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Abstract: This paper presented a new metaheuristic technique, namely the guided pelican algorithm (GPA). GPA has 

the improvements for a shortcoming algorithm, namely the pelican optimization algorithm (POA), that mimics the 

behaviour of pelican birds during hunting prey. It improves the original POA in three ways. First, GPA replaces the 

randomized target with the global best solution as a deterministic target in phase one. Second, GPA replaces the 

pelican's current location with the search space size in determining the local search space size in phase two. Third, 

GPA implements multiple candidates in both phases rather than a single candidate as it is used in the original POA. 

Simulation is implemented to observe GPA’s performance in optimizing both theoretical and real-world problems. 

GPA is compared with four algorithms: marine predator algorithm (MPA), particle swarm optimization (PSO), 

komodo mlipir algorithm (KMA), and POA. The result shows that GPA outperforms all sparing algorithms in 

optimizing most benchmark functions. GPA is also implemented to optimize the portfolio problem. The result shows 

that GPA outperforms all sparing algorithms in optimizing the portfolio problem. It outperforms three sparing 

algorithms in optimizing the portfolio problem. Its performance is 9%, 11%, and 13%, better than PSO, MPA, and 

KMA consecutively. Meanwhile, its less than 1% worse than POA. 

Keywords: Pelican optimization algorithm, Metaheuristic, Intelligent finance, Portfolio optimization problem, LQ45 

index. 

 

 

1. Introduction 

Metaheuristic algorithms have been implemented 

widely in many optimization problems. In the 

manufacturing sector, they have been used to solve 

many scheduling problems, such as in flow-shop [1], 

job-shop [2], batch-shop [3], and so on. In the 

transportation sector, they also have been utilized to 

solve many routing problems, such as in the 

capacitated vehicle routing problem [4], where each 

vehicle has a maximum load capacity that cannot be 

surpassed, and in the pickup delivery problem [5] 

where the vehicle must tackle two activities: pickup 

and delivery. Metaheuristic algorithms are also 

implemented in many assignment problems [6], 

where certain jobs or tasks should be handled by 

several limited resources in the most efficient way, 

such as in the course timetabling problem [7]. This 

popularity comes from their characteristic as an 

approximating approach so that they become adaptive 

to the limited computational resource in solving large-

scale and complicated optimization problems [8]. 

However, the metaheuristic algorithms only 

guarantee to find the sub-optimal solution at the end 

of the process [8]. 

Many shortcoming metaheuristic algorithms are 

developed based on swarm intelligence. Swarm 

intelligence-based algorithm is a derivative of the 

population-based algorithm where the system consists 

of several autonomous agents. Moreover, in swarm 

intelligence, communal knowledge is introduced and 

shared among the agents to improve its performance 

[9]. PSO is the early version of algorithm that adopts 

swarm intelligence. It mimics the behavior of a group 

of birds during foraging or finding foods [10]. In PSO, 

global best and local best represent communal 

knowledge [10]. The birds tend to fly to get closer to 

these global best and local best representations [10]. 

To date, many shortcoming metaheuristic algorithms, 

especially the algorithms that mimic the animal 

behavior during foraging, implement the swarm 

intelligence. 



Received:  July 4, 2022.     Revised: August 19, 2022.                                                                                                      180 

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022           DOI: 10.22266/ijies2022.1231.18 

 

Getting closer to the best solution is also adopted 

by several shortcoming metaheuristic algorithms. In 

KMA, the small males move toward the big males 

while the big males move toward the other higher 

quality big males [11]. In grey wolf optimizer (GWO), 

the wolves move toward the three best wolves in the 

population [12]. In MPA, the prey moves toward its 

predator (elite) [13]. Besides the animal-inspired 

algorithms, several game-based algorithms also adopt 

this mechanism, such as football game-based 

optimizer (FBGO) [14], hide object game 

optimization (HOGO) [15], and darts game optimizer 

(DGO) [16]. This mechanism can be seen as a guided 

movement because there is a deterministic direction 

that guides the agent to move to a certain location. It 

is different from several other algorithms that focus 

on local search or neighborhood search, such as 

simulated annealing (SA) [17], invasive weed 

optimizer (IWO) [18], tabu search (TS) [19], and so 

on. 

One of the latest metaheuristic algorithms is 

pelican optimization algorithm (POA). This algorithm 

was introduced by Trojovsky and Dehghani and was 

firstly published in 2022 [20]. This algorithm adopts 

the behavior of pelican during foraging or hunting 

preys. It is a population-based algorithm formed of 

some pelicans that fly autonomously [20]. This 

algorithm conducts a specific method in its 

exploration and exploitation strategy. There are two 

consecutive phases conducted for all pelicans in every 

iteration. In phase one, all pelicans tend to fly toward 

the same prey [20]. This prey is distributed randomly 

inside the search space at the beginning of every 

iteration. It is an uncommon mechanism because, in 

many algorithms, each agent makes a move toward 

the local best or global best. This first phase represents 

exploration. In phase two, all pelicans search for a 

new location inside their own local search space [20]. 

During the iteration, this local search space size 

declines gradually. Phase two represents the 

exploitation strategy. In its first appearance, this 

algorithm was compared with PSO, teaching-learning 

based algorithm (TLBO), GWO, WOA, MPA, TSA, 

gravitational search algorithm (GSA), and genetic 

algorithm (GA) to solve 23 benchmark functions [20].  

