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Abstract 
Lossless data compression algorithms can use statistical redundancy to represent data 
using a fewer number of bits in comparison to the original uncompressed data. Run-
Length Encoding is one of the simplest lossless compression algorithms in terms of 
understanding its principles and software implementation, as well as in terms of 
temporal and spatial complexity. If this principle is applied to individual bits of original 
uncompressed data without respecting the byte boundaries, this approach is referred to 
as bit-level Run-Length Encoding. Algorithm for lossless data compression, proposed 
in this paper, optimizes bit-level Run-Length Encoding data compression, uses special 
encoding of repeating data blocks, and, if necessary, combines it with delta data 
transformation or representation of data in its original form intending to increase 
compression efficiency compared to a conventional bit-level Run-Length Encoding 
approach. The advantage of the algorithm proposed in this paper is in the increase of 
the compression ratio in comparison to the bit-level Run-Length Encoding, with the 
higher time and space consumption as the trade-off. Test results, that were obtained by 
compression of the segmentation metadata of different volume datasets take place in 
the last part of the paper. 
Keywords: data compression, lossless data compression, run-length encoding, RLE, 
bit-level run-length encoding, three dimensional data, volume data, sparse voxel 
octrees, sparse voxel directed acyclic graph, symmetry aware sparse voxel directed 
acyclic graph 
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1. Introduction  
Information and Communication Technologies (ICT) produce enormous amounts of 
data daily. Some are discarded after they are created, transferred, and used, but a large 
portion is subsequently archived, extending the total amount of data currently 
included in ICT. The data transfer itself represents a significant burden for ICT, so we 
are looking for ways how to model, optimize and minimize it [1][2]. A large amount 
of data exists in multiple copies - in uncompressed or compressed forms. In practice, 
some types of data are even preferentially and almost exclusively stored and 
transmitted in a compressed version and often happens that they exist in their original 
form only for a short period of time - during their acquisition and initial processing. 
Examples are multimedia data such as images, audio sequences, and especially video 
sequences. A feature film in compressed form requires a storing capacity in GBs of 
the secondary storage device depending on the required quality and the encoder used. 
Its uncompressed version of 1920×1080 pixels (FullHD) at 24b/pixel and 25 frames 
per second with a recording time of 120 minutes requires up to 1TB of storage space 
on the secondary storage device. Storage of the uncompressed version and its 
distribution whether through storage media for the secondary storage devices or over 
computer networks would be impractical and costly for mass use.  

Lossy data compression with a higher compression ratio is mostly used in 
multimedia. Lossless compression usually does not reach such high compression 
ratios but may be similarly successful in certain cases with domain-specific 
algorithms. An example could be the compression of a geometry of voxelized three-
dimensional images. While in the uncompressed form its binary representation at the 
resolution of 64K3 voxels (65536 × 65536 × 65536) at 1b/voxel may have a volume 
up to 32TB. The compression using octant trees and the data structures derived from 
them allows lossless compression to compress the data down to hundreds of MB 
depending on the image content. Data structures useful for storing a compressed form 
of this geometry of voxelized image data include Sparse Voxel Octrees (SVO), 
Efficient Sparse Voxel Octrees (ESVO) [3], Sparse Voxel Directed Acyclic Graphs 
(SVDAG) [4] or Symmetry-aware Sparse Voxel Directed Acyclic Graphs (SSVDAG) 
[5]. Out-of-Core compression algorithm for creating the SVO data structure is 
described in detail in [6]. 

In both lossless and lossy algorithms, there are universal as well as domain-
specific compression algorithms with different data compression success rates. Their 
existence is given not only by historical development but also by different temporal 
and spatial complexity which justifies the use of less efficient compression algorithms 
that provide lower memory requirements and processing power of the processor while 
keeping a lower but sufficient compression ratio. Often, such lightweight compression 
algorithms are implemented on devices that have a significantly limited amount of 
memory, lower processing power or there is a requirement of a high data throughput 
such as in data streaming. 

Run-Length Encoding (RLE) is one of the simplest methods of lossless data 
compression that replaces sequences (runs) of the same elements by single element 
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code and the number of elements in the run (length of the symbol sequence). Element 
code and related encoded length of the run is called the RLE packet (RLEP). 

The history of RLE employment dates back to 1967, when it has been used in 
television signal transmission [7]. Data that are about to be encoded can be a one-
dimensional (1D) stream of data, or may be multidimensional as in the case of images 
that are a two-dimensional (2D) grids of pixels or a volumetric data that are a three-
dimensional grids of voxels (3D). 

RLE schemes used for image compression are divided into bit-level, byte-level, 
and pixel-level compression schemes depending on the type of an encoding atomic 
element. 

