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Abstract: Microgrid (MG) operation is one of the operational requirements of modern utilities for not only maintaining 

reliable and uninterrupted supply under faulty conditions but also for achieving desired economic goals in the 

competitive electricity market environment. Under faulty conditions, the electrical distribution system (EDS) becomes 

islanded microgrid (IMG) with either micro turbine (MT) or renewable energy (RE) based distribution generation 

(DG) units. However, the power generation from RE based DGs is stochastic nature and it may become either surplus 

or deficit to the network connected load. Also, the reactive power (VAr) support from DGs is limited. Under this 

scenario, there is a need for the integration of energy storage systems (ESSs) and reactive power compensators like 

switched/ fixed capacitor banks (CBs). In this paper, a novel optimization approach for determining the locations and 

capacities of ESSs combined with CBs along with DGs is proposed based on improved variant of dragonfly algorithm 

(DFA). Different performance variables of basic DFA are tuned by a self-adaptive mechanism in SADFA for attaining 

the global solution with least computational efforts. Simulation results on IEEE 33-bus are compared with literature 

works and also other algorithms namely basic DFA, PSO, BOA, and FSA. The islanded network is suffered with a 

loss of 97.1229 kW, whereas, it is reduced to 74.2305 kW, 47.3380 kW and 37.6792 kW, by integrating CBs, DGs 

and simultaneous CBs and DGs, respectively. Based on the comparative analysis, SAFDA is dominated literature 

works and all other simulated algorithms. Also, the proposed method for ESSs, CBs and DGs integration is shown its 

effectiveness for serving the IMG energy requirements with reduced losses and increased economic benefits and its 

suitability for practical applications.  

Keywords: Electrical distribution system, Energy storage system, Capacitor banks, Islanding mode, Dragonfly 

algorithm, Microgrid, Renewable energy. 

 

 

1. Introduction 

One of the operational needs for modern utilities 

is the operation of a microgrid (MG), which is 

necessary for both attaining targeted economic goals 

in the competitive power market setting as well as 

ensuring a dependable and uninterrupted supply 

under defective conditions. When something goes 

wrong, the electrical distribution system (EDS) 

transforms into an island microgrid (IMG) that uses 

distribution generation (DG) units powered by micro-

turbines (MT) or renewable energy (RE). However, 

because RE-based DG power generation is stochastic 

in nature, it could either produce more or less energy 

than the network-connected load. Additionally, DGs 

can only provide so much reactive power (VAr) 

support. Energy storage systems (ESSs) and reactive 

power compensators, such as switching or fixed 

capacitor banks, must be integrated in this situation 

(CBs). 

The problem of optimal integration of RE based 

DGs and CBs in EDSs has been addressed using 

various heuristic approaches in the literature. 

Gravitational search algorithm (GSA) [1], shark 

smell optimization (SSO) [2], flower pollination 

algorithm (FPA) [3], whale optimization algorithm 

[4], polar bear optimization algorithm [5], spotted 

hyena optimizer (SHO) [6], salp swarm algorithm 

(SSA) [7], water cycle algorithm (WCA) [8], 
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multiverse optimizer [9], and vortex search algorithm 

(VSA) [10], are recent examples of CBs allocation. A 

comprehensive literature survey on other related 

works can be seen in [11].  

On the other hand, marine predators algorithm 

[12], manta ray foraging optimization algorithm 

(MRFO) [13], sine-cosine algorithm (SCA) [14], 

artificial bee colony (ABC) [15], hybrid grey wolf 

optimizer (HGWO) [16], stud krill herd (SKH) [17], 

whale optimization algorithm (WOA) [18], flower 

pollination algorithm (FPA) [19], ant lion 

optimization (ALO) [20], grey wolf optimization 

(GWO), manta ray foraging optimization (MRFO), 

satin bower bird optimization (SBO) and whale 

optimization (WOA) [21], wild horse optimization 

(WHO) [22], Archimedes optimization algorithm 

(AOA) [23], and future search algorithm (FSA) [24] 

are other heuristic approaches employed for RE 

based DGs allocation in EDS. Similarly, a 

comprehensive review of various other approaches 

can be seen [25].     