As a new algorithm, studies conducted to 

implement this algorithm in solving other real-world 

optimization problems or modifying the POA are hard 

to find. Meanwhile, many possibilities can be 

conducted to modify this algorithm. The modification 

can be conducted in phase one and phase two. 

Implementation of this algorithm for the other real-

world problem is widely open. Based on this 

circumstance, studies related to POA are very 

interesting. 

The objective of this work is proposing a new 

optimizer, namely the guided pelican algorithm 

(GPA). This algorithm is developed as an 

improvement of the original POA. As the 

improvement version of the previous algorithm, the 

methodology that is implemented in this work is as 

follows. First, the strategy of POA is reviewed to 

analyze its pros and cons. Then, GPA is developed by 

maintaining the core mechanics of POA and 

improving the weakness of its current approach. 

Through GPA, the challenge to solving an 

optimization problem, its performance related to the 

POA, and other sparing algorithms can be evaluated. 

Finally, the analysis regarding the result will be 

discussed and summarized to make the new baseline 

for future studies. 

As the improvement of POA, this work contributes 

in some places as follow. 

1) GPA replaces the randomized prey with the 

global best in the guided movement. 

2) The single candidate is improved with the 

multiple candidates during the guided and 

random movement. 

3) The random movement is improved so that it 

becomes more adaptive to the search space size 

problem. 

The rest of this paper is structured as follows. The 

strategy and approach conducted in POA are reviewed 

in section two. Then, section three presents the model 

of GPA which consists of the concept, algorithm, and 

mathematical models. Simulation and implementation 

related to GPA are presented in section four. The 

intense analysis regarding the simulation result is 

discussed in section five. Finally, the conclusions of 

the work and future research potentials regarding the 

GPA are summed up in the last section. 

2. Related works 

POA is a new metaheuristic optimizer built based 

on swarm intelligence. This algorithm consists of 

some pelicans that fly autonomously around the 

search space to hunt for the best preys. As a swarm 

intelligence, each agent shares a communal 

knowledge to improve their work. Like many other 

shortcoming algorithms, its behavior mimics animal 

behavior. In this context, POA adopts the behavior of 

a group of pelicans during foraging (hunting prey) 

[20]. This basic behavior is like PSO, wherein PSO, a 

group of birds flies together inside a certain distance 

during searching for food [10]. 

Like any other metaheuristic algorithm, there are 

two steps in POA. Step one is initialization [8]. Step 

two is iteration [8]. In the initialization, all pelicans 

are distributed randomly inside the search space [20]. 



Received:  July 4, 2022.     Revised: August 19, 2022.                                                                                                      181 

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022           DOI: 10.22266/ijies2022.1231.18 

 

Then, the location of every pelican is improved in 

every iteration. Specifically, there are two consecutive 

phases in every iteration. Phase one is called moving 

toward the prey [20]. Phase two is called winging the 

water surface [20]. Phase one represents the 

exploration, while phase two represents the 

exploitation. In both phases, the pelican moves to the 

new location only if this new location is better than its 

current solution. 

In phase one, a prey is generated randomly at the 

beginning of every iteration [20]. It follows a uniform 

distribution. There is only one prey for the entire 

pelican population. Thus, all pelicans will move 

toward this prey. In this phase, there are two possible 

directions depending on the fitness score of the prey 

and the pelican. If the prey is better than the pelican, 

then the pelican will fly toward the prey. Else, the 

pelican flies away from the prey. The step size of this 

movement is randomized. This step can make the 

pelican very close to the prey (long jump) or contrary, 

it is just a small step so that its new location is very 

close to the pelican's current location (short jump). If 

this new location is better than its current location, 

then this new location will replace the current location 

(accept). Otherwise, the pelican remains to stay in its 

current location (reject). 

In phase two, the pelican conducts a local search 

[20]. This movement relies only on the pelican's 

current location. The pelican searches randomly a new 

location inside its local search space. The local search 

space size depends on three aspects: iteration, static 

coefficient, and its current location. In POA, the space 

size declines gradually as the iteration goes on. In the 

early iteration, the local search space is wide enough 

to accommodate the exploration dominant strategy. 

Meanwhile, in the later iteration, the local search 

space becomes very narrow or almost zero so that the 

new location will be generated very close to the 

pelican's current location. The acceptance-rejection 

strategy is also implemented in this phase.  

This strategy is useful in solving both unimodal 

and multimodal problems. Exploration dominant 

strategy in the early iteration means that the algorithm 

has enough opportunity to explore a wider area inside 

the search space to avoid the local optimal trap. On 

the other side, narrow local search space in the later 

iteration will make the algorithm focus on 

exploitation and improve the precision of the new 

location (solution). It is assumed that in the latter 

iteration, the area where the global optimal lies, has 

been found. 

POA also implements a global best which is 

updated in every iteration after all pelicans update 

their location. The pelican with the best fitness score 

becomes the candidate to replace the current global 

best solution. However, this candidate will replace the 

current global best solution only if it is better than the 

current global best solution. After the iteration ends or 

the terminating criteria are met, the last value of the 

global best solution becomes the final solution. 

There are several notes regarding POA. The 

movement toward a certain object or location with a 

certain step size is common in many algorithms 

inspired by the foraging mechanism of the animal. 

However, in general, the target is specified, and it is 

usually the best one. It means that the agent tends to 

move closer to a better location. This movement can 

be drawn back in PSO, where each agent (bird) moves 

toward the accumulation of the weighted global best 

solution and the weighted local best solution [10].  