Bit-level compression schemes encode runs of bits while ignoring byte or even 
word boundaries. Typically, one byte is needed for the RLE packet encoding where 
one of the bits is used to represent the respective bit of the symbol and the 7 other bits 
represent an unsigned integer representation of the number of these bits in the run. 
Their number can be in the range < 0; 127 >. The byte-level encoding schemes 
encode runs of identical bytes and most often they create double-byte RLE packets 
where one byte is the run length in the range < 0; 255 > and is referred to as a count 
value and the second byte represents the value of the symbol itself and is referred to 
as a run value. Three-byte schemes use an extra byte referred to as a flag value which 
is a sign that two more bytes of the RLE packet would follow that encode the symbol 
and the run length. Thus, sequences of uncompressed data and RLE compressed data 
can be combined. Pixel level encoding schemes consider multi-byte information that 
is forming the code of the pixel as the one symbol, and run length is the number of 
those multi-byte symbols in the run. There is typically one byte used to represent this 
length value. 

RLE variants are known, while encoding images, in which there are scanlines 
parallel to the x-axis or the y-axis. Zig-zag patterns or 2D tiles are also used. 
Linearization of data using Morton order [8] is often used in volumetric datasets. 
Repeat scanline packet or vertical replication packet is an encoding scheme in which 
the RLE packet contains information on how many times the scanline is consecutively 
repeated. This uses an image property when several scanlines placed in the image in 
the sequence do not differ from each other. 

Also, there are lossy versions of RLE compression, when different approaches to 
information discarding, which makes it lossy, are used. For example, changing the 
overall value of a particular symbol in the stream to make the run homogenous and 
run-length bigger or changing the Least Significant Bits (LSB) of encoded symbols 
are used. This approach results in a compression ratio increase when applying RLE. 

This paper aims to propose an Out-of-Core algorithm for lossless data 
compression, which, thanks to the proposed optimization of the bit-level RLE data 
encoding, along with an alternative application of the delta data transformation, would 
increase the compression ratio compared to the classical lossless RLE compression, 
while it still maintains low spatial and temporal complexity. Another goal is to reduce 
the potential negative effect when unwanted and sometimes significant inflation of 
data could occur in case of RLE compression of data that is not suitable for 
compression using this kind of compression algorithm. 
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Contribution of the paper is in: 
• Design of the Out-of-Core lossless compression algorithm using optimized bit-

level Run-Length Encoding along with an alternative application of the delta data 
transformation as well as the design of a binary data structure intended to store 
such compressed data. 

• Optimization of the bit-level run-length encoding by modifying the structure and 
length of the bit-level RLE packet in which only the length of the run is encoded 
in its binary representation and the symbol itself is encoded by the RLE packet 
position in the stream of these RLE packets. 

• Optimization of the RLE packet binary representation when it is composed of the 
variable number of encoding words whose binary representation has a variable 
length in number of bits. 

• Encoding words length optimization separately for each original data block with 
simultaneous dissociation for encoding word lengths for 0 and 1 symbols. 
The structure of the paper is as follows. 
Section 2 deals with the related works in the field of lossless data compression 

using Run-Length Encoding (RLE) paying particular attention to lossless RLE 
compression schemes and especially the bit-level RLE compression. There are also 
areas, where the RLE compression has been applied to, mentioned. Because of the 
broad range of publications in the field, especially when the application of RLE in 
different fields is taken into account, the section is focused on the papers that are 
closely related to the work presented in this paper. 

Section 3 of the paper presents a detailed description of the data structure proposed 
as part of this research for the storage of data after ΔRLE data compression. Four 
different types of data blocks are mentioned and described in detail. 

Section 4 of the paper introduces the ΔRLE algorithm for lossless data 
compression. 

Section 5 of the paper summarizes the results of testing within this paper designed 
ΔRLE lossless compression algorithm using real-life volumetric binarized medical 
images. Those were obtained by multiple medical imaging methods including 
Computed Tomography (CT) and Nuclear Magnetic Resonance (NMR), which have 
been thresholded in the preprocessing phase. The classical bit-level RLE algorithm is 
compared with different degrees of optimization of the bit-level RLE compression 
and finally with the full-featured bit-level ΔRLE compression algorithm proposed in 
this paper with the application of all four types of data blocks, including delta data 
transformation and optimized RLE data encoding. 

Section 6 of the paper presents conclusions, that summarizes the success of the 
proposed algorithm in data compression. Conclusions were made by testing the 
algorithm on various volumetric datasets. 

2. Related works 
Algorithms for data encoding which are incorporating Run-Length Encoding are often 
part of the data gathering, processing, transmitting, and storing in different kinds of 
medical applications. In [9] Run-Length Encoding was used in the compression of 
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data for electrocardiography (ECG) and [10] incorporates compression of ECG data 
using not only RLE but also Discrete Wavelet Transform (DWT) compression 
algorithm. The compression of data obtained by Electroencephalography (EEG) 
combining Discrete Cosine Transform (DCT) and Run-Length Encoding was 
proposed in [11]. In [12] was performed analysis of hybrid lossy and lossless 
compression using RLE. 