CBs and/or DGs can improve EDS performance 

through DG allocation work in terms of loss 

reduction [1-24], voltage profile improvement [1-24], 

VDI reduction [12, 19, 20, 21], voltage stability 

enhancement [2, 8, 12, 14, 17, 18, 20, 21, 24], GHG 

emission reduction [8, 14, 23, 24], net savings 

maximisation [14, 15, 17, 18], and reliability 

improvement [22, 23]. In addition, major objective 

functions handled in the CBs allocation problem 

include the cost of real power distribution loss [1–10], 

operational cost [2–10], and installation cost [1, 2, 5, 

7]. Some works use real power loss sensitivity factors 

(RLSFs) [1, 9, 20], reactive power loss sensitivity 

factors (QLSFs) [5, 6], and normalised voltage 

magnitudes (NVMs) [1] to determine the pre-defined 

search space in order to improve the performance of 

heuristic algorithms. For the CB/DG allocation 

problem to be solved, both discrete variables (like 

locations) and continuous variables (like sizes) must 

be taken into account. The objective function is 

subjected to various equal and unequal constraints.   

 However, RE-based DGs are highly dependent 

on climatic conditions; thus, they are intermittent in 

nature and unreliable for islanding conditions. In 

these aspects, it is essential to incorporate ESSs into 

EDSs. In recent times, optimal sizing of ESSs has 

been addressed considering various likelihood 

uncertainties. In [26], various heuristic approaches 

along with COA are adapted for determining the 

ESSs for loss reduction while MG is operating in 

grid-connected mode. Different climatic conditions 

and economic aspects are considered while 

determining the various types of energy sources, 

including ESSs towards uninterrupted power supply 

in the IMG using turbulent flow water-based 

optimization (TFWO) [27]. In [28], interline-

photovoltaic (I-PV) systems embedded with ESS and 

CBs are evaluated using COA by considering one-

day-long IMG requirements. Similarly, various other 

heuristic approaches for energy management in IMG 

can be found in [29]. The following are the major 

research gaps, which serve as the primary motivation 

for this study: (i) Existing literature works on 

CBs/DGs allocation are only concerned with grid-

connected operations. In real-time, there is a need for 

planning studies for managing islanding conditions; 

(ii) since RE-base DGs are non-dispatchable 

generation sources, there is a need for ESSs towards 

reliable, stable, and economic operation. However, 

literature reviews are not focused on islanding 

operational requirements for achieving all these 

aspects. The following are the major contributions in 

this regard: 

• To locate and sizing the optimal ESS with VAr 

support for serving the islanding operational 

requirements of MG.  

• Minimization of real power distribution loss and 

maximization of net-savings are considered for 

developing the multi-objective function. 

• An advanced variant of dragonfly algorithm with 

self-adaptive mechanism (SADFA) for global 

optima is proposed as a solution methodology. 

• Simulation results of SADFA on IEEE 33-bus 

system are shown its computational efficiency 

than basic DFA, PSO, butterfly optimization 

algorithm (BOA) and FSA.    

The remainder of the paper is structured out as 

follows: Different kinds of DGs and load modelling 

considering voltage dependency are explained in 

section 2. In section 3, it presents different objective 

functions with detailed equal and unequal constraints. 

Section 4 explains the modelling of the self-adaptive 

dragonfly algorithm (SADFA). In section 5, the 

simulation results for IEEE 33-bus and IEEE 69-bus 

EDSs are discussed. Finally, in section 6, major 

research findings are comprehensively discussed. 

2. Mathematical modelling of concepts 

In this section, the mathematical modelling of 

DGs and CBs and hybrid ESS+CBs are explained 

suitably for backward/forward load flow [30]. 

