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ABSTRACT

Classical means, Heron mean, Schur
Convexity, Schur geometric Convexity.

In this paper, the complementary of arithmetic mean, geometric mean,
harmonic mean and contra harmonic mean with respect to Heron mean are

defined. Further, by finding the partial derivatives developed the Schur
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1. INTRODUCTION

The well-known means in literature namely; Arithmetic
mean, Geometric mean and Harmonic mean are
presented by Pappus of Alexandria [Bullen, 2003]. In
Pythagorean school on the basis of proportion, 10 Greek
means are defined, among these means the well-known
in literature are given as follows: For two positive real

numbers a and b; A(a,b) = asz . G(a,b) = Vab;

2
H(ab) = 22 P These  are

b and C(a,b) = 0
respectively called Arithmetic mean (A.M), Geometric
mean (G.M), Harmonic mean (H.M) and
Contraharmonic mean (C.M). In 1958, C. Gini
introduced Complementary means and G.Toader in
1991 proposed a generalization of complementariness
and inversion (Toader, S. & Toader, G. 2005). In 1923,

1 Corresponding author: K M Nagaraja
Email: nagkmn@gmail.com

Issai Schur introduced the concept of Schur convexity,
which has applications in linear regression, analytic
inequalities, Gamma functions, graphs and matrices,
stochastic ~ orderings, combinatorial optimization,
information theoretic topics, reliability and related
fields.

2. LITERATURE REVIEW

The Schur geometrical convexity and concavity of the
extended and other mean values were discussed by
(Chu, Y. M. et al, 2008, Shi, H. N. et al, 2010, Murali,
K. & Nagaraja, K. M. 2013, 2016, Janardhana, L. et al,
2017)

Results on Schur convex and concave functions studied
by (Elezovic, N. et al, 1998, Janardhana, L. et al, 2017a,
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2017h, Lokesh, et al, 2010a, 2010b, 2011, Marshall, A.
M. & OIkin, 1. 1979, Nagaraja, K. M. et al, 2008, 2010,
2011, 2013, 2014a, 2014b, 2014c, 2017, Naveen
Kumar, B. et al, 2014, Sampath Kumar, R. et al., 2017a,
2017h).

The Schurharmonic convexity and concavityresults
were discussed in (Nagaraja, K. M. et al.,, 2013a,
2013b). This paper was developed based on the above
literature survey.

3. DEFINITIONS AND LEMMAS

Definition 1: (Toader, S. & Toader, G. 2005) A mean N
is called complementary to M with respect to P( or P-
complementary to M) if it verifies P(M,N) =P, it is
denoted by M® = N .
1. The complementary of geometric mean with
respect to Heron mean is denoted by G #¢) and
is given by

GHe) = %[2a+ 2b +ab —

\/4(a + b)Vab + ab].

2. The complementary of arithmetic mean with
respect to Heron mean is denoted by A*¢) and
is given by

AHe) % [3(1 +3b + 4Vab —

J(a +b)(5a + 5b + 8@)].

3. The complementary of harmonic mean with
respect to Heron mean is denoted by H®*¢) and
is given by

ab
HH® =qa+b++ab—

a+b
\[Zab(a + b)2 + 2+/ab(a + b) — 3ab

a+b
4. The complementary of contra harmonic mean
with respect to Heron mean is denoted by

Cc™® and is given by

2 +b2
C(”e):z(a+b+\/ﬁ)—a -
a+b
J[(az + b2) + 8ab + 4Vab(a + b)](a? + b?)

a+b

Definition 2: [A. M. Marshall and I. Olkin, 1979]

Letx = (xq,xp,...,xp) and y = (Y1, V2, -, Yn)ER™

(i) x is majorized by y, (in symbol x < y). IfYF, x; <
L1y Zhix =YL yiwhere x; 2xp,2..,2

xpand y; =y, =...2> y, are rearrangements of x and y

in descending order.(ii) Q< R™is called a convex set if
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(axy + By1 e e ax, + By,)for every x,yef, where
a,Be[0,1]witha + g = 1.

Let QS R™ the function ¢: 2 — R is said to be a Schur
convex function on Q if x < y on Q implies @(x) <
@(y). @is said to be a Schur concave function on Q if
and only if - ¢ is Schur convex.

