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Abstract: Cloud computing has gained many attentions worldwide. Workflow systems become a significant method 

for develop scientific applications. Therefore, workflow scheduling is considered one of the most important issues in 

cloud computing. It concerns about mapping tasks on cloud resources (i.e., Virtual machines (VMs)), to improve 

scheduling performance. Because the existing heterogeneous earliest finish time (HEFT) algorithm is considered one 

of the best and simplest algorithms, many algorithms have been proposed to improve the performance of the HEFT 

algorithm. According to our previous work, a modification has been done to HEFT algorithm to enhance the 

performance, called modified heterogeneous earliest finish time (M-HEFT). The goal of M-HEFT algorithm is to 

reduce make span, maximize resource utilization and increase load balance. According to the work in this paper, an 

enhancement has been added to our previous M-EFT algorithm to reduce the tradeoff among make span, resource 

utilization, and load balance, called enhanced modified heterogeneous earliest finish time (EM-HEFT). The 

enhanced EM-HEFT algorithm consists of two phases; task prioritization and task-VM mapping. In task 

prioritization phase, a priority will be provided to each task in directed acyclic graph (DAG) by introducing new 

factors in priority value to be more aware about task requirements. According to task-VM phase, tasks are allocated 

to resources as in our previous M-HEFT algorithm. To evaluate the performance of the proposed EM-HEFT 

algorithm, a comparative study has been done among the proposed algorithm and four existed algorithms (HEFT, 

Efficient scheduling algorithm use critical path and static level attribute, Optimized Min-Min (OMin-Min) and our 

previous M-HEFT). The experimental results show that the proposed algorithm outperforms other algorithms by 

minimizing make span by 25%, improving resource utilization by 43% and load balance by 14% in average. 

Keywords: Cloud computing, Task scheduling, Workflow scheduling, Heft, Make span, Resource utilization, Load 

balance. 

 

 

1. Introduction 

High performance computing (HPC) is the 

ability to process data and perform complex 

calculations at high speeds by using concurrent 

processing for running application programs 

efficiently, reliably and quickly [1]. Cloud 

computing refers to the remote manipulation, 

configuration and access hardware and software 

resources. It provides online data storage, 

infrastructure and application [2]. 

There are four deployment models of cloud 

computing; public, private, hybrid, and community 

[3]. Public cloud allows systems and IT services to  

 

 
Figure.1 Cloud computing deployment models [5] 

 

be easily accessible to the public. Private cloud 

allows systems and IT services to be easily 

accessible within an organization. Hybrid cloud It is  
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Figure.2 Cloud computing service models [7] 

 

considered a mixture of private and public clouds, 

but each one can remain as separate entities, where 

critical activities are performed in private cloud 

while not critical activities are performed in public 

cloud [4]. Community cloud is a collaborative effort 

made for sharing infrastructure between multiple 

organizations (See Fig. 1) [5]. 

Cloud computing marked by popularity among 

scitists because of its services. Three services could 

be provided by cloud computing; software as a 

service (SaaS) where a software is deployed over the 

internet, platform as a service (PaaS) by providing a 

computing platform that allows user to design web 

applications quickly and easily, and infrastructure as 

a service (IaaS) by distributing cloud computing 

infrastructure such as servers, storage, network and 

operating systems on-demand service instead of 

buying them (See Fig. 2) [6].  

One of the most important challenges of cloud 

computing is the lack of resources where 

organizations upload more workloads on the cloud 

while cloud technologies continue to rapidly 

advance to keep up with these needs. Resource 

Management is the process of allocating computing 

resource such as virtual machine (VMs), storage, 

networking and indirectly energy resources to a set 

of applications, to jointly meet the performance 

objectives of the infrastructure providers, the users 

of the cloud resources and applications [8]. 

Resource management includes different issues. One 

of the most important issues is task scheduling.  

1.1 Task scheduling  

Task scheduling is the fundamental issue in 

cloud environment. It is the process of allocating an 

application’s tasks to suitable resources with 

considering dependency/independency between 

them to reduce make-span, maximize resource 

utilization, improve load balance, and achieve QOS 

parameters [9]. Based on the task dependency, the 

tasks can be classified as independent and dependent 

tasks. The tasks which do not require any 

communication with other tasks are called 

independent tasks. The dependent tasks differ from 

the independent tasks as the former have precedence 

order to be followed during the scheduling tasks, 

called workflow [10]. 

1.2 Applications workflow  

Workflow considers the applications' tasks 

which presents in directed acyclic graph (DAG). 

The nodes in the DAG graph represent the problem's 

tasks and edges represent inter task dependencies. 

Each task in the workflow can communicate with 

other tasks [11]. There are two types of workflow; 

simple workflow represents real work which 

consists of group of tasks with sequence of activities 

and mechanisms used to perform individual or 

group tasks. Scientific workflow represents 

scientific applications which depend on other tasks 

with complexity in execution [12]. The work in this 

paper focuses on scientific workflows. There are 

common scientific workflows would be used as 

benchmark to evaluate the performance of the task 

scheduling algorithms such as MONTAGE, 

CYBERSHAKE, SIPHT, LIGO and 

EPIGENOMICS [13]. The work in this paper uses 

LIGO and EPIGENOMICS workflows as 

benchmark to implement and evaluate the proposed 

EM-HEFT algorithm 

1.2.1. Workflow structure  

A workflow is modeled by G (T, E) where T is a 

set of nodes or tasks {t1, t2, t3………, tn} and E is 

the set of directed edges { eij  | (Ti,Tj) ∈ E} 

representing the dependencies between the tasks. 

Each task is a workflow task with an associated 

computation workload wli. Each edge eij represents 

Ti as the parent task of Tj and Tj is said to be the 

child task of Ti. After the complete execution of the 

parent task, a child task can be executed. If there is 

data transmission from Ti to Tj, the Tj can start only 

after all the data from Ti has been received. A task 

which does not have parent task is called input task, 

and a task which entry does not have child task is 

called exit task [14].  

1.2.2. Workflow scheduling  

Workflow scheduling is one of the prominent 

issues in cloud computing which is aimed at 

complete execution of workflows by considering 

their QoS requirements [15]. Therefore, an efficient 
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scheduling algorithm is needed to reduce the 

tradeoff between execution time of tasks, resources 

utilization and satisfying load balance on various 

computing resources [16]. 