This movement is then adapted by many later 

algorithms. In KMA, the small males move toward the 

accumulation of the big males, and the big male 

moves toward the accumulation of the other better big 

males [11]. In GWO, the wolves move toward the 

three best wolves (alpha, beta, and delta) [12]. This 

strategy is proven to create convergence for all agents 

so that all agents move like a swarm. Moreover, the 

movement tends to be smooth. 

This strategy can also be called as leader-guided 

strategy. This strategy is also adopted by many 

shortcoming metaheuristic algorithms. Although the 

concept is similar, each algorithm has their own 

distinct improvisation. In HOGO, there is a movement 

where a player tends to move toward the best player 

or player whom the coach makes the loudest voice 

[15]. In an average and subtraction-based optimizer 

(ASBO), an agent will move toward a certain location 

related to the best agent [21]. In golden search 

optimization algorithm (GSOA), the solutions are 

sorted in every iteration [22]. The worst solution is 

replaced by the randomly selected solution. Then all 

solutions move toward the best solution based 

randomized sinusoidal step size [22]. In northern 

goshawk optimization (NGO), the leader is randomly 

selected among the solutions. Then, each solution 

conducts neighborhood search where the local search 

space is reduced linearly during the iteration [23]. In 

hybrid leader-based optimization (HLBO), a leader of 

each solution is constructed from the normalized 

quality of three solutions: the related solution, the 

highest quality solution, and the randomly selected 

solution [24]. The normalized quality of each entity 

defines the portion of this entity to construct the 

hybrid leader. Then, each solution will follow its own 

hybrid leader [24]. In the mixed leader-based 

optimizer, there are two types of leaders [25]. In the 

first half of iteration, the leader is the combination 

between the best quality solution and a solution that is 

selected randomly inside the search space [25]. In the 
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second half of iteration, the leader is the best quality 

solution [25]. The multi leader optimizer (MLO) can 

be seen as the improvisation of GWO. In MLO, the 

number of solutions that constructs the leader is not 

only three, but it is set manually before the 

optimization runs [26]. In the three influential 

member-based optimizer (TIMBO), there are three 

solutions that become the leaders: the best solution, 

the worst solution, and the mean solution [27]. Each 

solution gets closer to the best solution and escape 

from the worst solution [27]. The acceptance-

rejection is also implemented in TIMBO [27]. 

stochastic komodo algorithm (SKA) is the 

improvisation of KMA. Rather than determined based 

on the fitness quality as in KMA, in SKA, the big male, 

small male, and female are determined randomly 

based on certain threshold [28]. In modified honey 

badger algorithm (MHBA), the leader is the best 

solution so far [29]. But each solution follows the 

leader based on two options. The first option is 

randomized sinusoidal movement and the second 

option is randomized non-sinusoidal movement [29]. 

The POA chooses a different mechanism. Rather 

than choosing the global best solution, the target 

(prey) is determined randomly inside the search space. 

It means that in every iteration, the movement tends 

to be chaotic because the target can change extremely. 

It is shown as a massive local or global search, 

depending on the generated step size. Fortunately, this 

chaotic search is still controlled by the acceptance-

rejection strategy. In this algorithm, the role of the 

global best is just as a storage entity. It stores the 

global best solution so far which is not utilized as the 

guidance or compass for agents to determine their 

direction. 

Phase two of POA also can be seen as a local or 

global search depending on the iteration. In the 

beginning, phase two implements a global search. 

Then, it turns to local search gradually. The difference 

from phase one is the number of locations (solutions) 

considered. In phase one, the movement depends on 

the current location and the target. On the other hand, 

in phase two, the movement depends only on its 

current location. 

Phase two is like the eddy formation in MPA as an 

iteration-controlled search [13] but with a certain 

difference. The similarity between POA and MPA is 

that the local search space declines gradually as the 

iteration goes on. In MPA, there are two options in the 

eddy formation. The prey can move randomly inside 

the local search space or move toward the two 

randomly chosen prey [13]. Meanwhile, in POA, the 

pelican moves only inside its local search space. 

Another difference is that in MPA, the local search 

space size is also affected by the search space size 

while in POA, the local search space size is also 

affected by the pelican's current location. 

Based on this review, there is a wide opportunity 

to improve the original POA. The improvement can 

be conducted in the method implemented in phase one 

or phase two. In phase one, there is an opportunity to 

transform the chaotic movement into a guided 

movement. In phase two, there is a possibility of 

modifying the local search space size. This review 

also shows that there are a lot of opportunities to 

develop a new metaheuristic algorithm based on the 

leader-based approach. 

3. Model 

This section presents the model of GPA. It consists 

of three parts. The first part is the concept. The second 

part is pseudocode. The third part is mathematical 

model. The conceptual model explains the concept 

and movement adopted in the model. The algorithm is 

presented by using pseudocode. More detailed 

mechanics of GPA is explained by using a 

mathematical model. 

Like POA, GPA also consists of some agents that 

search for optimal solutions autonomously based on 

their objective and the environment. In this context, 

the search space represents the environment. GPA is 

also a swarm intelligence-based algorithm. It means 

that there is communal knowledge that is shared 

among agents during the optimization process. In 

GPA, the global best becomes the communal 

knowledge. Different from the POA, in GPA, the 

global best is not only used to store the best solution 

so far and then used as the final solution, moreover, 

the global best also becomes the main target (prey) for 

all agents during their guided movement. The use of 

the global best as the main target will increase the 

probability of all agents improving their current 

solution or moving to a better place. 