2.1 DGs/CBs modeling 

In general, the RE-based DGs connects to the grid 

via power electronics converters. In this work, a 

common power injection modelling (PIM) suitably  
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Figure. 1 ESS with Switched CBs 

 

for different kinds of DGs are presented as follows: 

 

𝑃̅𝐷(𝑘)
ℎ = 𝑃𝐷(𝑘)

ℎ − 𝑃𝐷𝐺(𝑘)
ℎ        (1) 

 

𝑄̅𝐷(𝑘)
ℎ = 𝑄𝐷(𝑘)

ℎ − 𝑃𝐷𝐺(𝑘)
ℎ × 𝑡𝑎𝑛(𝜃𝐷𝐺(𝑘)

ℎ )      (2) 

 

𝑄̅𝐷(𝑘)
ℎ = 𝑄𝐷(𝑘)

ℎ − 𝑄𝐶𝐵(𝑘)
ℎ    (3) 

 

where 𝑃̅𝐷(𝑘)
ℎ and 𝑄̅𝐷(𝑘)

ℎ are the net active and reactive 

power loads of node-k at time-h, respectively; 𝑃𝐷𝐺(𝑘)
ℎ  

and 𝑄𝐶𝐵(𝑘)
ℎ  are the active power injection by a DG 

and reactive power injection by a CB at bus-k at hour-

h, respectively; 𝜃𝐷𝐺(𝑘)
ℎ is the power factor angle of the 

DG-k’s converter at time-h.   

The VAr support by a photovoltaic (PV)/ fuel cell 

(FC) type DGs is negligible and thus 𝜃𝐷𝐺(𝑘)
ℎ = 0 , 

whereas it can be controlled between 0.3 and 1 for 

wind turbine (WT)/ micro turbines (MT) type DGs. 

Eq. (5) is defined for only CBs integrated buses for 

VAr compensation. 

2.2 ESS-CBs modeling 

The ESS is mainly active power source and it is 

also capable to provide reactive power via its 

converter. Under this condition, its back-up time may 

reduce significantly. In order to meet the reactive 

power loading of the network under islanding mode, 

switched CBs are also integrated at the same bus. 

Thus, by having a tap-changer further, the voltage at 

ESS-CB location can be maintained constant and 

continuously. Thus, this entire set-up can be treated 

as a dispatchable DG when it is operating under grid-

connected mode and it can be modelled as a generator 

bus according to load flow theory, as shown in Fig. 1. 

Also, when the network is subjected to islanding 

conditions, it can be treated as a slack bus by which, 

the deficit power in the network can be met.  

Identification of such location by which network 

can operate with good performance low distribution 

losses and adequate voltage profile is a challenging 

task as network size increases. 

3. Problem formulation 

This section provides the proposed objective 

functions for (i) CBs allocation, (ii) DGs allocation 

and (iii) ESS-CBs allocation, separately. 

3.1 CB allocation under normal mode 

In CBs allocation problem, the objective function 

𝐹𝐶𝐵 is formulated for maximizing the energy loss cost 

savings. In each simulation hour, the CB operational 

cost is different due to change in kVAr settings. 

Similarly, there is a change in active power loss w.r.t. 

uncompenation losses. Thus, the overall net-savings 

are evaluated for a 24-hr time span, as follows:     

  

𝐹𝐶𝐵 = 𝑚𝑎𝑥[∑ {𝜅𝐿𝑃̅𝐿𝑅
ℎ − ∑ 𝜅𝐶𝐵𝑄𝐶𝐵(𝑘)

𝑛𝑐𝑏
𝑘 }24

ℎ=1 ]   (4) 

 

where𝑃̅𝐿𝑅
ℎ = (𝑃̅𝐿

ℎ − 𝑃̅𝐿
𝑏), 𝑃̅𝐿

ℎ  and𝑃̅𝐿
𝑏  are the total 

active power distribution losses before and after VAr 

injection by CBs, respectively; 𝑃̅𝐿𝑅
ℎ  is the reduced 

loss, 𝜅𝐿 is the cost of grid-power in $/kW, 𝜅𝐶𝐵 is the 

cost of CBs [4], 𝑄𝐶𝐵(𝑘) is the VAr rating of CB at 

bus-k. 

3.2 DG allocation under normal mode 

The objective function for DGs allocation is 

formulated for minimizing active power distribution 

losses, and GHG emission reduction, as follows:     

  

𝐹𝐷𝐺 = 𝑚𝑖𝑛[∑ (𝑃̅𝐿
ℎ + 𝐺𝐻𝐺𝑒𝑚

ℎ )24
ℎ=1 ]        (5) 

 

where 𝐺𝐻𝐺𝑒𝑚
ℎ  are the net GHG emission from the 

conventional power plants associated with main grid 

[8].  