1.2.3. Workflow scheduling algorithms 

Task scheduling algorithms can be categorized 

as Heuristic and Meta Heuristic, Heuristic 

algorithms which is problem-based that attempt to 

find solutions by applying the features of the 

problem in a complete manner. Their solution is 

based on learning and exploration where 

comprehensive scientific research is applied to find 

an optimal response and speed up the response 

process, Meta Heuristic algorithms unlike heuristic 

algorithms, these algorithms are problem 

independent, and are used to deal with different 

types of problems [17]. The work in this paper 

focuses on heuristic algorithms. 

Despite huge numbers of algorithms are 

introduced to solve task scheduling, there are many 

updates can be added to improve the algorithms. In 

this paper, an algorithm has been introduced, called 

EM-HEFT, to improve the performance of our 

previous M-HEFT algorithm by reducing the 

tradeoff among load balancing, resource utilization 

and make span [18]. Enhanced EM-HEFT algorithm 

consists of two phases; task prioritization and task-

VM mapping. The task prioritization is implemented 

with new factors added to the rank equation to be 

more aware about task characteristics which makes 

the algorithm performs better. According to task-

VM mapping phase, the tasks allocate to VMs based 

on the length of tasks and the load of available VMs. 

If the length of the ready task is less than or equal to 

the average length of all allocated tasks, it will be 

allocated to the most idle VM and, in the same time, 

guarantees earliest finish time. Otherwise, the task 

allocates to VM that guarantees earliest finish time. 

Paper is organized as follows; literature review 

is presented in section 2. Section 3 illustrates the 

principles of the proposed task scheduling algorithm. 

The Performance criteria which used to evaluate the 

enhanced EM-HEFT algorithm using the 

WorkflowSim simulator are illustrated in section 4. 

The experiment results of the enhanced EM-HEFT 

algorithm are discussed in section 5. Finally, section 

6 includes conclusion & future work. 

2. Literature review 

Workflow scheduling assigns tasks based on 

their dependencies on the shared resources that the 

workflow scheduler controls. However, it is 

important to assign task to certain resources in order 

to provide high quality of service [19]. Therefore, 

workflow scheduling is a challenging optimization 

problem with a lot of research in the last years. 

Several evolutionary algorithms have been 

introduced to solve this problem [20].  

In [21], heterogeneous earliest finish time 

(HEFT) algorithm was proposed. The goal of this 

algorithm is to reduce make span. It works on two 

phases; task ranking phase and task–VM mapping 

phase. According to task ranking phase, a rank 

assign for each task based on average execution time 

of each task and the average communication time 

between the resources of two tasks. After that the 

tasks will be sorted in descending order in a list. In 

the task–VM mapping phase, the highest rank task 

will be assigned to the VM that produces earliest 

finish time. Finally, this task is removed from the 

list and the process is repeated until each task is 

assigned. The main limitation of this algorithm is 

that the algorithm cares only to minimize make span 

only. 

In [22], min-min scheduling algorithm was 

proposed. The goal of this algorithm is to reduce 

make span. It works by scheduling the task with 

minimum size to the resource that has the minimum 

completion time (MCT). Finally, this task is 

removed from the set of unassigned tasks and the 

process is repeated until each task is assigned. 

However, the limitation of this algorithm is that it 

schedules the small tasks at first and leave large one 

at the end of scheduling process. It works fine if the 

number of smaller tasks is greater than the number 

of larger ones. 

In [23], resource awareness scheduling 

algorithm (RASA) was proposed. The goal of this 

algorithm is to reduce make span. RASA is a hybrid 

algorithm composed of two traditional scheduling 

algorithms; max-min and min-min. RASA uses the 

advantages of max-min and min-min algorithms and 

covers their disadvantages. Based on concept of 

completion time of each task, it works on two 

phases. In the first phase, the expected completion 

time for each task is calculated. In the second phase, 

max-min and min-min algorithms are applied 

alternatively to schedule task according to resource 

ID where if resource ID is odd min-min is applied 

first otherwise max-min is applied. The algorithm 

advantages of this algorithm are no longer waiting 

of VM for larger tasks or smaller tasks and 

satisfying load balance. However, the limitation of 

this algorithm is that it unable to load balance when 

the number of larger tasks increases. Another issue 

is that it only concerned with the number of the 

resources to be odd or even.  

In [24], an improved max-min task scheduling 
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algorithm was proposed. The goal of this algorithm 

is reducing make span. It calculates the average of 

execution time for all tasks in the workflow. Then, 

max-min is used when receiving a task with 

execution time smaller than the average of execution 

time. Otherwise, a task with execution time greater 

than or equal to the average of execution time is 

assigned to the VM with minimum completion time 

among all the VMs regardless of VM availability. 

The limitation of this algorithm is that it cares about 

make span only. 

In [25], an efficient workflow scheduling 

algorithm (EWSA) was proposed. The goal of this 

algorithm is to maximize resource utilization and 

meeting the deadline. The algorithm consists of two 

phases; update, and task-VM mapping. The 

objective of the update phase is to trace each path in 

the DAG and set the execution time for each task, 

and then define the VM with needed capability to 

execute each task. In task-VM mapping phase, the 

tasks are scheduled on proper VMs. The limitation 

of this algorithm is that is not considered load 

balance among VMs. 

In [26], a MaxChild algorithm was proposed. 

The goal of this algorithm is to improve the system 

throughput with appropriate resource utilization and 

high performance by obeying the required QoS 

parameters which specified by the user. MaxChild 

start with the task which has maximum number of 

child to be scheduled first to guarantee that the 

maximum number of tasks could be available for the 

next schedules and resource are utilized properly. 

However, the limitation of this algorithm is that 

after a job is submitted to the resource and this 

resource is not available, this may affect makes pan. 

Also, the status of VMs is not concerned.  

In [27], a modification has been done to the 

heterogeneous earliest finish time (HEFT) algorithm 

to enhance the performance on the cloud 

environment. The goal of this algorithm is to reduce 

make span. It works on two phases; first phase is 

task ranking phase where assign a rank for each task. 

Then, sort them descendingly based on their rank. 

Second phase is task – VM mapping phase which 

concerns about assigning the task to resource that 

produce earliest finish time. According to this 

modification, the priority for each task in the DAG 

has been defined by calculating the order of 

execution which define by the result of (average of 

task on all the processor + max (order of task value 

of predecessor task of current task) + 

communication cost between predecessor task node 

to current node) starting with the last node in the 

DAG. The algorithm outperforms the HEFT 

algorithm with respect to make span. The limitation 

of this algorithm is that the algorithm cares only to 

minimize make span only. 