Like POA, GPA consists of two phases in every 

iteration. Phase one is guided movement, and phase 

two is randomized movement. The global best is 

updated in every iteration.  

In GPA, in phase one, the target is the global best. 

It is different from the POA where the target is 

randomized inside the search space. Then, a certain 

number of candidates are generated along the path 

toward the target. The distance between the adjacent 

candidates is the same. Then, a candidate whose 

fitness score is the highest becomes the best candidate. 

This best candidate then replaces the agent's current 

location (solution) only if it is better than the agent's 

current location. It is also different from the original 

POA, where there is only one candidate generated in  
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algorithm 1: GPA algorithm 

1 output: xbest 

2 begin 

3   //initialization 

4   for i=1 to n(X) do 

5     set x using Eq. (1) 

6     update gbest using Eq. (6) 

7   end for 

8   //iteration 

9   for t=1 to tmax do 

10     for i=1 to n(X) do 

11       //first phase 

12       for j=1 to n(C) do 

13         generate cj using Eq. (2) and Eq. (3) 

14       end for 

15       find cbest using Eq. (4) 

16       update x using Eq. (5) 

17       update xbest using Eq. (6) 

18       //second phase 

19       for j=1 to n(C) do 

20         generate cj using Eq. (7) and Eq. (8) 

21       end for 

22       find cbest using Eq. (4) 

23       update x using Eq. (5) 

24       update xbest using Eq. (6) 

25     end for 

26   end for 

27 end 

 

this phase. 

Like POA, GPA also conducts random movement 

near the current location (neighborhood search) in 

phase two. GPA also adopts narrowing local search 

space. It means that the search space size declines 

gradually as the iteration goes on. However, in GPA, 

the local search space size is different from POA. In 

POA, the local search space size depends on the agent. 

In contrast, in the significance of GPA, the local 

search space size depends on the search space size. In 

this phase, rather than a single candidate as in POA, 

in GPA, several candidates are generated randomly 

inside the local search space. The best candidate is 

selected among them based on its fitness score. If this 

best candidate is better than the agent's current 

location, then this best candidate becomes the 

replacement. 

This conceptual model is then used to create the 

algorithm and mathematical model. The algorithm is 

presented in algorithm 1. Several annotations are used 

in them. These annotations are described as follows. 

 

bl lower bound 

bu upper bound 

bw search space size 

c candidate 

C set of candidates 

cbest best candidate 

f fitness 

x agent’s current location 

X set of agents 

xbest global best 

xtar target 

U uniform random 

 

Based on algorithm 1, the complexity of this 

algorithm can be presented as O(2tmax.n(X).n(C)). It 

shows that its complexity is proportional to the 

maximum iteration, the number of candidates, and 

population size. Then, the accumulation is doubling 

because there are two phases in every iteration. 

In the initialization, the pelican's location is 

uniformly distributed inside the search space. This 

process is formalized by using Eq. (1). 

 

𝑥 = 𝑈(𝑏𝑙 , 𝑏𝑢)    (1) 

 

In phase one, the agent moves toward the global 

best. Several candidates are generated in this phase 

with the same distance between the adjacent 

candidates. This process is formalized by using Eq. 

(2) to Eq. (6).  

 

𝑥𝑡𝑎𝑟 = {
𝑥 + 2(𝑥𝑏𝑒𝑠𝑡 − 𝑥), 𝑓(𝑥𝑏𝑒𝑠𝑡) < 𝑓(𝑥)

𝑥 + (𝑥 − 𝑥𝑏𝑒𝑠𝑡), 𝑒𝑙𝑠𝑒
   (2) 

 

𝑐𝑖 = 𝑐 +
𝑖

𝑛(𝐶)
(𝑥𝑡𝑎𝑟 − 𝑥)      (3) 

 

𝑐𝑏𝑒𝑠𝑡 = 𝑐 ∈ 𝐶 ∧min(𝑓(𝑐))       (4) 

 

𝑥′ = {
𝑐𝑏𝑒𝑠𝑡 , 𝑓(𝑐𝑏𝑒𝑠𝑡) < 𝑓(𝑥)

𝑥, 𝑒𝑙𝑠𝑒
        (5) 

 

𝑥𝑏𝑒𝑠𝑡 = {
𝑥, 𝑓(𝑥) < 𝑓(𝑥𝑏𝑒𝑠𝑡)

𝑥𝑏𝑒𝑠𝑡 , 𝑒𝑙𝑠𝑒
        (6) 

 

The explanation of Eq. (2) to Eq. (6) is as follows. Eq. 

(2) determines the target of the guided movement. 

There are two possibilities. The target will be toward 

the global best if the global best is better than the 

current location. Otherwise, the target will be away 

from the global best. Eq. (3) states that the candidates 

are spread along the path from the current location and 

the target. Meanwhile, the distance of the adjacent 

candidates is reverse proportional to the number of 

candidates. Eq. (4) states that the candidate whose 

fitness score is the best will be chosen as the best 

candidate. Eq. (5) states that the best candidate 

replaces the current location if it is better than the 

current location. Eq. (6) states that the new location  
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Table 1. Benchmark functions 