Definition 3: Let x = (xy,%,,...,x,)andy =
1Yo Yn)ER™, QS R™ is called geometrically
convex set if for everyx,y ep, where a,Be[0,1]with
a+f =1

Let Q< R™, the function ¢: 2 — R, is said to be Schur
geometrically ~ convex  function on Q if
(Inxq, Inx,, ..., Inx,) 2 (Inyy, Iny,,...,Iny,) on Q
implies

() <@(y). Then ¢ is said to be a Schur
geometrically concave function on ¢ if and only if —¢
is Schur geometrically convex.

Definition 4: Q<€ R™is called symmetric set if xef
implies PxeQ for every nxn permutation matrix P.

The function ¢: 2 — R is called symmetric if for every
permutation matrix P, @(Px)= ¢ (x) for all xeQ.

Definition 5: Let QS R™ ¢:2 — R be symmetric and
convex function, then ¢ is Schur convex on 0.

Lemma 1: Let Q< R™ be symmetric with non-empty
interior geometrically convex set and let ¢: 2 — R, be
continuous on 2 and differentiable in 2°. If

@ is symmetric on 22 and

dp Od¢
— —_— ] > <
(1 = x2) (Bxl Oxz) =0(=0)
do do
— _— > <
(Inx; — Inx,) <x1 %, x20x2> =>0(<0)
do do
_ 2T _ 21 )>0(<
(%1 —x3) <x1 %, X, Oxz) =>0(<0)

is a Schur convex (concave), Schur-geometrically
convex(concave) and Schur-harmonically convex

(concave) function respectively.

4. MAIN RESULTS

Theorem 1: For a,b >0, the complementary of
arithmetic mean with respect to Heron mean is Schur
concave.

Proof: The complementary of arithmetic mean with
respect to Heron mean is given by;

A”e=§[3a+3b+4«/a_—

\/(a + b){5a + 5b + 8vVab}

The partial derivatives of Af¢ with respect to a and b
are given by
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dAfe 1 2b 4b\(/‘ib) +10(a + b) + 8\/_
aa it ymT
st(a +b)% + 8Vab(a + b)
and
dAfe 1 2a 4a\(/¢£b) +10(a + b) + 8\/_
=3+ —-
b 4
vab st(a +b)% + 8Vab(a + b)
Consider,
aAte  9Afe 1|b—a
da b 2| Jab
(b—a)(a+b)
B Jab
st(a +b)?2 +8Vab(a + b)
Then,
aAHe aAHe
(a_b)[ da  ab ]
(a — b)? a+b—\/5(a+b)2+8x/%(a+b)
2vab \[S(a+b)2 + 8vab(a + b)
Clearly, 0<4(a+b)?>+8Vab(a+b)  adding

(a + b)? on both sides, then

a+b<\/5(a+b)2+8\/%(a+b)

aAHe
Thus, (a — 5 < 0.

Hence the proof of the theorem 1.

Theorem 2: Fora,b >0, the complementary of
arithmetic mean with respect to Heron mean is Schur
geometrically convex.

Proof: The complementary of arithmetic mean with
respect to Heron mean is given by;

AHe =%[3a+3b+4\/a -

\[(a + b){5a + 5b + 8Vab}

The partial derivatives of A"¢ with respect to a and b
are given by

aAHe 1 2b 4b\(/ﬁb) + 10((1 + b) + 8Va
=-[3+=-
da 4 \/
ab 2\/5((1 +b)? + 8Vab(a + b)
and

aAHe 1 2a 4a\(;ib) + 10((1 + b) + 8\/_

o4 Vab \/5(a+b)2+8\/_(a+b)

Consider,
aAHe aAHe
R TR R
5(b—a)(a+b) +4Vab(b — a)
2J5(a + b)2 + 8Vab(a + b)
Then,
aAHe aAHe
(Ina — Inb) [a %a —-b b ] =

(Ilna — Inb)(a — b) . 5(a + b) + 4Vab

4

\/S(a + b)2 +8Vab(a + b)

Clearly, 3J5(a + b)2 +8Vab(a + b) — (5(a + b) +
4/ab) > 0

Thus, (Ina — Inb) [a— - b—] >0,

Hence the proof of the theorem 2.

Theorem 3: Fora,b > 0, the complementary of

geometric mean with respect to Heron mean is Schur
CONVEX.