In [28], a combination between heterogeneous 

earliest finish time ranking algorithm and modified 

balance minimum completion time resource 

selection algorithm was proposed for concurrent 

workflow. The goal of this algorithm is to reduce 

make span and make resources more balanced. The 

modified heterogeneous earliest finish time ranking 

algorithm considers a communication time of parent 

task that plays a significant role when tasks have 

rich communication in the workflow. Then, the 

modified balance minimum completion time 

resource selection algorithm is used to check load of 

all machines to move the tasks between the highly 

loaded machines to the lightly loaded machines. By 

this modification, the algorithm outperforms the 

HEFT algorithm with respect to make span. The 

limitation of this algorithm is that other QoS metrics 

didn't considered. 

In [29], an efficient task scheduling algorithm 

for DAG in cloud computing environment has been 

proposed. The goal of this algorithm is reduce make 

span. The algorithm works on of two phases; task 

priority phase and resource selection phase. In task 

priority phase, the priority of the tasks is defined 

using critical path and static level (CPS) attributes. 

Then, the tasks are sorted in descending order. In 

resource selection phase, the selection of resource is 

based on the earliest start time (EST) and the earliest 

finish time (EFT). The algorithm outperforms the 

HEFT algorithm with respect to make span. 

However, the limitation of this algorithm is suffered 

from load imbalance on VMs. 

In [30], multi-objective workflow optimization 

strategy (MOWOS) was proposed. The goal of this 

algorithm is reducing execution cost with make span 

for workflow. In the other words, the aim of 

MOWOS is all tasks executed on their deadlines 

with reduced time and budget. MOWOS include 

three sub algorithms; task spiriting algorithm to 

break down large tasks into smaller chunks to 

reduce their schedule length, and two task allocation 

algorithms, minimum VM (MinVM) selection 

algorithm, and maximum VM (MaxVM) selection 

algorithm. However, the limitation of this algorithm 

is suffered from load imbalance on VMs. 

In [31], a list scheduling with task duplication 

(LSTD) algorithm was proposed. The goal of this 

algorithm is to minimize the make span of workflow 

applications. LSTD algorithm mainly consists of 

three steps. In the first step, the rank of the tasks is 

calculated for deciding the scheduling order. The 

second step is responsible for duplicating the entry 

task on the processor only if it increases the overall 
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efficiency and avoids processor overloading. Finally, 

in the last step, the processor is assigned to the tasks 

based on the popular insertion-based policy that 

attempts to insert the task among two earlier 

assigned tasks on a given processor in earliest idle 

time. LSTD outperforms other existing algorithms 

with respect to make span. Similar to other proposed 

algorithms, the limitation of this algorithm is that 

more QoS metrics didn't considered. 

In [32], an enhanced heterogeneous earlier finish 

time based on rule (EHEFT-R) task scheduling 

algorithm was proposed. The goal of this algorithm 

is to optimize task execution efficiency, quality of 

service (QoS) and energy consumption. This 

algorithm, works with task ranking and VM 

allocation phases in parallel. After one or more tasks 

determine their execution order, they are 

immediately arranged on the VM with respect to the 

earliest completion time. After all tasks are sorted, 

the virtual machine selection process is also 

completed. The rank value does not completely 

guarantee that tasks allocate on the optimal VM in 

all situations if tasks have different priority levels. 

But, at the same priority level, remapping rules are 

applied start from the task with the highest rank 

value. If two adjacent tasks are not in the same layer, 

the VM assignments of the two tasks will not be 

changed. Otherwise, if two adjacent tasks are in the 

same layer and their earliest completion times fall 

on different VM, the virtual machine allocation will 

not be changed; if two adjacent tasks are in the same 

layer and their earliest completion time falls on the 

same VM, compare the EFT rank of the two tasks, 

the one with the larger value will be assigned to this 

VM. The limitation of this algorithm is that load 

balance metrics need to be considered. 

In [33], a new Min-Min algorithm called 

Optimized Min-Min (OMin-Min) algorithm. OMin-

Min is designed for scientific workflow. The goal of 

this algorithm is to reduce make span and try to 

avoid neglecting execution time. OMin-Min define 

tasks that have minimum and maximum execution 

times (MinT and MaxT), and then the task with 

minimum execution time will be assigned to 

resource that produces minimum execution time. 

Otherwise, the task with maximum execution time 

assigns to resource that produces minimum 

execution time. The limitation of this algorithm is 

that load balance metrics need to be considered. 

In [34], an improvement of the existing HEFT 

and Enhancement-HEFT (E-HEFT) algorithms has 

been introduced, called Load Balance HEFT (LB-

HEFT). The goal of this algorithm is to reduce make 

span, improve load balance and reduce resource 

utilization. The principle of the proposed LB-HEFT 

algorithm is to allocate the application’s tasks to 

VMs by considering the heterogeneous clusters. It 

works on two phases; tasks ranking and Task-VM 

matching phases. In the task ranking phase, a rank is 

assigned to each task. In task-VM matching phase 

schedules tasks on appropriate VMs taking into 

account load balancing along with the earliest 

execution time and optimizing resource usage. The 

limitation of this algorithm is more metrics need to 

be considered such cost. This algorithm would be 

improved by considering the task's weight in the 

Task Ranking phase. So, the work in this paper 

concerns this issue.  

In [18], a modification has been done to the 

heterogeneous earliest finish time (HEFT) algorithm 

to enhance the performance on the cloud 

environment. Called modified heterogeneous 

earliest finish time (M-HEFT). The goal of this 

algorithm is to reduce make span, maximize 

resource utilization and increase load balance. It 

works on two phases; first phase is task ranking 

phase where assign a rank for each task. Then, sort 

tasks descendingly with respect to their ranks. 

Second phase is task–VM mapping phase where, 

average task length (AL) for all nodes is calculated. 

Then, if the task length is greater than or equal AL, 

it will be mapped to resource that produce earliest 

finish time. Else, the task will be mapped to the 

laziest VM that produce earliest finish time. These 

will be repeated till all tasks are assigned to specific 

resource. However, the limitation of this algorithm 

is that make span need to be improved. 

Unfortunately, most of the existed algorithms 

have a problem with respect to reduce the trade of 

between make span, resource utilization and load 

balancing among VMs in the distributed systems. 

Therefore, an enhanced modified heterogeneous 

earliest finish time (E-M-HEFT) algorithm has been 

introduced by the work in this paper to overcome 

the limitations of other algorithms (i.e., make span, 

load balance, and resource utilization). 