No Function Type Dimension Space Global Optimal 

1 Sphere HUF 10 [-100, 100] 0 

2 Schwefel 2.22 HUF 10 [-100, 100] 0 

3 Schwefel 1.2 HUF 10 [-100, 100] 0 

4 Schwefel 2.21 HUF 10 [-100, 100] 0 

5 Rosenbrock HUF 10 [-30, 30] 0 

6 Step HUF 10 [-100, 100] 0 

7 Quartic HUF 10 [-1.28, 1.28] 0 

8 Schwefel HMF 10 [-500, 500] -4189.8 

9 Ratsrigin HMF 10 [-5.12, 5.12] 0 

10 Ackley HMF 10 [-32, 32] 0 

11 Griewank HMF 10 [-600, 600] 0 

12 Penalized HMF 10 [-50, 50] 0 

13 Penalized 2 HMF 10 [-50, 50] 0 

14 Shekel Foxholes FMF 2 [-65, 65] 1 

15 Kowalik FMF 4 [-5, 5] 0.0003 

16 Six Hump Camel FMF 2 [-5, 5] -1.0316 

17 Branin FMF 2 [-5, 5] 0.398 

18 Goldstein-Price FMF 2 [-2, 2] 3 

19 Hartman 3 FMF 3 [1, 3] -3.86 

20 Hartman 6 FMF 6 [0, 1] -3.32 

21 Shekel 5 FMF 4 [0, 10] -10.1532 

22 Shekel 7 FMF 4 [0, 10] -10.4028 

23 Shekel 10 FMF 4 [0, 10] -10.5363 

 

replaces the global best if this new location is better 

than the global best. 

In phase two, the randomized movement is 

conducted. In this phase, several candidates are 

generated by using Eq. (7) and Eq. (8). Then, 

candidate selection, agent's location update, and 

global best update are conducted by using Eq. (4) and 

Eq. (6). Eq. (5) is not used because, in phase two, the 

best candidate replaces the current location without 

considering the fitness score between the best 

candidate and the current location. 

 

𝑏𝑤 =
𝑏𝑢−𝑏𝑙

2
    (7) 

 

𝑐 = 𝑥 + (1 −
𝑡

𝑡𝑚𝑎𝑥
) (1 − 2𝑈)𝑏𝑤  (8) 

 

The explanation of Eq. (7) and Eq. (8) is as follows. 

Eq. (7) states that the iteration-free local search space 

size is half of the search space. Eq. (8) states that the 

candidate will be generated randomly inside the local 

search space where its size is reduced gradually due 

to the increase of the iteration. 

4. Simulation and result 

GPA is then implemented into simulation. As a 

metaheuristic algorithm, GPA must be able to meet 

two considerations. The first one is finding the sub-

optimal or acceptable solution. The second one is 

escaping from the local optimal entrapment. There are 

several simulations performed in this work. 

Simulation one is to evaluate GPA's performance in 

solving the 23 benchmark functions. This simulation 

can be seen as a simulation related to the theoretical 

optimization problem. The second and third 

simulations are performed to analyze GPA's 

sensitivity. Like simulation one, the second and third 

simulations are also performed by implementing GPA 

to solve the 23 benchmark functions. Simulation four 

is conducted to evaluate GPA in optimizing the real-

case problem. The portfolio optimization problem 

represents the real-world optimization problem, 

especially in the financial sector. 

In simulation one, GPA is challenged to solve 23 

benchmark functions. Seven functions are unimodal 

while sixteen functions are multimodal. The unimodal 

functions represent problems with a single global 

optimal [30]. Although the unimodal functions are 

simple in general, the different shape of the curve 

represents a different challenge. The key 

consideration in solving this problem is how fast the 

algorithm moves toward the global optimal and how 

precise the algorithm is so that it can find a solution 

that is as near as possible to the exact global optimal. 

Contrary, the multimodal functions represent 

problems with several to many optimal solutions [30]. 

There is only one global optimal and the rest are the 

local optimal. The key concern in solving these 

problems is avoiding the local optimal. The algorithm  
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Table 2. Simulation result 