Run-Length Encoding was used for enhancement of user experience in the field 
of volume datasets reading from secondary storage when bit-level RLE compressed 
three-dimensional binary images were used as the metadata describing volume data-
sets [13]. In [14] evaluation of four different encoding schemas for optimization of 
bit-level Run-Length Encoding within lossless compression of binary images was 
performed. 

Lossless data compression schemes for volume datasets compression, including 
RLE were considered in [15] and in [16] volume datasets compression using RLE was 
mentioned. RLE encoded sparse level sets were introduced in [17]. Volumetric 
datasets characterization using a set of Run-Length Encoding features has been 
described in [18]. 

Interesting sources of information regarding data compression in general, that 
mention also different versions of Run-Length Encoding lossless and lossy 
compression of text, images - including binary images - and other kinds of data are 
[19] [20] [21] [22]. Very interesting overview of the compression techniques 
including lossless compression and RLE represents [23]. 

3. Description of the proposed ΔRLE data structure 
The next chapter of the paper deals with a detailed description of the binary data 
structure intended for storing the target data compressed using the ΔRLE compression 
algorithm. 

3.1. Data structure 

Data structure has its own Global Head (GH) described in section 3.1.1. The original 
data ready for compression is forming the stream of bits that is divided into blocks 
with a length of 𝑛𝑛 bits. Since the number of bits of the original data does not 
necessarily be divisible by 𝑛𝑛, the last block may be shorter. A Data is thus divided 
into m original data blocks (ODB). Data block can be left uncompressed as original 
data block and in that case a Raw Data Block (RawDB) is created - in more detail 
described in section 3.1.2. A bit-level RLE compression can be applied to the data 
block creating an RLE Data Block (RleDB) - in more detail described in section 3.1.3. 
Alternatively, a delta transformation followed by a bit-level RLE compression can be 
applied, creating a Delta-transformed Data Block (DelDB) - in more detail described 
in section 3.1.4. If the current block of data is the same as the previous block of data, 
the Repeating Data Block (RepDB) is used - see section 3.1.5 for details. Information 
on which of the alternatives was used along with related parameters setup is stored in 
the header by which each of the m data blocks is extended as shown in Figure 1.  
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Figure 1. The original data consisting of 160b is divided into blocks with a length of 64b. 

Two blocks of a standard length 64b were created – named ODB0 and ODB1. the last block 
named ODB2 is shorter and has a length of 32b. Compressed data consists of three 

Compressed Data Blocks (CDB) labeled CDB0 to CDB2 each with its own header labeled H0 
to H2. There is a Global Head (GH) of the whole data structure in its introductory part. 

3.1.1. Global Head 

The Global Head (GH) consists of two encoding packets. 
The first one is the GLobal Size Packet (GLSP) which carries the number of bits 

of the source data to be compressed. GLSP consists of one or more consecutive 32b 
encoding words (EW). The number of bits of source data can be calculated as the sum 
of the values that are encoded by the individual EWs in the GLSP packet. GLSP makes 
it possible to stop the decompression algorithm upon obtaining the last bit of the 
original data. 

The second part of the GH is the Data Block Size Packet (DBSP) which consists 
of one or more consecutively stored 16b EWs. The DBSP carries information about 
the number of bits comprised in the Original Data Block (ODB). The value can be 
calculated as the sum of the values that each EW of the DBSP encodes. This 
information allows the algorithm to stop decompression of Compressed Data Block 
after the last bit of the corresponding Original Data Block was obtained. 

EW meaning can be seen in Table 1. It is possible to find out if another EW will 
be concatenated using the value of EW as it is shown in Table 1. For GLSP 𝑚𝑚𝑚𝑚𝑚𝑚 =
232 − 1 and for DBSP 𝑚𝑚𝑚𝑚𝑚𝑚 = 216 − 1. 

 
EW Value Another EW concatenation 

< 1;𝑚𝑚𝑚𝑚𝑚𝑚 − 1 > < 1;𝑚𝑚𝑚𝑚𝑚𝑚 − 1 > NO 
𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 YES 

0 𝑚𝑚𝑚𝑚𝑚𝑚 NO 

Table 1. Encoding Word values for GLobal Size Packet and Data Block Size Packet. 

3.1.2. Raw Data Block 

If it is not possible to achieve a sufficient reduction in the length of the binary 
representation of the original data block (ODB) consisting of n bits (it means the 
number of bits after compression of ODB is greater or equal to n + 2), by using an 
optimized bit-level RLE compression or by applying a delta transformation and 
subsequent optimized bit-level RLE compression, then this data block in the target 
data structure is represented in its original, uncompressed form. Such a block of data 
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is referred to as Raw Data Block (RawDB) in the target data structure. It consists of a 
RawDB Head (RawDBH) having a binary representation of '00' and occupying a 
constant length of 2b and an uncompressed binary representation of ODB consisting 
of n bits as shown in the Figure 2. 
 