3.3 Simultaneous ESS+DG+CBs allocation under 

islanding mode 

The objective function for ESS-CBs is defined to 

meet the deficit apparent power demand by maintain 

proper voltage profile and low distribution losses 

under islanding conditions.  

 

𝐹𝐸𝑆𝑆−𝐶𝐵 = 𝑚𝑖𝑛 

[∑ {(𝑆𝐷̅
ℎ − 𝑆𝐷𝐺

ℎ ) + 𝑃̅𝐿
ℎ + ∑ (1 − |𝑉𝑘

ℎ|)𝑛𝑏𝑢𝑠
𝑘=1 }24

ℎ=1 ]  (6) 

 

where 𝑆̅𝐷
ℎ and 𝑆𝐷𝐺

ℎ  are the apparent power demand of 

the network and total DGs power generation at time-

h, respectively, 𝑛𝑏𝑢𝑠 is the number of buses in the 

network. 
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3.4 Constraints 

The following are the major operational and 

planning constraints considered while solving the 

proposed objective functions.       

 

|𝑉𝑘|𝑚𝑖𝑛 ≤ |𝑉𝑘
ℎ| ≤ |𝑉𝑘|𝑚𝑎𝑥                    (7) 

 

∑ 𝑄𝐶𝐵(𝑘) + ∑ 𝑄𝐷𝐺(𝑘)
ℎ𝑛𝑑𝑔

𝑘=1 ≤𝑛𝑐𝑏
𝑘 𝑄𝐷

ℎ + 𝑄̅𝐿
ℎ      (8) 

 

∑ 𝑃𝐸𝑆𝑆(𝑘) + ∑ 𝑃𝐷𝐺(𝑘)
ℎ𝑛𝑑𝑔

𝑘=1 ≤𝑛𝑒𝑠𝑠
𝑘 𝑃𝐷

ℎ + 𝑃̅𝐿
ℎ     (9) 

 

where 𝑃̅𝐿
ℎ and 𝑄̅𝐿

ℎ are the active and reactive powers 

losses of the network, respectively; 𝑃𝐷𝐺
ℎ  and 𝑄𝐷𝐺

ℎ  are 

the active and reactive power generations by all DGs 

and CBs, respectively; 𝑃𝐸𝑆𝑆 is the active power rating 

of ESS, |𝑉𝑘|𝑚𝑖𝑛  and |𝑉𝑘|𝑚𝑎𝑥  are the minimum and 

maximum voltage profile limits, respectively. 

4. Self-adaptive dragonfly algorithm 

Dragonfly swarming patterns are used to develop 

the dragonfly algorithm (DFA) algorithm's 

exploration and exploitation stages. These phases 

represent meta-heuristic optimization's search and 

discovery. DFA generates a swarm of randomly 

distributed dragonflies. The swarm of dragonflies 

separates, aligns, and coheres to survive by attracting 

and distracting. By modelling these unique features, 

DFA was developed as a global optimization 

algorithm [31]. In this section, the fundamental 

concept of DFA and its improvement using self-

adaptive mechanisms are explained. 

4.1 Constraints modeling of DFA phases 

In the search space, ith dragonfly is represented by 

a vector of search variables as given by,  

 

𝑥𝑖 = [𝑥𝑖
1, 𝑥𝑖

2, 𝑥𝑖
3, … , 𝑥𝑖

𝑗
, … , 𝑥𝑖

𝑑𝑠]              (10) 

 

where 𝑥𝑖
𝑗
 is the position of jth search variable of ith 

dragonfly, 𝑑𝑠 is the dimension of solution variables 

of the optimization problem.  

Each variable is constrained by lower and upper 

limits by, 

 

𝑥𝑖
𝑗

= [𝑥𝑖(𝑙𝑏)
𝑗

, 𝑥𝑖(𝑢𝑏)
𝑗

]; 𝑗 = 1,2, … , 𝑑𝑠          (11) 

 

Initially, the search region of the problem is 

generated by using uniformly distributed random 

number theory, given by, 

 

 𝑥𝑖
𝑗

= 𝑥𝑖(𝑙𝑏)
𝑗

+ [𝑥𝑖(𝑢𝑏)
𝑗

−  𝑥𝑖(𝑙𝑏)
𝑗

] × 𝑟𝑎𝑛𝑑     (12) 

 

where 𝑥𝑖(𝑙𝑏)
𝑗

 and 𝑥𝑖(𝑢𝑏)
𝑗

 are the lower and upper 

bounds of jth solution variable of ith dragonfly, 

respectively; 𝑟𝑎𝑛𝑑 is a random number in the range 

of 0 and 1.     