Proof: The complementary of geometric mean with
respect to Heron mean is given by

1
GHe 22a+2b+\/_ 4(a+b)\/_+abJ

The partial derivative of G*¢ with respect to a and b are
given by

aGhe 1 ag b b(vab + 6a + 2b)
da 4 vab
mJab+4M(a+b)_
and
agte 14+ a a(vab + 6b + 2a)
ab 4| " Vap
vab \/_\/ab+4\/_(a+b)
Then,
b aGHe aGHe

(a-b)? \/E+2(a+b)—\/ab+4\/%(a+b)

4/ab \/ab+4\/%(a+b)
Clearly, Vab + 2(a + b) — \/ab +4vab(a + b)>0
Thus, (a — b) [ag_ — ag:e] > 0.

Hence the proof of the theorem 3.
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Theorem 4: For a,b >0, the complementary of
geometric mean with respect to Heron mean is Schur
geometrically convex.

Proof: The complementary of geometric mean with
respect to Heron mean is given by

1
GHe =§[2a+2b+@—\/4(a+b)\/ﬁ+ab

The partial derivative of G*¢ with respect to a and b are
given by

aGHe=14+L_ b(Vab + 6a + 2b)

R R Pavv=s
and ) _

aGHe=14+i_ a(Vab + 6b + 2a)

P Y a fab + 4B+ )
Then,(Ina — Inb) [a% —b 63: ]

(Ina — Inb)(a — b) 4— 4ab

4 \/ab+4\/ﬁ(a+b)

Clearly, 4\[ab + 4vab(a + b) — 4ab > 0

aGHe BGHE
Thus, (Ina — Inb) I:a? - bw] > 0.

Hence the proof of the theorem 4.

Theorem 5: For a, b > 0, the complementary of contra
harmonic mean with respect to Heron mean is Schur
concave.

Proof: The complementary of contra harmonic mean
with respect to Heron mean is given by

a® + b?
CHe =2a+2b+2Vab —
a+b

J(az +b2)2 + (a2 + b2)[8ab + 4Vab(a + b)|

a+b
The partial derivatives of C#¢ with respect to a and b
are given by
octe b 2a

- a+b

(a® + b?)
(a + b)?

50~ Tm
\/(az + b2)2 + (a2 + b?)[8ab + 4Vab(a + b)]
+
(a + b)?

2 2 2b(a+b)
(a® +b?)[4a + 8D + — + 4/ab|

2(a + b)\/(az +b2)2 + (a2 + b?)[8ab + 4Vab(a + b)|

[4a +8b+ % + 4\/@] + 16a?b + 8a(a + b)Vab

2(a + b)J(aZ + b2)2 + (a% + b*)[8ab + 4Vab(a + b)]
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and
acHe a 2b

b ‘YU a+b

(a® +b?) + J(az + b2)2 + (a® + b?)[8ab + 4Vab(a + b)]
+

(a + b)?
(a? + b?) [4b + 8a + 2=2 + 4vab|

2(a+ b)\/(az + b2)2 + (a2 + b?)[8ab + 4Vab(a + b)|

16ab? + 8b(a + b)Vab

2(a+ b)\/(az + b2)2 + (a2 + b?)[8ab + 4Vab(a + b)|
Consider,

octe BC”e_b—a+2(b—a)
da ob  Jab a+b

24 p2 _ 2(a=b)(a+b)
. (@ +b?) [4(a — b) + o ]

2(a+ b)J(aZ +b2)2 + (a2 + b?)[8ab + 4Vab(a + b)|
(b —a)(16ab + 8Vab(a + b))

+

2(a+ b)\/(az + b%)?2 + (a% + b2)[8ab + 4Vab(a + b)]

acHe  gcHe 1 2
Then, (a = b) |- =70~ = ~(a -0 [ 5+ .5
_4(a? + 2y _ 2(@+b?)(a+b)
4(a” + b*?) NGTS + 16ab + 8vVab(a + b)

2(a + b)\[(az +b2)2 + (a2 + b?)[8ab + 4Vab(a + b)|

_ —(a—b2(Va+vb)’
B (a + b)vab

4ab—a? — b?
1

+

J(a2 + b2)% + (a® + b%)[8ab + 4Vab(a + b)]
Clearly,
\/(az +b2)2 + (a2 + b2)[8ab + 4Vab(a + b)|+
4ab—a®* —b%>>0
Thus, (a — b) [acHE oct

da  ob ]< 0.
Hence the proof of the theorem 5.

Theorem 6: For a, b > 0, the complementary of contra
harmonic mean with respect to Heron mean is Schur
geometrically concave.