 
Figure 2. Original Data Block (ODB) with 𝑛𝑛 bit length is transformed into Raw Data Block 
(RawDB) by creating a RawDBH header consisting of '00' and attaching original data of 𝑛𝑛 

bit ODB in unchanged form. 

3.1.3. RLE Data Block 

The original data can be compressed using in this paper proposed optimized bit-level 
Run Length Encoding. Rle Data Block (RleDB) has an RLE Data Block Header 
(RleDBH) followed by an RLE packet stream (RLEPs). Each of these RLE packets 
has a serial number in the stream (counting starts at 0) so it can be determined for each 
RLEP whether its serial number is even or odd as can be seen in Figure 3. 
 

 
Figure 3. The Rle Data Block (RleDB) consists of the RleDBH header and the RLE packet 
stream (RLEPs). RLEPs are labeled by a serial number starting from 0. In this figure, there 

are x RLE packets referred to as RLEP0 to RLEPx-1. 

3.1.3.1 Rle Data Block Header 

The RleDBH header contains a two-bit string '01' identifying that a given block of 
data is compressed using the bit-level RLE. Then, there is a bit labeled as S indicating 
by its value, which symbol (0 or 1) run-lengths will encode RLEPs with an even 
sequence numbers. The odd RLEPs then encode the run-length of the inverted bit 
value (another symbol). 

Follows 0 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿ℎ (0𝑊𝑊𝐿𝐿) represented by 4b. This parameter shows the 
number of bits used in the EWs in the RLEPs that encode lengths of runs of the symbol 
0. The last parameter is 1 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿ℎ (1𝑊𝑊𝐿𝐿) represented by 4b and this parameter 
shows the number of bits used in the EWs in the RLEPs that encode lengths of runs 
of the symbol 1 as shown in Figure 4. Allowed values for 0𝑊𝑊𝐿𝐿 and 1𝑊𝑊𝐿𝐿 are from the 
range < 2; 15 >. The RleDBH header has a constant length of 11b. 
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of one or more consecutively stored 16b EWs. The DBSP carries information about 
the number of bits comprised in the Original Data Block (ODB). The value can be 
calculated as the sum of the values that each EW of the DBSP encodes. This 
information allows the algorithm to stop decompression of Compressed Data Block 
after the last bit of the corresponding Original Data Block was obtained. 

EW meaning can be seen in Table 1. It is possible to find out if another EW will 
be concatenated using the value of EW as it is shown in Table 1. For GLSP 𝑚𝑚𝑚𝑚𝑚𝑚 =
232 − 1 and for DBSP 𝑚𝑚𝑚𝑚𝑚𝑚 = 216 − 1. 

 
EW Value Another EW concatenation 

< 1;𝑚𝑚𝑚𝑚𝑚𝑚 − 1 > < 1;𝑚𝑚𝑚𝑚𝑚𝑚 − 1 > NO 
𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 YES 

0 𝑚𝑚𝑚𝑚𝑚𝑚 NO 

Table 1. Encoding Word values for GLobal Size Packet and Data Block Size Packet. 

3.1.2. Raw Data Block 

If it is not possible to achieve a sufficient reduction in the length of the binary 
representation of the original data block (ODB) consisting of n bits (it means the 
number of bits after compression of ODB is greater or equal to n + 2), by using an 
optimized bit-level RLE compression or by applying a delta transformation and 
subsequent optimized bit-level RLE compression, then this data block in the target 
data structure is represented in its original, uncompressed form. Such a block of data 
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is referred to as Raw Data Block (RawDB) in the target data structure. It consists of a 
RawDB Head (RawDBH) having a binary representation of '00' and occupying a 
constant length of 2b and an uncompressed binary representation of ODB consisting 
of n bits as shown in the Figure 2. 
 

 
Figure 2. Original Data Block (ODB) with 𝑛𝑛 bit length is transformed into Raw Data Block 
(RawDB) by creating a RawDBH header consisting of '00' and attaching original data of 𝑛𝑛 

bit ODB in unchanged form. 

3.1.3. RLE Data Block 

The original data can be compressed using in this paper proposed optimized bit-level 
Run Length Encoding. Rle Data Block (RleDB) has an RLE Data Block Header 
(RleDBH) followed by an RLE packet stream (RLEPs). Each of these RLE packets 
has a serial number in the stream (counting starts at 0) so it can be determined for each 
RLEP whether its serial number is even or odd as can be seen in Figure 3. 
 

 
Figure 3. The Rle Data Block (RleDB) consists of the RleDBH header and the RLE packet 
stream (RLEPs). RLEPs are labeled by a serial number starting from 0. In this figure, there 

are x RLE packets referred to as RLEP0 to RLEPx-1. 