A dragonfly's position in the solution space 

represents each optimization solution or fitness. The 

movement of dragonflies for the next iteration is 

modelled by velocity vector using various parameters 

as by, 

 

 𝑣𝑖(𝑘+1)
𝑗

= (𝑤𝑠𝑆𝑖 + 𝑤𝑎𝐴𝑖 + 𝑤𝑐𝐶𝑖 + 𝑤𝑓𝐹𝑖 + 𝑤𝑒𝐸𝑖) 

+𝑤𝑖𝑣𝑖(𝑘)
𝑗

    (13) 

 

where 𝑤𝑠, 𝑤𝑎, 𝑤𝑐, 𝑤𝑓, 𝑤𝑒, and 𝑤𝑖 are the weighting 

factors for separation (𝑆𝑖), alignment (𝐴𝑖), cohesion 

( 𝐶𝑖 ), food ( 𝐹𝑖 ) and enemy ( 𝐸𝑖 ), and inertia, 

respectively.  

 

𝑆𝑖 = − ∑ (𝑥𝑖
𝑖 − 𝑥𝑗

𝑖)𝑗∈𝜑               (14) 

 

𝐴𝑖 =
1

𝑛ℎ
∑ 𝑣𝑖

𝑗
𝑗∈𝜑                       (15) 

 

𝐶𝑖 = (
1

𝑛ℎ
∑ 𝑥𝑗

𝑖
𝑗∈𝜑 ) − 𝑥𝑖

𝑖             (16) 

 

𝐹𝑖 = 𝑥𝑖(𝑏𝑒𝑠𝑡)
𝑗

− 𝑥𝑖
𝑗
                   (17) 

 

𝐸𝑖 = 𝑥𝑖(𝑤𝑜𝑟𝑠𝑡)
𝑗

+ 𝑥𝑖
𝑗
                  (18) 

 

where 𝜑 is the neighboring individual swarm, 𝑣𝑖
𝑗
 is 

the velocity of jth solution variable of ith dragonfly, 

𝑛ℎ  is the number of neighbors, 𝑥𝑖(𝑏𝑒𝑠𝑡)
𝑖  is the best 

dragonfly / food source so far, 𝑥𝑖(𝑤𝑜𝑟𝑠𝑡)
𝑗

is the worst 

dragonfly / enemy so far.   

The position of ith dragonfly for the next iteration 

is updated by. 

 

𝑥𝑖(𝑘+1)
𝑗

= 𝑥𝑖(𝑘)
𝑗

+ 𝑣𝑖(𝑘+1)
𝑗

              (19) 

 

When there is no surrounding solution, 

dragonflies use a random walk (Levy's flight) to 

improve randomization, stochastic behavior, and 

exploration. 

 

𝑥𝑖(𝑘+1)
𝑗

= 𝑥𝑖(𝑘)
𝑗

+ 𝐿𝑓𝑙 × 𝑥𝑖(𝑘)
𝑗

                 (20) 

 

𝐿𝑓𝑙(𝑥) = 0.01 ×
(𝑟1×𝛼)

|𝑟2|𝛽 × 𝑥𝑖(𝑘)
𝑗

          (21) 
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Table 1. Optimal CB allocation under normal mode 

Method 

CBs 

(kVAr)  

/bus # 

Ploss  

(kW) 
𝑭𝑪𝑩 ($) 

– – 210.9976 – 

GSA [1] 

350/26 

450/13 

800/15 

198.1421* 1846.12 

FPA [3] 

450/13 

450/24 

900/30 

139.0876 11744.28 

DVSA [10] 

450/24 

450/12 

1050/30 

138.429 11780.07 

SADFA 

400/13 

550/24 

1050/30 

138.285 11811.7 

 

𝛼 = (
Γ(1+𝛽)×𝑠𝑖𝑛(

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×2

(
𝛽−1

2
)
)

1

𝛽

               (22) 

 

𝐿𝑓𝑙(𝑥) = (𝑥 − 1)!                   (23) 

 

where 𝑟1 and 𝑟2 are the random numbers in the range 

of 0 and 1, respectively; 𝛽 is the constant.   