Table 1 list the comparison between the 

aforementioned algorithms. 

3. The proposed task scheduling algorithm 

The proposed task-scheduling algorithm is based 

on our previous M-HEFT algorithm with some 

modifications to improve resource utilization, and 

load balance, in addition to, make span [18]. The 

proposed algorithm is called enhanced modified 

HEFT (EM-HEFT). The goal of EM-HEFT is to 

make the task' rank to be more powerful by adding 

new factors in the rank equation which will lead to 

maximize resource utilization, improve load balance,  
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Table 1. Comparison of workflow scheduling algorithms 

Scheduling algorithm 
Scheduling 

parameters 
Finding Environment 

HEFT [21] Make span 
This algorithm efficient for reducing the 

make span  

Grid 

environment 

Min-Min [22] Make span 
This algorithm efficient for reducing the 

make span with small task length 

Grid 

environment 

RASA [23] Make span  

This algorithm outperforms Min-Min and 

Max-Min and opportunistic load 

balancing (OLB) algorithms with respect 

to make span.  

Grid 

environment 

An improved Max-Min task 

scheduling [24] 
Make span 

Improved Max-Min algorithm 

outperforms the Max-Min algorithm in 

most of the cases with respect to make 

span. 

Cloud 

environment 

An Efficient Workflow 

Scheduling Algorithm 

(EWSA) [25] 

Resource utilization 

and deadline  

This algorithm maximizes the resource 

utilization and meet the deadline of the 

application 

Cloud 

environment 

MaxChild [26] 
Make span and 

resource utilization  

MaxChild was found to be the most 

efficient algorithm with respect to make 

span and resource utilization comparing to 

FCFS, MAX-MIN, and MAX-MAX 

algorithm. 

 

Cloud 

environment 

 

A modification has been done 

to the Heterogeneous Earliest 

Finish Time (HEFT) 

algorithm [27] 

Make span 

This algorithm reduces the make span and 

satisfies load balancing compare to existing 

HEFT and CPOP algorithms. 

Cloud 

environment 

A modification has been done 

to the Heterogeneous Earliest 

Finish Time (HEFT) 

algorithm [28] 

Make span and 

scheduling length 

ratio 

This algorithm outperforms HEFT with 

respect to make and schedule length ratio. 

Cloud 

environment 

An efficient task scheduling 

algorithm for DAG in cloud 

computing environment [29] 

Make span, speed, 

efficiency and 

scheduling length 

ratio 

The algorithm outperforms the HEFT 

algorithm with respect to make span, 

speed, efficiency and scheduling length 

ratio. 

Cloud 

environment 

  Multi-Objective Workflow 

Optimization Strategy 

(MOWOS) [30] 

Make span, cost and 

resource utilization  

The proposed MOWOS algorithm has less 

execution cost, better execution make 

span, and utilizes the resources than the 

existing HSLJF and SECURE algorithms. 

Cloud 

environment 

List Scheduling with Task 

Duplication (LSTD) 

algorithm [31] 

Make span and 

scheduling length 

ratio 

The LSTD outperforms other existing 

algorithms with respect to make span and 

schedule length ratio. 

Cloud 

environment 

Enhanced Heterogeneous 

Earlier Finish Time Based 

on Rule (EHEFT-R) [32] 

Make span, energy 

consumption and 

QOS 

The proposed EHEFT-R algorithm has 

better make span and energy consumption 

than HEFT and NSGAII algorithms. 

Cloud 

environment 

Optimized Min-Min (OMin-

Min) [33] 
Make span 

The algorithm outperforms the Round 

Robbin, Modified Max-Min (MMax-Min) 

Min-Min and Max-Min algorithms with 

respect to make span. 

Cloud 

environment 

Load Balance 

Heterogeneous Earlier 

Finish Time (LB-HEFT) 

[34] 

Make span, resource 

utilization and load 

balance 

The algorithm outperforms the HEFT, and   

E-HEFT with respect to make span, 

resource utilization and load balance 

Cloud 

environment 

M-HEFT [18] 

Make span, resource 

utilization and load 

balance 

The algorithm outperforms the HEFT, 

algorithm in [30], and   algorithm in [33] 

with respect to make span, resource 

utilization and load balance 

Cloud 

environment 
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and reduce make span. 

The proposed EM-HEFT algorithm consists of 

two phases; task prioritization phase to assign 

priority for each task in the DAG, and Task-VM 

mapping phase to allocate each task in the DAG to 

suitable VM. The Task-VM phase is implemented as 

in our previous M-HEFT algorithm [18]. The 

novelty of EM-HEFT is in task prioritization phase 

that will be discussed in details. 

3.1 Task prioritization phase 

A modification has been done to enhance task 

prioritization phase of our previous M-HEFT 

algorithm with respect to make span. The 

modification has been done based on four 

algorithms max child algorithm [26] which concerns 

the number of the childs to define the rank of tasks, 

load balancing scheduling algorithm for concurrent 

workflow algorithm [28] which concerns average 

computation cost of the task on all VMs and the 

communication cost between predecessor tasks with 

respect to current task, modified HEFT algorithm 

for task scheduling in cloud environment [27] which 

concerns the predecessor of each task, and   an 

efficient list scheduling algorithm with task 

duplication for scientific big data work flow in 

heterogeneous computing environments algorithm 

[31] which concerns the weight speed of successor 

task beside communication. 

According to the work in this paper, the task's 

rank is defined by summation of weight speed as in 

[31], maximum of predecessor rank and its 

communication [28], maximum of communication 

of task and its successor as in [27] and the number 

of task’s successor [26]. Therefor the task’s rank is 

calculated using Eq. (1). 

 

𝑅𝑎𝑛𝑘(𝑇𝑖) = 𝑤𝑖 + max
 tk∈tpred{ti} 

(𝑐(𝑖, 𝑗) + 𝑟𝑎𝑛𝑘(𝑇𝑗))

+ max
Tk∈tsucc{Ti} 

𝑐(𝑖, 𝑘) + 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑜𝑓 𝑇𝑖         (1) 

 

Where, Wi is the difference between the highest 

and lowest computation time of task Ti on VMm and 

VMn, respectively divided by speedup of these VMs. 

Tpred is the set of predecessors of Ti, c (i, j) is the 

average communication cost between task Ti and Tj, 

Tj is the successor of Ti, Tsucc is the set of successors 

of Ti, and C (i, k) is the average communication cost 

between task Ti and Tk.  