3.1.3.1 Rle Data Block Header 

The RleDBH header contains a two-bit string '01' identifying that a given block of 
data is compressed using the bit-level RLE. Then, there is a bit labeled as S indicating 
by its value, which symbol (0 or 1) run-lengths will encode RLEPs with an even 
sequence numbers. The odd RLEPs then encode the run-length of the inverted bit 
value (another symbol). 

Follows 0 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿ℎ (0𝑊𝑊𝐿𝐿) represented by 4b. This parameter shows the 
number of bits used in the EWs in the RLEPs that encode lengths of runs of the symbol 
0. The last parameter is 1 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿ℎ (1𝑊𝑊𝐿𝐿) represented by 4b and this parameter 
shows the number of bits used in the EWs in the RLEPs that encode lengths of runs 
of the symbol 1 as shown in Figure 4. Allowed values for 0𝑊𝑊𝐿𝐿 and 1𝑊𝑊𝐿𝐿 are from the 
range < 2; 15 >. The RleDBH header has a constant length of 11b. 
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Figure 4. The RleDB Header (RleDBH) consists of an identifier represented by the string '01' 
followed by a bit indicating which symbols will encode even RLEPs followed by parameters 
0𝑊𝑊𝑊𝑊 and 1𝑊𝑊𝑊𝑊 which on 4b represent the number of bits in the RLEPs encoding words. 

3.1.3.2 RLE Packet 

An RLE packet is composed of one EW or a sequence of several EWs. Bit length 𝑙𝑙 of 
each EW is defined by the parameter 0𝑊𝑊𝑊𝑊 for the RLEPs for symbol 0 resp. 1𝑊𝑊𝑊𝑊 for 
the RLEPs for the symbols 1. The value of each EW can be determined according to 
Table 1 with the value 𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝑙𝑙 − 1. 

The length of the symbol run encoded in RLEP is given as the sum of the values 
of the individual EWs concatenated in the given RLEP as shown in Figure 5. 
 

 
Figure 5. RLEP encodes the number of symbols in the run where each EW consists of 3 bits 
in this example and a) contains one EW set to 0 indicating that the run-length indicated by 
this EW0 is 7 (refer Table 1) and that no other EW will be concatenated, b) the RLE Packet 
consists of two EWs, the first EW0 is set to 7 and encodes a run-length of 7 while indicating 
that one more EW will follow. This EW1 is set to 3 and therefore the run-length encoded by 
this EW is 3. At the same time, it indicates that no further EW will follow in a given RLEP. 

Overall, those two EWs indicate that 10 consecutive symbols will follow in a single run 
(7+3). 

If too low 0𝑊𝑊𝑊𝑊 or 1𝑊𝑊𝑊𝑊 is selected, then it is necessary to use more concatenated 
EWs to represent a specific run length which increases the number of bits needed for 
encoding beyond their optimal number. If too large value of 0𝑊𝑊𝑊𝑊 or 1𝑊𝑊𝑊𝑊 is selected, 
then the EWs contain too many leading 0s which again causes the non-optimal number 
of bits to be used for encoding as shown in the example in Figure 6. Therefore, it is 
advisable to determine, based on the analysis of the particular data, the optimal length 
of EW which allows the use of a minimum number of bits concerning the selected 
encoding. Since for each RLEP it is possible to determine whether it encodes the run 
of symbols 0 or 1, it is possible to search for the optimal length separately for EWs 
encoding run-lengths of symbol 0 and separately for symbol 1. Since the data of the 
source file is divided into data blocks such an optimum can be found for each data 
block separately. This procedure of finding and using the optimal EW length for each 
data block, dissociated for EWs for symbols 0 and 1, is the basis of the bit-level RLE 
optimization proposed in this work. 
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Figure 4. The RleDB Header (RleDBH) consists of an identifier represented by the string '01' 
followed by a bit indicating which symbols will encode even RLEPs followed by parameters 
0𝑊𝑊𝑊𝑊 and 1𝑊𝑊𝑊𝑊 which on 4b represent the number of bits in the RLEPs encoding words. 

3.1.3.2 RLE Packet 

An RLE packet is composed of one EW or a sequence of several EWs. Bit length 𝑙𝑙 of 
each EW is defined by the parameter 0𝑊𝑊𝑊𝑊 for the RLEPs for symbol 0 resp. 1𝑊𝑊𝑊𝑊 for 
the RLEPs for the symbols 1. The value of each EW can be determined according to 
Table 1 with the value 𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝑙𝑙 − 1. 

The length of the symbol run encoded in RLEP is given as the sum of the values 
of the individual EWs concatenated in the given RLEP as shown in Figure 5. 
 