Funct. PSO MPA KMA POA GPA Better Than 

1 7.879x102 7.380x101 6.279x102 3.372x103 5.915x10-2 PSO, MPA, KMA, POA 

2 1.457x102 0 1.148x102 0 0 PSO, KMA 

3 1.687x103 1.351x102 2.046x103 5.412x103 1.155x10-1 PSO, MPA, KMA, POA 

4 1.449x101 5.196x10-1 1.202x101 3.321x101 1.747x10-1 PSO, MPA, KMA, POA 

5 1.246x105 2.261x101 3.2629x104 5.569x106 3.458x101 PSO, MPA, KMA, POA 

6 4.352x102 5.867x101 3.933x102 2.347x103 5.102x10-2 PSO, MPA, KMA, POA 

7 2.775x10-2 2.499x10-2 1.942x10-1 7.446x10-1 2.554x10-3 PSO, MPA, KMA, POA 

8 -1.609x103 -1.896x103 -3.079x103 -1.927x103 -3.256x103 PSO, MPA, KMA, POA 

9 5.410x101 3.020x101 4.373x101 6.965x101 6.625 PSO, MPA, KMA, POA 

10 8.628 4.604 8.755 1.595x101 5.054x10-1 PSO, MPA, KMA, POA 

11 9.156 1.877 5.363 3.487x101 4.421x10-1 PSO, MPA, KMA, POA 

12 4.579x101 3.965 7.101 1.179x106 3.071x10-2 PSO, MPA, KMA, POA 

13 1.431x105 1.477x101 4.575x103 7.359x106 3.030x10-2 PSO, MPA, KMA, POA 

14 5.160 4.799 9.774 1.584 9.980x10-1 PSO, MPA, KMA, POA 

15 1.641x10-2 4.976x10-3 1.772x10-2 2.999x10-3 1.572x10-3 PSO, MPA, KMA 

16 -1.031 -1.024 -1.025 -1.029 -1.032 PSO, MPA, KMA, POA 

17 7.189x10-1 6.809x10-1 5.298x10-1 4.028x10-1 3.981x10-1 PSO, MPA, KMA, POA 

18 3.251 4.094 5.721 3.078 3.000 PSO, MPA, KMA, POA 

19 -5.392x10-3 -3.806 -7.194x10-1 -4.954x10-2 -4.954x10-2 PSO 

20 -2.405 -2.014 -2.867 -2.943 -3.277 PSO, MPA, KMA, POA 

21 -4.101 -2.092 -7.637 -3.354 -7.622 PSO, MPA, POA 

22 -3.034 -1.879 -7.581 -3.773 -9.645 PSO, MPA, KMA, POA 

23 -5.010 -2.018 -5.672 -3.998 -9.512 PSO, MPA, KMA, POA 

 

must find the area where the global optimal lies. These 

functions also have their shape and difficulties. Some 

functions are like areas with multiple ripples. In this 

circumstance, the algorithm may avoid the current 

local optimal but then is trapped inside the other local 

optimal. Other functions can be seen as a wide flat 

area with a single narrow slope. In this flat area, it will 

be difficult to find a solution that is better than the 

current solution.  These 23 benchmark functions are 

commonly used to evaluate many shortcomings in 

other metaheuristic algorithms, such as KMA [11], 

ASBO [21], POA [20], HOGO [15], MPA [13], 

FBGO [14], DGO [16], and so on. These functions 

represent various types of problems with their own 

characteristics and difficulties, from simple to 

complicated.  

These functions are categorized into three clusters: 

(1) high dimension unimodal functions, (2) high 

dimension multimodal functions, and (3) fixed 

dimension multimodal functions. In the high 

dimension functions, the dimension is flexible so that 

it can range from two to thousands. Meanwhile, the 

fixed functions have static dimensions so that they 

cannot be expanded or reduced. In this work, the 

dimension of the high dimension functions is set at 10. 

The detailed description of these functions is shown 

in Table 1. 

The 23 functions represent optimization problems 

with various ranges of search space, from the narrow 

ones to the wide ones. These various ranges of search 

space represent different challenges or difficulties. In 

general, a wider search space means that the algorithm 

must spend more effort or time to find the solution. 

Wider search space must be compensated with a 

higher maximum iteration or longer step size. On the 

other side, a wider longer step size may reduce the 

precision of the result. 

In this work, GPA is compared with other 

metaheuristic algorithms: PSO, KMA, MPA, and 

POA. PSO represents the early metaheuristic 

algorithm that implements guided movement through 

a simple calculation. KMA represents a metaheuristic 

algorithm that combines mating and foraging 

mechanics [11]. The mating process in KMA can be 

seen as a movement toward the global best solution 

(highest quality big male) that generates two 

possibilities or candidates [11]. The first candidate is 

close to the current solution and the second candidate 

is close to the global best. Subsequently, the better 

candidate replaces the current solution. The guided 

movement of the small males represents the 

movement toward all better solutions. Meanwhile, the 

guided movement of the big males represents the 

movement toward the better solutions and away from 

the worst solutions [11].  

MPA represents the metaheuristic algorithm that 

implements guided movement toward the local best. 

Every predator engages with its own prey [13]. In the 

guided movement, the better or worse solution is not  
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Table 3. Relation between maximum iteration and GPA’s 

performance 

Func. Average Fitness Score 

tmax = 60 tmax = 120 tmax = 180 

1 1.639x10-1 4.451x10-2 1.689x10-2 

2 0 0 0 

3 3.236x10-1 1.114x10-1 5.153x10-2 

4 3.098x10-1 1.553x10-1 1.076x10-1 

5 3.325x101 5.807x101 8.959 

6 1.202x10-1 2.529x10-2 1.405x10-2 

7 5.235x10-3 2.745x10-3 1.264x10-3 

8 -3.200x103 -2.954x103 -3.380x103 

9 4.240 5.637 5.987 

10 7.409x10-1 2.634x10-1 1.644x10-1 

11 6.028x10-1 3.769x10-1 3.067x10-1 

12 1.757x10-1 2.913x10-2 3.204x10-4 

13 9.865x10-2 2.970x10-2 7.634x10-3 

14 9.980x10-1 9.980x10-1 9.980x10-1 

15 2.236x10-3 5.415x10-4 5.087x10-4 

16 -1.032 -1.032 -1.032 

17 3.981x10-1 3.981x10-1 3.981x10-1 

18 3.000 3.000 3.000 

19 -4.954x10-2 -4.954x10-2 -4.954x10-2 

20 -3.312 -3.257 -3.257 

21 -8.170 -8.206 -7.198 

22 -9.694 -9.587 -9.342 

23 -8.882 -8.741 -8.745 

 

considered. This better or worse solution is considered 

only when the predators are updated. Moreover, 

exploration is also conducted besides the guided 

movement by implementing the eddy formation. The 

global best is calculated after the iteration ends. It is 

different from PSO, KMA, and POA where the global 

best solution is updated in every iteration. 

POA is chosen because GPA is the improved 

version of POA. As the improvement, it is important 

to evaluate the improved version with the original 

version. Moreover, it is also important to evaluate the 

advantage and disadvantage of GPA. 

In this simulation, the setting of several general 

parameters is as follows. The maximum iteration is set 

at 100 which represents the low maximum iteration. 

The reason is to evaluate the algorithms in the limited 

computational process. The population size is set at 20. 

