc. of 9th

International Conference on Contemporary

Computing (IC3), Noida, India, pp. 1-7, 2016.

[26] J. P. Pinto, A. Hukkeri, and S. B, “A Study On

Workflow Scheduling Algorithms In Cloud”,

International Journal of Latest Trends in

Engineering and Technology, Special Issue, pp.

43-48, 2017.

[27] K. Dubeya, M. Kumarb, and S. C. Sharmaa,

“Modified HEFT Algorithm for Task

Scheduling in Cloud Environment”, In: Proc. of

6th International Conference on Smart

Computing and Communications (ICSCC),

Kurukshetra, India, pp. 725-732, 2018.

[28] S. Singhal and J. Patel, “Load Balancing

Scheduling Algorithm for Concurrent

Workflow”, Computing and Informatics, Vol.

37, No. 2, pp. 311–1326, 2018.

[29] N. Rajak and D. Shukla, “An Efficient Task

Scheduling Strategy for DAG in Cloud

Computing Environment”, Ambient

Communications and Computer Systems, Vol.

1097, pp. 273–289, Springer, Singapore,

S.2020.

[30] J. K. Konjaang and L. Xu, “Multi-objective

workflow optimization strategy (MOWOS) for

cloud computing”, Complex & Intelligent

Systems, Vol. 10, No. 11, pp. 1–19, 2021.

[31] W. Ahmed and B. Alam, "An efficient list

scheduling algorithm with task duplication for

scientific big data work flow in heterogeneous

computing environments", Journal of

Concurrency Computat, Vol. 33, No. 5, pp. 1-

18, 2021.

[32] H. Zhang, Y. Wu, and Z. Sun, “EHEFT-R R:

multi-objective task scheduling scheme in

cloud computing”, Journal of Theoretical and

Applied Information Technology, Vol. 100, No.

2, pp. 480-506, 2021.

[33] S. S. Murad, R. Badeel, N. S. A. Alsandi, R. F.

Alshaaya, R. A. Ahmed, A. Muhammed, and M.

Derahman, “Optimized MIN-MIN Task

Scheduling Algorithm for Scientific Workflows

in a Cloud Environment”, Journal of

Theoretical and Applied Information

Technology, Vol. 100, No. 2, pp. 480-506, 2022.

[34] H. Mahmoud, M. Thabet, M. H. Khafagy, and

F. A. Omara, “An efficient load balancing

technique for task scheduling in heterogeneous

cloud environment”, Journal of Cluster

Computing, Vol. 24, No. 4, pp. 3405-3419,

2021.

[35] N. Soltani, B. Soleimani, and B. Barekatain,

“Heuristic Algorithms for Task Scheduling in

Cloud Computing: A Survey”, International

Journal Computer Network and Information

Security, Vol. 9, No. 8, pp. 16-22, 2017.

[36] S. Abrishami and M. Naghibzadeh, “Deadline-

constrained workflow scheduling in software as

a service cloud”, Scientia Iranica, Vol. 19, No.

Received: September 18, 2022. Revised: October 5, 2022. 646

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022 DOI: 10.22266/ijies2022.1231.56

3, pp. 680-689, 2012.

[37] R. N. Calheiros and R. Buyya, “Meeting

deadlines of scientific workflows in public

clouds with tasks replication”, IEEE

Transactions on Parallel and Distributed

Systems, Vol. 25, No. 7, pp. 1787-1796, 2014.

[38] M. Rahman, S. Venugopal, and R. Buyya, “A

Dynamic Critical Path Algorithm for

Scheduling Scientific Workflow Applications

on Global Grids”, In: Proc. of IEEE

International Conf. on EScience and Grid

Computing, Bangalore, India, pp. 35-42, 2007.

[39] A. Gade, M. N. Bhat, and N. Thakare, “A

Review on Meta-heuristic Independent Task

Scheduling Algorithms in Cloud Computing”,

In: Proc. International Conf. on Computational

Vision and Bio Inspired Computing (ICCVBIC),

Coimbatore, India, pp. 1165–1180, 2018.

https://link.springer.com/conference/iccvbic
https://link.springer.com/conference/iccvbic