 
Figure 5. RLEP encodes the number of symbols in the run where each EW consists of 3 bits 
in this example and a) contains one EW set to 0 indicating that the run-length indicated by 
this EW0 is 7 (refer Table 1) and that no other EW will be concatenated, b) the RLE Packet 
consists of two EWs, the first EW0 is set to 7 and encodes a run-length of 7 while indicating 
that one more EW will follow. This EW1 is set to 3 and therefore the run-length encoded by 
this EW is 3. At the same time, it indicates that no further EW will follow in a given RLEP. 

Overall, those two EWs indicate that 10 consecutive symbols will follow in a single run 
(7+3). 

If too low 0𝑊𝑊𝑊𝑊 or 1𝑊𝑊𝑊𝑊 is selected, then it is necessary to use more concatenated 
EWs to represent a specific run length which increases the number of bits needed for 
encoding beyond their optimal number. If too large value of 0𝑊𝑊𝑊𝑊 or 1𝑊𝑊𝑊𝑊 is selected, 
then the EWs contain too many leading 0s which again causes the non-optimal number 
of bits to be used for encoding as shown in the example in Figure 6. Therefore, it is 
advisable to determine, based on the analysis of the particular data, the optimal length 
of EW which allows the use of a minimum number of bits concerning the selected 
encoding. Since for each RLEP it is possible to determine whether it encodes the run 
of symbols 0 or 1, it is possible to search for the optimal length separately for EWs 
encoding run-lengths of symbol 0 and separately for symbol 1. Since the data of the 
source file is divided into data blocks such an optimum can be found for each data 
block separately. This procedure of finding and using the optimal EW length for each 
data block, dissociated for EWs for symbols 0 and 1, is the basis of the bit-level RLE 
optimization proposed in this work. 
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Figure 6. Run-length encoding with the number of symbols 14 while selecting different 
lengths of EWs where a) the EW length set to 3 requires the concatenation of two EWs 

which means the use of overall 6b b) the use of an EW with a length of 4b allows optimal 
encoding and c) using an EW with the length of 5b means unnecessarily long bit sequence 

with one leading 0. 

3.1.4. Delta-transformed Data Block 

To achieve a higher compression ratio, it is possible to perform a delta transformation 
of the original data when differential information is generated between the original 
data of the Previous Data Block (PDB) and the currently compressed original data 
block, called Actual Data Block (ADB) by applying the XOR function to the 
respective pairs of bits.  
 

 
Figure 7. The Delta Data Block (DDB) is derived from the Previous Data Block (PDB) and 
the Actual Data Block (ADB) using the XOR function on the respective bit pairs. DDB can 

yield a higher compression ratio over the compression of the original ADB data. 

If those two bits match, the result is symbol 0, if they do not match, the result is 
symbol 1. This creates a Delta Data Block (DDB) and in some cases this information 
can be better compressed using optimized bit-level RLE than the original ADB data 
as it shown in Figure 7. 
 

 
Figure 8. The Delta-transformed Data Block (DelDB) consists of a DelDBH header and a 
stream of RLE packets that are identified by a serial number starting from 0. There are 𝑥𝑥 RLE 
packets visible in the figure labeled as RLEP0 to RLEPx-1. 

DDB is then compressed using an optimized bit-level RLE as described in section 
3.1.3 and that is how Delta-transformed Data Block (DelDB) is created with the 
structure that can be seen in Figure 8. 

DelDB header (DelDBH) contains a two-bit string '10', symbol 𝑆𝑆 and 4-bit 0𝑊𝑊𝑊𝑊 
and 1𝑊𝑊𝑊𝑊 with the same meaning as it was described in the subchapter 3.1.3.1. The 
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DelDBH header has a constant length of 11b as it can be seen in Figure 9 and is 
followed by a stream of RLEPs with a structure analogous to that described in section 
3.1.3.2. 

 
Figure 9. The Delta-transformed Data Block Header (DelDBH) consists of an identifier that 

is represented by a '10' string followed by a symbol S and 4-bit 0𝑊𝑊𝑊𝑊 and 1𝑊𝑊𝑊𝑊. 

3.1.5. Repeating Data Block 

If a particular data block (encoded with Raw Data Block, Rle Data Block, or Delta-
transformed Data Block) is followed by several other data blocks, containing the same 
information, then it is possible to represent repeating blocks by Repeating Data Block 
(RepDB). This block is represented the RepDBH header whose two bits are constantly 
set to '11'. This identifier is followed by one or more 3-bit EWs that encode the number 
of consecutive data block repetitions. The value of each EW can be determined using 
Table I when 𝑚𝑚𝑚𝑚𝑚𝑚 = 7. 

If multiple EWs are concatenated, the number of repeating data blocks is 
determined as the sum of their repeating data block counts as shown in the example 
in Figure 10. Thus, for example if 6 same original data blocks are consecutive then 
the first one is represented as either a Raw Data Block, an RLE Data Block, or a Delta-
transformed Data Block followed by a RepDB that indicates its 5 repetitions. 