Meanwhile, the specific parameters setting is as 

follows. In GPA, the number of candidates is set to 10. 

In PSO, all weights are set at 0.1. This circumstance 

represents low-speed guided movement to overcome 

the high precision result. In KMA, the big male 

portion is 40%. There is only one female. The rest are 

small males. The Mlipir rate is 0.5. In MPA, the 

fishing aggregate devices are set to 0.5. This 

circumstance represents the balance portion in the 

exploration process between finding the new solution 

inside the local search space and in the middle among 

randomly selected agents. The result is shown in 

Table 2. 

Table 2 shows that GPA is proven as a preferred 

algorithm for solving theoretical mathematic 

problems. It can tackle two challenges: finding the 

acceptable solution and escaping from the local 

optimal. This circumstance happens in all 23 

benchmark problems. It also happens in all three 

clusters of functions. Moreover, it can find the global 

optimal in four functions: schwefel 2.22, six hump 

chamel, branin, and goldstein-price. One is a high 

dimension unimodal function whereas the other three 

functions are fixed dimension multimodal functions. 

The result also shows that the search space does not 

affect GPA's performance. GPA is still good in 

solving functions with narrow, medium, and large 

search space. GPA is also proven good in solving 

functions with the optimal location at 0 or somewhere 

else. 

Table 2 also shows that GPA is competitive 

among the sparing algorithms. GPA creates the best 

result in solving eighteen functions. It is better than 

PSO in solving all functions. Moreover, it is also 

better than MPA, KMA, and POA in almost all 

functions. However, it is only better than PSO in 

solving Hartman 3 function. 

The next simulation is performed to observe the 

sensitivity analysis of parameters constructing the 

algorithm. In this work, two parameters will be 

analysed: maximum iteration and population size. 

Theoretically, these parameters have a positive 

relationship with GPA. It is a common approach that 

many metaheuristic studies are to improve its 

performance by expanding the size of the population 

and the maximum iteration. The consideration of 

these parameters' significance is related to GPA's 

performance. 

Simulation two is performed to evaluate the 

relation between the maximum iteration and GPA's 

performance. In this simulation, there are three values 

of the maximum iteration: 60, 120, and 180. Like 

simulation one, GPA is challenged to optimize the 23 

benchmark functions. Table 3 shows the result. 

Table 3 shows that in general, the maximum 

iteration has a positive relationship with the 

algorithm's performance. The fitness score tends to 

decline due to the increase in the maximum iteration. 

Moreover, the result also shows that the trend 

converges in the low maximum iteration for 13 

benchmark functions.  

Simulation three is performed to evaluate the 

relation between the population size and the 

algorithm performance. In this simulation, there are 

three values of population size: 10, 30, and 50. Like  
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Table 4. Relation between population size and GPA’s 

performance 

Func. Average Fitness Score 

n(X) = 10 n(X) = 30 n(X) = 50 

1 1.130x10-1 5.324x10-2 4.111x10-2 

2 0 0 0 

3 3.397x10-1 6.256x10-2 5.568x10-2 

4 2.675x10-1 1.646x10-1 1.394x10-1 

5 2.988x101 2.178x101 9.303 

6 9.003x10-2 3.638x10-2 2.957x10-2 

7 4.054x10-3 1.767x10-3 9.823x10-4 

8 -3.166x103 -3.358x103 -3.186x103 

9 6.764 3.467 2.739 

10 4.888x10-1 1.054x10-1 3.446x10-1 

11 5.797x10-1 3.848x10-1 3.249x10-1 

12 6.267x10-2 5.777x10-2 3.974x10-4 

13 5.246x10-2 1.752x10-2 1.357x10-2 

14 9.980x10-1 9.980x10-1 9.980x10-1 

15 6.473x10-4 4.838x10-4 4.769x10-4 

16 -1.032 -1.032 -1.032 

17 3.981x10-1 3.981x10-1 3.981x10-1 

18 3.000 3.000 3.000 

19 -4.954x10-2 -4.954x10-2 -4.954x10-2 

20 -2.999 -3.279 -3.301 

21 -6.021 -6.705 -8.771 

22 -8.747 -8.001 -8.960 

23 -1.053x101 -9.642 -9.5613 

 
Table 5. Data of six companies in LQ45 index 

Stock Start Price End Price Capital Gain 

BBCA 6,420 8,125 1,705 

BBNI 5,575 9,225 3,650 

BBRI 3,951 4,870 919 

BBTN 1,640 1,845 205 

BMRI 5,975 8,950 2,975 

BFIN 665 1,285 620 

 
Table 6. Simulation result of the portfolio optimization 

problem 
Algorithm Total Capital Gain 

(rupiah) 

PSO 310,031,004 

MPA 307,448,014 

KMA 300,567,285 

POA 341,894,419 

GPA 340,711,745 

 

simulation two, GPA is challenged to solve 23 

benchmark functions in this simulation. The result is 

shown in Table 4. 

Table 4 shows that in general, GPA is acceptable 

for low population size. GPA finds its convergence in 

the low population size in solving 16 functions. Most 

of the functions that are converged in the low 

population size are the multimodal functions. 

Meanwhile, the result is still improved in high 

population size in solving three unimodal functions: 

Sphere, Schwefel 1.2, and Schwefel 2.21. 