Therefore, the proposed EM-HEFT algorithm is 

become more knowledgeable because it concerns 

communication cost for task’s successors and 

predecessors and number of successors, to make the  
 

Algorithm 1: Task ranking phase of EM-HEFT 

algorithm. 

Input: DAG and VMs configuration. 

Output: list of tasks in decreasing order based on 

their rank 

.  

1: set the computation cost for each task on each 

resource CCTi,j 

2: set the communication cost between tasks and 

their successors Ci,k  , and their predecessor Ci,j  

3: set the number of successors for each task Ti  in 

DAG 

4: for each task i=1 to Ti  in DAG 

 

𝑅𝑎𝑛𝑘(𝑇𝑖) = 𝑤𝑖 + max
 tk∈tpred{ti} 

(𝑐(𝑖, 𝑗) + 𝑟𝑎𝑛𝑘(𝑇𝑗))

+ max
Tk∈tsucc{Ti} 

𝑐(𝑖, 𝑘)

+ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑜𝑓 𝑇𝑖. 
 

5: end for 

6: arrange tasks in a list in decreasing order based on 

their rank 

 
 

rank value more valuable and effective. 

The task priority phase starts by computing 

computation cost (CCT) for each task Ti in the DAG 

on each VMj using Eq. (2). 

 

𝐶𝐶𝑇(𝑇𝑖, 𝑉𝑀𝑗) =
𝑇𝑖.𝑙𝑒𝑛𝑔𝑡ℎ

𝑉𝑀𝑗.𝑀𝐼𝑃𝑆
                  (2) 

 

Where, Ti.length is the needed time to execute 

Ti, and VMj.MIPS is the speed of VMj. 

Then, the communication cost is calculated 

between tasks and their successors C (Ti,Tk), and 

their predecessor C (Ti,Tj). Then, set number of 

children for each task. After that, the rank for each 

task Ti is calculated using the Enhanced M-HEFT 

algorithm (see Eq. (1)). Finally, the tasks are sorted 

in a list in decreasing order based on their rank value. 

3.1.1. Pseudo code of the task ranking phase of EM-

HEFT algorithm  

The pseudo code of the task ranking phase is 

described in Algorithm. 1. 

3.2 Task – VM mapping phase 

The task-VM Mapping phase in our previous M-

HEFT algorithm will be used to select the best VM 

for each task by calculating the average task Length 

(AL) for all tasks using Eq. (3) [18]. 
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Figure. 3 The flow chart of the proposed EM-HEFT algorithm 

 

𝐴𝐿 =
∑ 𝑇𝑖 𝑙𝑒𝑛𝑔𝑡ℎ

𝑇𝑎𝑠𝑘𝑁𝑢𝑚
                           (3) 

 

Where, Ti length is the needed computation time 

of task Ti, and taskNum is the number of tasks in 

the DAG.  

If the length of the ready task less than (AL), the 

task will be assigned to the idlest VM that has the 

largest available time, in the same time, ensures 

earliest finish time of the task. Else, map the task to 

VM that guarantees earliest finish time using Eq. (4), 

Eq. (5). 

 

𝐹𝑖𝑛𝑖𝑠ℎ 𝑇𝑖𝑚𝑒(𝑇𝑖, 𝑉𝑀𝑗) = 

𝐶𝐶𝑇(𝑇𝑖, 𝑉𝑀𝑗) + 𝑆𝑇(𝑇𝑖, 𝑉𝑀𝑗)          (4) 

 

𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒(𝑇𝑖, 𝑉𝑀𝑗) = 

𝑚𝑎𝑥{𝑇𝑎𝑣𝑖𝑙(𝑉𝑀𝑗), 𝐹𝑇(𝑇𝑘) + 𝐶(𝑇𝐾 , 𝑇𝑖)}      (5) 

 

After assigning the task on suitable VM 

according to Eqs. (4), (5), remove the task from the 

list. Repeat the steps till all tasks are assigned to the 

VMs. 

3.2.1 Pseudo code of the task-VM mapping phase of 

EM-HEFT algorithm 

The pseudo code of the task-VM mapping phase 

of EM-HEFT algorithm is described in Algorithm. 2. 

 

Algorithm 2: Task-VM mapping phase. 

Input: List of tasks based on their rank and VMs 

configuration. 

Output: Mapping scheme for the requested tasks 

cloudlets on the available resources VMs.  

 

1: compute Average task length (AL) for all tasks 

in the DAG 

2: for each task in ready list 

3: check if task length greater than or equal AL 

4: map task to VM which has the earliest finish 

time   

5: else if the task length less than AL 

6: map task to the most idle VM which has earliest     

finish time   

7: end for 

8: end 
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3.3 Flowchart of the proposed EM-HEFT 

algorithm  

Fig. 3 represents the flowchart of scheduling 

tasks of DAG according to the proposed EM-HEFT 

algorithm.  

4. Performance evaluation of the proposed 

EM-HEFT algorithm 

4.1 Performance metrics 

Three metrics are used to evaluate the 

performance of the proposed EM-HEFT algorithm; 

make span, resource utilization rate, and ideal load 

balance.  

Make span is the maximum time required to 

complete the entire DAG tasks. Make span should 

be reduced. Eq. (6) is used to calculate make span 

[35].  

 

𝑀𝑎𝑘𝑒 𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥{𝐶𝑇𝑖}                (6) 

 

Here CTi is the completion time of the longest 

task Ti. 

Resource utilization rate (RUR) is the ratio 

between the total occupied time of VMi and the 

make span of the parallel application in percentage 

(see equation Eq. (7), and Eq. (8)) [37]. Resource 

utilization should be maximized.  

 

𝑅𝑈𝑅(𝑉𝑀𝑗)% = (
∑ 𝑣𝑚𝑗 𝐵𝑢𝑠𝑦 𝑇𝑖𝑚𝑒

𝑀𝑎𝑘𝑒 𝑠𝑝𝑎𝑛
) 𝑋100      (7) 

 

𝑅𝑈𝑅 𝑓𝑜𝑟 𝐷𝐴𝐺 =
∑ 𝑅𝑈𝑅(𝑉𝑀𝑗)

𝑉𝑚𝑁𝑢𝑚
                          (8) 

 

Ideal load balance (ILB) is the ratio between the 

total number of tasks and the number of VMs, which 

is calculated by Eq. (9) [36]. 