The total length of the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙 can be calculated by the formula: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙 = 2 + ⌈ℎ7⌉ × 3[𝑏𝑏] (1) 

 
where h is the number of repetitions: 
 

 
Figure 10. RepDB Header (RepDBH) contains an identifier set to '11' and there are a) one 

EW that encodes 7 repetitions of the data block, and the EW indicates that no other EW will 
be concatenated b) two EWs where the first one encodes 7 repetitions of the data block and 

at the same time indicates the concatenation of the next EW which encodes 6 further 
repetitions while indicating that no further encoding word will be concatenated. This means a 

total of 13 repetitions of the previous data block. 

4. ΔRLE compression algorithm 
Compression algorithm assumes input that consists of: 
• Stream of original data intended for compression, 
• parameter 𝑚𝑚 representing overall length of input stream in bits, 
• parameter 𝑛𝑛 representing length of Original Data Block (ODB) in bits.  
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Compression algorithm comprises following steps: 
 

1. PDB(n - 1 : 0) = 0; REPS = 0;     // PDB – Previous Data Block 
2. LOAD ADB(n - 1 : 0);      // ADB – Actual Data Block 
3. IF (ADB(n – 1 : 0) = = PDB(n – 1 : 0)) { REPS++; GOTO 2; } 
4. IF (REPS > 0) {CREATE RepDB(REPS); STORE RepDB; REPS = 0;} 

        // RepDB – Repeating Data Block 
5. min = n + 2; 
6. [minRleDB0, Rle0WL] = findMin(ADB(n – 1 : 0), 0, 2, 15); 
7. [minRleDB1, Rle1WL] = findMin(ADB(n – 1 : 0), 1, 2, 15); 
8. minRleDB = minRleDB0 + minRLEDB1; 
9. DDB(n – 1 : 0) = PDB(n - 1 : 0) XOR ADB(n – 1 : 0);  // DDB – Delta Data Block 
10. [minDelDB0, Del0WL] = findMin(DDB(n – 1 : 0), 0, 2, 15); 
11. [minDelDB1, Del1WL] = findMin(DDB(n – 1 : 0), 1, 2, 15); 
12. minDelDB = minDelDB0 + minDelDB1; 
13. IF (minRleDB < min AND minRleDB ≤ minDelDB) { 

CREATE RleDB(ADB(n - 1 : 0), Rle0WL, Rle1WL); STORE RleDB; GOTO 16; } 
       // RleDB – RLE Data Block 

14. IF (minDelDB < min AND minDelDB < minRleDB) { 
CREATE DelDB(DDB(n - 1 : 0), Del0WL, Del1WL); STORE DelDB; GOTO 16; } 

 // DelDB – Delta-transformed Data Block 
15. CREATE RawDB; STORE RawDB;    // RawDB – Raw Data Block 
16. IF (m = = 0) EXIT; 
17. PDB(n – 1 : 0) = ADB(n – 1 : 0); 
18. IF (m > n)  { m = m – n; } 

      ELSE { n = m; m = 0; } 
19. GOTO 2; 
 

Function [a, b] = findMin(D(n – 1 : 0), S, L, H) is the function which: 
• finds the minimal sum of bits of all RLE packets for symbol S and data block D(n 

- 1 : 0) when all encoding word lengths from the range <L; H> are tested and 
returns that minimal length as the output a, 

• finds the optimal EW length for symbol S for data block D(n-1 : 0) and returns it 
as the output b.  

5. Tests and discussion 
One of the objectives of the algorithm design was to reduce the risk of significant 
inflation of data after compression in an unfavorable case. This goal has been met. In 
situations, when none of the original data blocks can be effectively compressed, each 
of these blocks is represented by RawDB in the target data structure. Each original 
data block is in that case accompanied by a two-bit header. Assuming that the original 
data is divided into m blocks and for simplicity, each of these blocks has the same 
number of n bits (including the last data block) then the size of the binary 
representation after the ΔRLE compression is quantifiable as 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚: 
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Compression algorithm comprises following steps: 
 

1. PDB(n - 1 : 0) = 0; REPS = 0;     // PDB – Previous Data Block 
2. LOAD ADB(n - 1 : 0);      // ADB – Actual Data Block 
3. IF (ADB(n – 1 : 0) = = PDB(n – 1 : 0)) { REPS++; GOTO 2; } 
4. IF (REPS > 0) {CREATE RepDB(REPS); STORE RepDB; REPS = 0;} 

        // RepDB – Repeating Data Block 
5. min = n + 2; 
6. [minRleDB0, Rle0WL] = findMin(ADB(n – 1 : 0), 0, 2, 15); 
7. [minRleDB1, Rle1WL] = findMin(ADB(n – 1 : 0), 1, 2, 15); 
8. minRleDB = minRleDB0 + minRLEDB1; 
9. DDB(n – 1 : 0) = PDB(n - 1 : 0) XOR ADB(n – 1 : 0);  // DDB – Delta Data Block 
10. [minDelDB0, Del0WL] = findMin(DDB(n – 1 : 0), 0, 2, 15); 
11. [minDelDB1, Del1WL] = findMin(DDB(n – 1 : 0), 1, 2, 15); 
12. minDelDB = minDelDB0 + minDelDB1; 
13. IF (minRleDB < min AND minRleDB ≤ minDelDB) { 