4.2 Self-adaptive mechanism 

The computation efficiency of basic DFA is 

dependent on different weighting parameters as seen 

earlier. In order to escape local trap and to achieve 

global solution with better exploitation phase, the 

search variables influenced by using dynamically in 

SADFA [32], as follows: 

 

𝑥𝑖 = [𝑥𝑖
1, … , 𝑥𝑖

𝑑𝑠, 𝑤𝑠, 𝑤𝑎 , 𝑤𝑐 , 𝑤𝑓 , 𝑤𝑒 , 𝑤𝑖, 𝜀𝑖]   (24) 

 

where 𝜀 𝑖 is a factor used to control the radius (ℛ) and 

is given by, 

 

ℛ𝑖
𝑗

= (𝑥𝑖(𝑢𝑏)
𝑗

−  𝑥𝑖(𝑙𝑏)
𝑗

) × 𝜀𝑖           (25) 

 

The lower and upper limits for 𝑤𝑠, 𝑤𝑎, 𝑤𝑐, 𝑤𝑓, 𝑤𝑒, 

𝜀𝑖 and 𝑤𝑖 are [0, 0, 0, 0, 0, 0, 0] and [0.15, 0.15, 0.15, 

2, 0.15, 1, 1], respectively [32]. 

In this way, each dragonfly that possesses the 

extra criteria goes through the entire search procedure. 

When searching, the SADFA provides superior 

offspring with less computing work. 

5. Results and discussion 

The simulations are performed in MATLAB 

environment on IEEE 33-bus test system. It consists 

of 33 buses interconnected by 32 branches, and total 

real and reactive power demands of 3715 kW and 

2300 kVAr respectively. By choosing the base values 

of 100 MVA and 12.66 kV, the BW/FW load flow 

[30] is performed to assess the network performance.  

Simulations are performed for two scenarios. 

Scenario 1 for normal grid connected mode with two 

different case studies as (i) only CBs allocation, and 

(ii) only DGs allocation.  Scenario 2 for islanding 

mode with two different case studies as (i) only 

ESS+CBs allocation, and (ii) only ESS+CB+DGs 

allocation. 

5.1 Simulations considering normal mode 

The uncompensated system has suffered 210.5484 

kW of real power loss and 142.7439 kVAr of reactive 

power loss. It has the lowest voltage of 0.9039 p.u. at 

bus-18. In this case, the overall operating cost is 

$3,537.14. The cost of real power loss is selected as 

168 cents per kWh per year. The CBs' operating costs 

are estimated using the shape-preserving interpolate 

method by considering the cost details of practically 

available capacitor sizes in kVAr and their prices in 

$/kVAr [4]. 

5.1.1 Only CBs allocation for normal mode 

In this case study, the network performance is 

analysed by integrating three CBs optimally into the 

network. The objective function expressed in Eq. (6) 

is optimised using the proposed SADFA. The 

obtained results are compared with those in the 

literature. 

The total reactive power load of the network is 

2300 kVAr. The limits for search variables in this test 

system are chosen as follows: The lower limit and 

upper limit for locations are [2, 2, 2] and [33, 33, 33], 

respectively. The lower limit and upper limit for sizes 

are [0, 0, 0] and [2300, 2300, 2300], respectively. The 

computational characteristics of PSO, BOA, FSA, 

DFA and SADFA are provided in Fig. 2. The best 

results obtained by SADFA are explained here and 

compared with literature works in Table 1.  