 

𝐼𝑑𝑒𝑎𝑙 𝐿𝑜𝑎𝑑 𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝐼𝐿𝐵) = 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑠𝑘𝑠 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑠𝑒𝑑 𝑉𝑀⁄   (9) 

 

Difference from ideal rate of load balance 

(DLB) is the difference between actual load balance 

and the ideal load balance (ILB) in VMi. It is 

calculated using Eq. (11) [36]. DLB should be 

minimized.  

 

𝐷𝐿𝐵(𝑉𝑀𝑗)% = 

∑ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠(𝑉𝑀𝑗) − 𝐼𝐿𝐵 (𝑉𝑀𝑗)   (10) 

 

Average difference from ideal rate of load 

balance (ADLB) is the ratio between the total  
 

Table 2. Vm configuration and used workflow 

Entities Values 

Workflows 
Ligo 100, 1000 

Epigenomics 100,1000 

    Data center 1 1 

VMs 
Quantity 5,10,15,20 

Speed 50-1000 

   CPU 

Quantity 1 

Ram 512 

Bandwidth 1000Mbps 

 

summations of DLB for each VMi over their number. 

It is calculated using Eq. (12) [38]. 

 

𝐴𝐷𝐿𝐵(𝑉𝑀𝑗) =
∑ 𝐷𝐿𝐵(𝑉𝑀𝑗)𝑚

𝑗=1

𝑉𝑚𝑁𝑢𝑚
           (11) 

 

Improvement rate (IRm) in terms of used 

metrics (make span, resource utilization and load 

balance), this ratio will define the improvement rate 

with respect to used metrics (M) using EM-HEFT 

relative to the current HEFT and the strategies 

mentioned in [21, 29, 33, 18]. It is computed using 

Eq. (12). 

 

𝐼𝑅𝑚 = 

(
𝐴𝐵𝑆(𝑀(𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)−𝑀(𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚))

𝑀(𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)
) 𝑋100  

(12) 

 

Here ABS is the absolute value that neglects the 

sign of the number. 

4.2 Experimental environment 

The proposed algorithm has been implemented 

using WorkflowSim1.0 toolkit integrated into Net 

Beans IDE 8.0.2 with the configurations shown in 

Table 2. WorkflowSim is an extension of the 

CloudSim framework [39]. The experiments have 

done using two type of workflows; Ligo, and 

Epigenomics. 

5. Performance evaluation of the proposed 

EM-HEFT algorithm 

To evaluate the performance of the proposed 

algorithm, a comparative study has been contacted 

among the proposed EM-HEFT algorithm, the 

heterogeneous earliest finish time (HEFT) algorithm 

[21], the algorithm mentioned in [29], the algorithm 

mentioned in [33] and our previous M-HEFT 

algorithm [18] with respect to make span, resource 

utilization, and load balancing metrics. This study 

has been implemented with considering 

heterogeneous environment using WorkflowSim,  
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Table 3. Make span results for 100 tasks of Ligo 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT [21] 43195.33 10043.61 4784.83 3360.40 

Algorithm [29] 34479.03 17224.36 9383.23 6204.83 

Algorithm [33] 34674.23 17598.23 10173.00 7820.00 

M-HEFT[18] 31710.37 9023.57 4646.04 2836.96 

Enhanced EM-HEFT 31267.74 8972.39 4017.25 2817.72 

 

 
Figure. 4 Make span results for 100 tasks of Ligo 

 
Table 4. Make span results for 1000 tasks of Ligo 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT [21] 316515.75 255772.84 62360.67 105685.84 

Algorithm [29] 307040.59 87822.00 50968.25 29652.74 

Algorithm [33] 308075.18 87945.32 51598.46 30757.41 

M-HEFT [18] 304147.05 87225.67 40624.22 22723.30 

Enhanced EM-HEFT 295315.59 79820.98 39227.75 21491.95 

 

 
Figure. 5 Make span results for 1000 tasks of Ligo 
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Table 5. Make span results for 100 tasks of epigenomics 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT [21] 569754.69 193399.72 141876.45 114244.72 

Algorithm [29] 656837.59 411631.95 189023.29 164725.11 

Algorithm [33] 675509.87 413795.00 225311.52 250584.03 

M-HEFT [18] 544848.60 183010.05 111433.28 81473.38 

Enhanced EM-HEFT 533676.02 165486.02 106814.13 79425.13 

 

 
Figure. 6 Make span results for 100 tasks of epigenomics 

 
Table 6. Make span results for 1000 tasks of epigenomics 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT [21] 5178814.39 2921063.95 4249865.15 2230593.05 

Algorithm [29] 5191570.65 1653208.62 867429.26 532190.83 

Algorithm [33] 5202232.30 1691359.69 898372.57 559629.85 

M-HEFT [18] 5155803.00 1420166.50 714205.34 451127.66 

Enhanced EM-HEFT 5155713.76 1418864.24 696630.71 407408.56 

 

 
Figure. 7 Make span results for 1000 tasks of epigenomics 
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and two benchmarks, Ligo and Epigenomics with 

100 and 1000 tasks, and 5, 10, 15 and 20 VMs. 

5.1 Make span  

The implementation results of the comparative 

study among our enhanced EM-HEFT algorithm, 

HEFT [21], the algorithm in [29], the algorithm in 

[33], and our previous M-HEFT algorithm in [18] 

with respect to make span with considering Ligo and 

Epigenomics benchmark with 100 and 1000 tasks 

using 5, 10, 15 and 20 VMs are discussed as follows. 

5.1.1. For 100 and 1000 tasks of ligo  

Make span for 100 tasks of Ligo are presented in 

Table 3, and Fig. 4. While make span for 1000 tasks 

of Ligo are presented in Table 4, and Fig. 5. 

By considering 100 tasks in Ligo and the 

implementation results presented in Table 3 and Fig. 

4, it is found that the enhanced EM-HEFT algorithm 

improves make span by 18% with respect to HEFT 

algorithm [21], 42% with respect to algorithm in 

[29], 46% with respect to algorithm in [33], and 4% 

with respect to our previous M-HEFT algorithm 

[18] in average. A By considering 100 tasks in Ligo 

and results presented Table 4 and Fig. 5, the 

enhanced EM-HEFT algorithm improves make span 

by 48% with respect to HEFT algorithm [21], 16% 

with respect to algorithm in [29], 17% with respect 

to algorithm in [33], and 5% with respect to our 

previous M-HEFT algorithm in [18] in average. 