Simulation four is performed to evaluate GPA in 

solving the real-world optimization problem. In this 

work, the portfolio optimization problem represents 

this real-world optimization problem, especially in 

the financial sector. A portfolio can be defined as a 

collection of investments owned by a person or 

institution [31]. These investments can be stocks, 

bonds, and any other assets. The common objectives 

of the portfolio optimization problem are maximizing 

return and minimizing risk. 

In this simulation, the portfolio optimization 

problem focuses on the composition of six stocks that 

are listed in the LQ45 index. LQ45 index is a list of 

the 45 most preferred companies to be invested in 

Indonesia [32]. The criteria of this index are 

determined by the indonesia stock exchange. In 

general, the main criteria are market capitalization 

and liquidity. In this work, six companies listed in the 

LQ45 represent the dimension of the optimization 

problem. These companies are in the financial sector 

(banking and finance).  

The goal is to maximize the total capital gain. The 

capital gain is the difference between the start price 

and end price in a one-year timespan. The price data 

is collected from Google. The price on 10 May 2021 

represents the start price and the price on 28 April 

2022 represents the end price. This data is shown in 

Table 6. The start price, end price, and capital gain 

are expressed in rupiah per share. 

The investment scenario is as follows. The 

optimization handles one billion rupiah that can be 

used to buy stocks. The purchasing unit is in a lot that 

represents 100 shares. The purchasing price refers to 

the end price. The portfolio must consist of all stocks 

in Table 5 to distribute the investment risk. The 

number of lots in every stock must range from 100 

lots to 400 lots. The purchasing volume cannot 

surpass the one billion rupiahs of investment. 

The simulation scenario is as follows. GPA is 

compared with the four algorithms: PSO, MPA, 

KMA, and POA. The population size is set 20. The 

maximum iteration is 100. The result is shown in 

Table 6. 

Table 6 shows that GPA is very competitive in 

solving the portfolio optimization problem. It 

outperforms all sparing algorithms. Its performance 

is 9%, 11%, and 13%, better than PSO, MPA, and 

KMA consecutively. Meanwhile, its less than 1% 

worse than POA. It means that the performance gap 

between GPA and PSO, MPA, and KMA is 

significant. On the other hand, the performance gap 

between GPA and POA is less significant. 
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5. Discussion 

There are some findings related to the simulation 

result. First, in general, GPA becomes a good 

metaheuristic algorithm regarding its success to find 

the sub-optimal solution and tackle the local optimal 

entrapment. Second, GPA is very competitive 

because it outperforms the sparing algorithms in 

solving most benchmark functions. This 

circumstance happens in solving unimodal functions 

and multimodal functions. It means that GPA has 

enough time to find the area where the global optimal 

lies and to escape from the area where the local 

optimal lies. Moreover, its precision is high enough 

so that its performance is the best in solving most 

unimodal functions. Third, GPA is shown to be able 

to solve the theoretical optimization problem with 

low maximum iteration and a low number of 

candidates. Fourth, GPA is also competitive in 

solving the portfolio optimization problem. The in-

depth analysis regarding these findings will be 

discussed below.  

Generating multiple candidates along the path 

toward the global best candidate gives the advantage 

in scanning the possible better global best candidate 

faster. Due to the fixed size step between the adjacent 

candidates, the probability of missing this better 

candidate will be reduced. It is different from the 

stochastic-based guided movement with a single 

candidate for the next location, which is adopted in 

many metaheuristic algorithms. Neglecting the 

mechanism of determining the next location (fixed 

step, uniform, or normal distribution), the single 

candidate-based guided movement can scan only one 

possibility. 

The guided movement implemented in GPA is 

proven much better than the randomized movement 

implemented in the original form of POA. Through 

this guided movement, GPA focuses on exploring the 

search space toward the global best solution without 

considering the other area. In general, it is proven that 

the probability of a better solution toward the best 

solution (local or global) is higher than any area 

inside the search space. In contrast, the randomized 

(unguided) movement as adopted in POA makes the 

agent's movement unconcentrated in a certain area. 

Although the unguided movement still can find the 

acceptable solution, it needs more iteration or a 

higher population size. 

The approach adopted in GPA during phase two 

is better than the original POA. GPA's local search 

space tends to be wider than the original POA, 

especially in the earlier iteration. This circumstance 

gives better exploration although a gradual decline of 

the local search space is implemented in both 

algorithms. However, a wider local search space 

makes the algorithm performs better in avoiding the 

local optimal trap. In GPA, the disadvantage of the 

wider local search space is tackled by generating 

multiple candidates and by choosing the best 

candidate for the replacement. Although there is a 

possibility of the worse candidate being chosen as the 

replacement, overall, the guided movement toward 

the global best solution tackles this problem.  

6. Conclusion 

This work has demonstrated that GPA is proven a 

good and competitive algorithm. GPA can tackle two 

important in metaheuristic algorithms: finding the 

sub-optimal solution and escaping from the local 

optimal entrapment. In the theoretical optimization 

problem, GPA outperforms all benchmark algorithms 

in solving eighteen functions which are most of the 23 

benchmark functions. GPA also outperforms all 

benchmark algorithms in solving the portfolio 

optimization problem. It outperforms all sparing 

algorithms. Its performance is 9%, 11%, and 13%, 

better than PSO, MPA, and KMA consecutively. 

Meanwhile, its less than 1% worse than POA. 

There are future research opportunities regarding 

this work. Both POA and GPA are still widely 

possible to modify. These algorithms can also be 

combined or hybridized with other methods, such as 

metaheuristic, heuristic, or exact methods. More 

implementation of these algorithms to tackle many 

more real-world optimization problems is also 

challenging. 
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