The best locations are 14, 30, and 24, and 

correspondingly, the best sizes in kVAr are 400, 550, 

and 1050, respectively. The network active power 

loss decreased to 138.1954 kW from 210.5484 kW, 

which accounted for a 34.36% reduction. The 

operating cost is reduced to 11811.7 $from 35373.14 

$. In comparison to the base case, it is around a 

66.67% reduction. The savings seem to be high with 

the results of GSA [1], but the network is poorly 

operating with higher losses, where as SADFA is  
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Figure. 2 Convergence characteristics while solving CBs 

allocation problem under normal mode 

 

 
Figure. 3 Convergence characteristics while solving DGs 

allocation problem under normal mode 

 
Table 2. Optimal DG allocation under normal mode 

Method 
DGs (kW)  

/bus # 

Ploss  

(kW) 

𝑮𝑯𝑮𝒆𝒎
𝒉  

(lb/h) 

– – 210.9976 8039.113 

MOSCA [15] 

514.9/14 

948.9/28 

635.16/23 

90.1385* 3493.673 

FPA [19] 
1033.9/12 

1086.6/30 
87.4771 3444.117 

WOA [18] 

1072.83/30 

772.448/25 

856.678/13 

73.7566 2225.398 

MRFO [13] 

788.28/13 

1017.1/24 

1035.3/30 

72.8993 1939.591 

SKH [17] 

1054.64/30 

1091.39/24 

801.8/13 

72.7869 1719.946 

HGWO [16] 

802/13 

1090/24 

1054/30 

72.7865 1723.693 

SADFA 

775.4/14       

1081.36/24    

1077.24/30 

71.815 1746.275 

 

highly competitive to FPA [3] and DVSA [10] in 

terms of reduced losses and net-savings.  

5.1.2. Only DGs allocation for normal mode 

The total active power load of the network is 3715 

kW. Since there are no DGs in the network, the GHG 

emissions for total load and losses are equal to lb. The 

SADFA is now working to improve Eq. (7), which is 

designed to reduce loss and GHG emissions 

simultaneously. The following are the search variable 

limits in this test system: The limits for locations are 

the same as in Section 5.1.1. 

The lower limit and upper limit for sizes are [0, 0, 

0] and [3715, 3715, 3715], respectively. The 

computational characteristics of PSO, BOA, FSA, 

DFA and SADFA are provided in Fig. 3. The best 

results obtained by SADFA are explained here and 

compared with literature works in Table 2. The best 

locations are 14, 24, and 30, and correspondingly, the 

best sizes in kW are 775.4, 1081.36, and 1077.24, 

respectively. The network active power loss 

decreased to 71.815 kW from 210.5484 kW, which 

accounted for a 34.36% reduction. The GHG 

emissions were reduced to 1746.275 lb/h from 

8039.113 lb/h. 

In comparison to the base case, it is around a 

78.28% reduction. The results obtained by SADFA 

are highly competitive with MOSCA [15], FPA [19], 

WOA [18], MRFO [13], SKH [17], and HGWO [16]. 

5.2 Simulations considering islanding mode 

In this Case-3, the network is assumed to be in 

islanding mode. Thus, one of the best locations 

should be modelled as a slack bus, and such a bus 

should be selected for hybrid ESS with CBs in the 

network. In this case study, the network performance 

is analysed by integrating two CBs optimally into the 

network along with one hybrid ESS with CBs as slack 

buses. The objective function expressed in Eq. (8) is 

optimised using the proposed SADFA. The best 

location for a slack bus is identified as bus-6, and the 

network performance is as follows: At bus-18, the 

real power loss was 97.1299 kW, the reactive power 

loss was 75.9895 kVAr, and the minimum voltage 

magnitude was 0.9568 p.u.  

5.2.1. Only DGs allocation for islanding mode 

Considering bus-6 as a slack bus, the locations and 

sizes of two CBs are optimized. The hybrid ESS at 

bus-6 is (3789.23+j822.81) kVA, and the two CBs in 

kVAr are: 896.42/30 and 639.82/24, respectively.  

Correspondingly, the network performance is 

improved as follows: The real power loss is 74.2305 

kW; the reactive power loss is 59.0521 kVAr; the 

minimum voltage magnitude is 0.9568 p.u. at bus-18. 

The overall VDI is reduced to 0.6986 from 0.8308. 
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Table 3. Optimal allocation of single hybrid ESS, CBs and DGs under islanding mode 

Case 

# 
Hybrid ESS/ bus # 

CBs (kVAr) 

/ bus # 

DGs (kVAr) 

/ bus # 

Ploss 

(kW) 

Qloss 

(kVAr) 

Vmin (p.u.) 