5.1.2. 100 and 1000 tasks of epigenomics  

Make span for 100 tasks of Epigenomics are 

presented in Table 5, and Fig. 6. While make span 

for 1000 tasks of Epigenomics VMs are presented in 

Table 6, and Fig. 7. 

By considering 100 tasks in Epigenomics and 

implementation results presented in Table 5 and Fig. 

6, it is found that the enhanced EM-HEFT algorithm 

improves make span by 19% with respect to HEFT 

algorithm [21], 43% with respect to algorithm in 

[29], 50% with respect to algorithm in [33] and 5% 

with respect to our previous M-HEFT algorithm in 

[18] in average. By considering 1000 tasks in 

Epigenomics and results presented results in Table 6 

and Fig. 7, it is found that the enhanced EM-HEFT 

algorithm improves make span by 54% with respect 

to HEFT algorithm [21], 15% with respect to 

algorithm in [29], 14% with respect to algorithm in 

[33] and 3% with respect to our previous M-HEFT 

algorithm in [18] in average. 
 

 
Table 7. Resource utilization rate results for 100 tasks of Ligo 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT [21] 38.94 41.87 40.25 31.28 

Algorithm [29] 48.80 24.41 19.92 16.94 

Algorithm [33] 47.58 24.31 18.62 15.34 

M-HEFT [18] 53.04 46.60 42.25 37.05 

Enhanced EM-HEFT 53.45 47.01 43.40 37.20 

 

 
Figure. 8 Resource utilization rate results for 100 tasks of Ligo 
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Table 8. Resource utilization rate results for 1000 tasks of Ligo 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT [21] 57.55 20.81 32.46 18.18 

Algorithm [29] 58.74 51.38 39.71 38.39 

Algorithm [33] 58.14 50.95 38.56 37.15 

M-HEFT [18] 60.05 52.25 50.54 50.10 

Enhanced EM-HEFT 60.35 54.20 50.75 50.30 

 

 
Figure. 9 Resource utilization rate results for 1000 tasks of Ligo 

 

5.2 Resource utilization evaluation  

The implementation results of the comparative 

study among our enhanced EM-HEFT, HEFT [21], 

algorithm in [29], algorithm in [33], and our 

previous M-HEFT algorithm in [18] with respect to 

resource utilization with considering Ligo and 

Epigenomics benchmark with 100 and 1000 tasks 

using 5, 10, 15 and 20 VMs are discussed as the 

follow. 

5.2.1. For 100 and 1000 tasks of Ligo  

Resource utilization results for 100 tasks of Ligo 

are presented in Table 7, and Fig. 8. While resource 

utilization results for 1000 tasks of Ligo are 

presented in Table 8, and Fig. 9. 

By considering 100 tasks in Ligo and resource 

utilization results presented in Table 7 and Fig. 8, it 

is found that the enhanced EM-HEFT algorithm 

improves resource utilization by 19% with respect to 

HEFT algorithm [21], 85% with respect to algorithm 

in [29], 95% with respect to algorithm in [33], and 

1% with respect to our previous M-HEFT algorithm 

in [18] in average. By considering 1000 tasks in 

Ligo and resource utilization presented in Table 8 

and Fig. 9, it is found that the enhanced EM-HEFT 

algorithm improves resource utilization by 99% with 

respect to HEFT algorithm [21], 17% with respect to 

algorithm in [29], 19% with respect to algorithm in 

[33], and 1% with respect to our previous M-HEFT 

algorithm in [18] in average. 

5.2.2. For 100 and 1000 tasks of epigenomics  

Resource utilization results for 100 tasks of 

Epigenomics are presented in Table 9, and Fig. 10. 

While resource utilization results for 1000 tasks of 

Epigenomics are presented in Table 10, and Fig. 11. 

By considering 100 tasks in Epigenomics and 

resource utilization results presented in Table 7 and 

Fig. 8, it is found that the enhanced EM-HEFT 

algorithm improves resource utilization by 22% with 

respect to HEFT algorithm [21], 83% with respect to 

algorithm in [29], 100% with respect to algorithm in 

[33], and 8% with respect to our previous M-HEFT 

algorithm in [18] in average.  By considering 1000 

tasks in Epigenomics and results presented Table 8 

and Fig. 9, the enhanced EM-HEFT algorithm 

improves resource utilization by 99% with respect to 

HEFT algorithm [21], 16% with respect to algorithm 

in [29], 22% with respect to algorithm in [33], and 

2% with respect to our previous M-HEFT algorithm 

in [18] in average. 

5.3 Load balance rate 

The implementation results of the comparative 

study among our enhanced EM-HEFT, HEFT [21],  
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Table 9. Resource utilization rate results for 100 tasks of epigenomics 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT [21] 56.64 41.72 25.27 17.66 

Algorithm [29] 49.13 19.60 18.97 12.24 

Algorithm [33] 48.76 18.81 16.42 10.56 

M-HEFT [18] 59.23 44.09 32.18 24.76 

Enhanced EM-HEFT 59.80 45.00 32.90 25.50 

 

 
Figure. 10 Resource utilization rate results for 100 tasks of epigenomics 

 

Table 10. Resource utilization rate results for 1000 tasks of epigenomics 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT [21] 59.15 26.39 20.06 18.04 

Algorithm [29] 59.40 46.63 39.50 36.22 

Algorithm [33] 59.13 46.24 36.32 33.48 

M-HEFT [18] 60.45 54.29 47.98 42.72 

Enhanced EM-HEFT 60.32 54.10 49.10 44.20 

 

 
Figure. 11 Resource utilization rate results for 1000 tasks of epigenomics 
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Table 11. The average difference from ideal load balance (ILB) results for 100 tasks of Ligo 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT [21] 8.8 4.0 3.20 2.70 

Algorithm [29] 7.0 3.8 2.3 1.4 

Algorithm [33] 7.1 3.9 2.5 1.7 

M-HEFT [18] 6.8 2.0 2.0 1.0 

Enhanced EM-HEFT 6.7 1.9 1.9 1.0 

 

 
Figure. 12 The average difference from ideal load balance (ILB) results for 100 tasks of Ligo 

 
Table 12. The average difference from ideal load balance (ILB) results for 1000 tasks of Ligo 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT [21] 79.5 63.4 33.3 34.3 

Algorithm [29] 78.6 38.0 30.3 22.5 

Algorithm [33] 78.8 38.2 30.5 22.8 

M-HEFT [18] 78.4 36.3 27.4 19.4 

Enhanced EM-HEFT 78.2 35.8 27.21 19.2 

 

 
Figure. 13 The average difference from ideal load balance (ILB) results for 1000 tasks of Ligo 
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algorithm in [29], algorithm in [33], and our 

previous M-HEFT algorithm in [18] with respect to 

load balance rate with considering Ligo and 

Epigenomics benchmark with 100 and 1000 tasks 

using 5, 10, 15 and 20 VMs are discussed as the 

follow. 