Proof: The complementary of contra harmonic mean
with respect to Heron mean is given by

2+b2
cHe = 2a + 2b + 2ab — -
a+b
\/(az + b2)2 + (a? + b%)[8ab + 4Vab(a + b)]
B a+b

The partial derivatives of ¢ with respect to a and b
are given by (refer theorem 5)
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Consider,
octe baCHe_(b—a)[—az—bZ] b—a ]

“a " " ab (a+b)? (a+b)?

(a®? + b?)(a® + b% + 4ab)

+

\/(az + b2)2 + (a2 + b2)[8ab + 4Vab(a + b)|

2vab(a + b)(3a® + 3b? + 8ab)

J(az + b2)2 + (a2 + b2)[8ab + 4Vab(a + b)]
Then,

a nb) acte bacHe _ (Ina—Inb)(b—a)
na—mbaTs, ab (a +b)?

(a? + b*)(a® + b? + 4ab)

\[(az +b2)2 + (a2 + b2)[8ab + 4Vab(a + b)|

]
_a2 _ b2|

2+ab(a + b)(3a? + 3b% + 8ab)

J(az +b2)2 + (a? + b2)[8ab + 4Vab(a + b)|

Clearly, above expression is positive.
Thus, (Ina — Inb) [aﬂ —b ﬂ]< 0
! da ab ’
Hence the proof of the theorem 6.
Theorem 7: For a,b >0, the complementary of

harmonic mean with respect to Heron mean is Schur
concave.

Proof: The complementary of harmonic mean with
respect to Heron mean is given by

b
HY = a+ b+ Vab — —
atb
\/ab[z(a+b)2+2(a+b)«/%—3ab]

a+b
The partial derivatives of H*¢ with respect to a and b

are given by

oHMe b b
=1+ —~
da 2vab a+b
ab + \/ab[Z(a + b)2 + 2vab(a + b) — 3ab]
* @+b)?

b(a+b)
ab( = +4(a+b)+2\/%—3b)

2(a +b)_|ab[2(a + b)* + 2Vab(a + b) — 3ab]
b(2(a + b)? + 2vab(a + b) — 3ab)

2(a +b)_|ab[2(a + b)* + 2Vab(a + b) — 3ab]

and
JHHe a a
=1+ -
ab 2Jab a+b
ab + Jab[Z(a + b)2 + 2+ab(a + b) — 3ab]
* @1b)?
ab(%+4(a+b)+2\/ﬁ—3a)

2(a + b)Jab[Z(a + b)? + 2Vab(a + b) — 3ab]
a(2(a + b)? + 2vab(a + b) — 3ab)

2(a + b)Jab[Z(a + b)? + 2Vab(a + b) — 3ab]
Then,

(a—b)<

aHHe aHHe> _[ (a — b)? y
da ob ) [2vab(a +b)

2(a + b)? + 3Vab(a + b) — 6ab

2vVab—a—b +
JZ(a + b)? + 2+ab(a + b) — 3ab
Clearly,
Vah—a— b 2(a +b)? + 3Vab(a + b) — 6ab
2(a + b)? + 2vVab(a + b) — 3ab
>0
Thus (a — b) ("’;: - ";’:)

Hence the proof of the theorem 7.

Theorem 8: For a,b >0, the complementary of
harmonic mean with respect to Heron mean is Schur
geometrically convex.

Proof: The complementary of harmonic mean with
respect to Heron mean is given by

b
HY = a+ b +Vab — —
a+b
Jab[Z(a + b)2 + 2(a + b)Vab — 3ab]

a+b
The partial derivatives of H"¢ with respect to a and b

are given by (refer theorem?7)

Consider,

aHHe aHHe
(lna — Inb) <a

da ob
= (Ilna — Inb)(a — b) X

ab + \/ab[Z(a + b)? + 2vab(a + b) — 3ab]

1+ (@ + D)2

2ab(a + b) + abVab

(a+ b)\/ab[Z(a +b)? + 2Vab(a + b) - 3ab] / |
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He He
Clearly, Thus, (Ina — Inb) (a az;a - agb ) > 0.
/ ab + \/ab[Z(a + b)? + 2vab(a + b) — 3ab]\ Hence the proof of the theorem 8.
1+ 73
(a+b) Conclusion: The results discussed in this paper have
applications in linear regression, analytic inequalities,
2ab(a + b) + ab\ab Gamma function§, gr§phs an_d _ma_trices,_ stochas_,tic
- >0 orderings, combinatorial optimization, information
(a+ b)Jab[Z(a +b)2 + 2vab(a + b) — 3ab] theoretic topics, reliability and related fields.
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