/ bus # 
VDI 

Base 3790.99/ 2375.99/ 6 – – 97.1229 75.9895 0.9568/ 18 0.8308 

1 3789.23/ 822.81/ 6 
896.42/30 

639.82/24 
– 74.2305 59.0521 0.9568/ 18 0.6986 

2 1829.83/ 2337.324/ 6 – 
1280.39/24 

652.11/14 
47.3380 37.3240 0.9687/ 33 0.4168 

3 1347.87/ 663.27/ 6 
780.75/4 

888.67/30 

1624.98/4 

779.82/30 
37.6792 32.68 0.9568/ 18 0.4357 

 

5.2.2. One hybrid ESS with DGs allocation 

Considering bus-6 as a slack bus, the locations and 

sizes of two DGs are optimized. The hybrid ESS at 

bus-6 is (1829.83+j2337.32) kVA, and the two DGs 

in kW are: 1280.39/24 and 652.11/14, respectively.  

Correspondingly, the network performance is 

improved as follows: The real power loss is 47.338 

kW; the reactive power loss is 37.324 kVAr; the 

minimum voltage magnitude is 0.9687 p.u. at bus-33. 

The overall VDI is reduced to 0.4168 from 0.8308. 

5.2.3. One hybrid ESS with DGs+CBs allocation 

Considering bus-6 as a slack bus, the locations and 

sizes of two DGs and two CBs are optimized. The 

hybrid ESS at bus-6 is (1347.87+j663.27) kVA, and 

the two DGs in kW are: 1624.98/4 and 779.82/30, 

respectively. The two CBs in kVAr are: 780.75/4 and 

888.67/30, respectively.  

Correspondingly, the network performance is 

improved as follows: The real power loss is 37.6792 

kW; the reactive power loss is 32.68 kVAr; the 

minimum voltage magnitude is 0.9568 p.u. at bus-18. 

The overall VDI is reduced to 0.4357 from 0.8308. 

5.3 Discussion and future scope 

The simulation results presented in sections 5.1 

and 5.2 show that the electrical distribution networks 

can be operated effectively by integrating CBs and 

DGs at optimal locations with appropriate sizes. 

However, there is a possibility to improve the 

operational conditions by using reconfiguration along 

with DGs and CBs allocation. In [34], the mayfly 

algorithm (MFA) is introduced for optimally sizing 

and locating hybrid RE systems with storage for 

islanding conditions. In comparison to this work, 

there is a possibility for comparative study with 

DSTATCOM and CBs.  

On the other hand, network reconfiguration along 

with DGs and CBs can further improve the network 

performance. [35], mixed-integer particle swarm 

optimization (MIPSO) [36], genetic algorithm [37], 

self-adaptive butterfly algorithm (SABOA) [38], and 

honey badger algorithm [HBA] [39], and many other 

algorithms as seen in [40], have been used for 

simultaneous DGs/CBs allocation and network 

reconfiguration. In this connection, the current work 

can be further extended for reconfiguration.       

6. Conclusion 

In this paper, a novel optimization method based 

on an enhanced version of the dragonfly algorithm 

(DFA) is proposed for calculating the locations and 

capacities of ESSs combined with CBs. For the 

global solution to be reached with the least amount of 

computational work, different basic DFA 

performance variables are tuned through a self-

adaptive mechanism in SADFA. The simulation 

findings on the IEEE 33-bus are contrasted with 

published studies and other algorithms, such as the 

fundamental DFA, PSO, BOA, and FSA. According 

to the comparison analysis, SAFDA is dominated by 

literary works and all other simulated algorithms. 

When the network is islanded, there is a need for an 

ESS of 3791 kW/h with a CB of 2376 kVAr. On the 

other hand, by strategically placing CBs and DGs in 

the network, the ESS size is reduced to 1348 kW/h 

with a 663.27 kVAr CB. This results in a loss of 97.12 

kW to 37.68 kW. Additionally, it is demonstrated that 

the suggested strategy for ESS, CBs, and DGs 

integration is effective in meeting IMG energy 

requirements with lower losses, greater economic 

benefits, and applicability for real-world applications. 
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