5.3.1. For 100 and 1000 tasks of ligo  

Load balance rate results for 100 tasks of Ligo 

are presented in Table 11, and Fig. 12. While load 

balance rate results for 1000 tasks of Ligo are 

presented in Table 12, and Fig. 13. 

According to the results presented in Table 11 

and Fig. 12, it is found that the enhanced EM-HEFT 

algorithm improves load balance by 45% with 

respect to HEFT algorithm [21], 25% with respect to 

algorithm in [29], 31% with respect to algorithm in 

[32], and 3% with respect to our previous M-HEFT 

algorithm in [18] in average by considering 100 

tasks in Ligo. According to the results presented in 

Table 12 and Fig. 13, the enhanced EM-HEFT 

algorithm improves load balance by 27% with 

respect to HEFT algorithm [21], 8% with respect to 

algorithm in [29], 8% with respect to algorithm in 

[32], and 0.8% with respect to our previous M-

HEFT algorithm in [18] in average by considering 

1000 tasks in Ligo.  

5.3.2. For 100 and 1000 tasks of epigenomics  

Load balance rate results for 100 tasks of 

Epigenomics are presented in Table 13, and Fig. 14.  

While load balance rate results for 1000 tasks of 

Epigenomics are presented in Table 14, and Fig. 15. 

 
 

Table 13. The average difference from ideal load balance (ILB) results for 100 tasks of epigenomics 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT [21] 10.8 4.6 2.70 2.10 

Algorithm [29] 9.6 5.0 3.00 2.1 

Algorithm [33] 9.7 5.1 3.2 2.3 

M-HEFT [18] 8.0 4.4 2.6 2.1 

Enhanced EM-HEFT 7.9 4.0 2.4 2.0 

 

 
Figure. 14 The average difference from ideal load balance (ILB) results for 100 tasks of epigenomics 

 

Table 14. The average difference from ideal load balance (ILB) results for 1000 tasks of epigenomics 

Algorithm 5 VMs 10 VMs 15 VMs 20 VMs 

HEFT [22] 140.20 80.30 49.60 36.95 

Algorithm [30] 77.60 49.70 33.40 23.75 

Algorithm [33] 77.70 50.55 34.46 23.85 

M-HEFT [35] 77.40 39.70 28.16 23.65 

Enhanced M-HEFT 77.30 39.60 26.40 22.31 
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Figure. 15 The average difference from ideal load balance (ILB) results for 1000 tasks of epigenomics 

 

According to the results presented in Table 11 

and Fig. 12, the enhanced EM-HEFT algorithm 

improves load balance by 14% with respect to 

HEFT algorithm [21], 6% with respect to algorithm 

in [29], 7% with respect to algorithm in [33], and 

7% with respect to our previous M-HEFT algorithm 

in [18] in average by considering 100 tasks in 

Epigenomics. According to the results presented in 

Table 12 and Fig. 13, the enhanced EM-HEFT 

algorithm improves load balance by 45% with 

respect to HEFT algorithm [21], 12% with respect to 

algorithm in [29], 13% with respect to algorithm in 

[33], and 3% with respect to our previous M-HEFT 

algorithm in [18] in average by considering 1000 

tasks in Epigenomics.  

Conclusion and future work 

Workflow scheduling is one of the eminent 

issues that work on allocating workflows tasks on 

VMs based on different requirements related to 

tasks and VMs in cloud computing. In this paper, an 

enhanced task scheduling algorithm, called EM-

HEFT, has been introduced to improve the 

performance of our previous M-HEFT [18] with 

respect to make span, resource utilization, and load 

balance. To evaluate the performance of the 

proposed EM-HEFT algorithm, a comparative study 

has been contacted using two benchmarks, LIGO 

and EPIGENOMICS, with 100 and 1000 tasks and 

implemented on WorkflowSim simulator 

considering 5, 10, 15 and 20 VMs.  

According to the implementation results, it is 

found that the enhanced EM-HEFT improves the 

make span algorithm by 35% in average with 

respect to the original HEFT [21] algorithm, by 29% 

in average with respect to the proposed algorithm 

[29], by 33% in average with respect to the 

algorithm in [33], and by 4% in average with respect 

to our previous M-HEFT algorithm in [18].  The 

resource utilization has been improved using the 

enhanced EM-HEFT algorithm by 50% in average 

with respect to the original HEFT [21] algorithm, by 

34% in average with respect to the proposed 

algorithm [29], by 53% in average with respect to 

the algorithm in [33], and by 35% in average with 

respect to our previous M-HEFT algorithm in [18]. 

In addition, the load balance has been improved 

using the enhanced EM-HEFT algorithm by 26% in 

average with respect to the original HEFT [21] 

algorithm, by 11% in average with respect to the 

proposed algorithm [29], by 8 % in average with 

respect to the algorithm in [33], and by 11% in 

average with respect our previous M-HEFT the 

algorithm in [18]. 

As a future work, there is a need to enhance our 

enhanced EM-HEFT algorithm by considering extra 

performance criteria such as budget, power 

consumption, and deadline. 

Table of abbreviations 

Name Abbreviation 

VM Virtual machine. 

T T is stand for Task. 

wi Weight of the task which  

is the difference between 

the highest and lowest 

computation time of 

task Ti on VMm and VMn, 

respectively divided by 

speedup of these VMs. 

Ci,j Communication cost 

between two tasks. 

CCTi,j Computation cost for task 

Ti on VMj. 

AL Average length for all 

tasks in the DAG. 

Tavil It is the available time of 

VM.  
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ST Start Time of task on VM. 

FT Finish time of task on VM. 

CTi Is the completion time of 

the longest task Ti. 

RUR Resource Utilization Rate. 

ILB Ideal Load Balance. 

DLB Difference from Ideal Rate 

of load balance. 

ADLB Average difference from 

Ideal Rate of load balance. 

IRM Improvement rate in terms 

of used metrics (make 

span, resource utilization 

and load balance). 

ABS It is the Absolute value of 

a number. 

M (proposed algorithm) M is stand for metrics such 

as (make span, resource 

utilization rate and load 

balance rate). 
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