CREATE RleDB(ADB(n - 1 : 0), Rle0WL, Rle1WL); STORE RleDB; GOTO 16; } 
       // RleDB – RLE Data Block 

14. IF (minDelDB < min AND minDelDB < minRleDB) { 
CREATE DelDB(DDB(n - 1 : 0), Del0WL, Del1WL); STORE DelDB; GOTO 16; } 

 // DelDB – Delta-transformed Data Block 
15. CREATE RawDB; STORE RawDB;    // RawDB – Raw Data Block 
16. IF (m = = 0) EXIT; 
17. PDB(n – 1 : 0) = ADB(n – 1 : 0); 
18. IF (m > n)  { m = m – n; } 

      ELSE { n = m; m = 0; } 
19. GOTO 2; 
 

Function [a, b] = findMin(D(n – 1 : 0), S, L, H) is the function which: 
• finds the minimal sum of bits of all RLE packets for symbol S and data block D(n 

- 1 : 0) when all encoding word lengths from the range <L; H> are tested and 
returns that minimal length as the output a, 

• finds the optimal EW length for symbol S for data block D(n-1 : 0) and returns it 
as the output b.  

5. Tests and discussion 
One of the objectives of the algorithm design was to reduce the risk of significant 
inflation of data after compression in an unfavorable case. This goal has been met. In 
situations, when none of the original data blocks can be effectively compressed, each 
of these blocks is represented by RawDB in the target data structure. Each original 
data block is in that case accompanied by a two-bit header. Assuming that the original 
data is divided into m blocks and for simplicity, each of these blocks has the same 
number of n bits (including the last data block) then the size of the binary 
representation after the ΔRLE compression is quantifiable as 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚: 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 32 × ⌈ 𝑠𝑠
232 − 1⌉ + 16 × ⌈ 𝑛𝑛

216 − 1⌉ +  𝑚𝑚 × (𝑛𝑛 + 2)[𝑏𝑏] (2) 

  
Where: 

𝑠𝑠 is the number of bits of the source data 
𝑛𝑛 is the number of bits in the original data block 
𝑚𝑚 is the number of original data blocks 
 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 is at the same time the largest number of bits that can be generated as 

the target data structure from the respective source data. 
Maximum inflation 𝑆𝑆𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 for individual original data blocks is then quantifiable 

as the ratio of the Raw Data Block size (𝑛𝑛 + 2) to the corresponding size of Original 
Data Block (𝑛𝑛) so it can be written as: 
 

𝑆𝑆𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛 + 2
𝑛𝑛  

 

(3) 

 
With increasing value 𝑛𝑛 the 𝑆𝑆𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 is approaching 1 as it is shown in the 

following statement: 
 

𝑆𝑆𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = lim
𝑛𝑛→∞

𝑛𝑛 + 2
𝑛𝑛 = 1 

 

(4) 

 
This implies that the larger the selected original data blocks are, the smaller the 

potential data inflation after compression is. If 𝑛𝑛 = 256 then 𝑆𝑆𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = 1,00781 
while when 𝑛𝑛 = 1024, the 𝑆𝑆𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 = 1,00195. 

The most favorable (theoretical) case is when the compressed data is made up of 
the run of only one symbol 0. For compression then it can be advantageous that the 
Previous Data Block (PDB) buffer is at the start of compression homogenously filled 
with the symbol 0. The first Original Data Block of the source data is also 
homogeneously filled with the symbol 0 and therefore the Repeating Data Block 
(RepDB) can be used immediately. If it is possible to split data into m data blocks of 
n bits, then this RepDB will include all original data blocks of the source data. 

To minimize the total number of bits used in the target data structure 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑛𝑛, it 
is important that the value of m is as low as possible, which means the number of the 
original data blocks is as low as possible. This is achieved by maximizing the value 
of n which is the number of bits in the original data block. Then 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑛𝑛 can be 
calculated as  
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑛𝑛 = 32 × ⌈ 𝑠𝑠
232 − 1⌉ + 16 × ⌈ 𝑛𝑛

216 − 1⌉ + 2 + 3 × ⌈𝑚𝑚
7 ⌉ [𝑏𝑏] 

 

(5) 
 
where 

𝑠𝑠 is the number of bits of the source data 
𝑛𝑛 is the number of bits in the original data block 
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𝑚𝑚 is the number of original data blocks 
 

Thus, the lowest number of bits after data compression can be 53, if 𝑚𝑚 ≤ 7, 𝑛𝑛 ≤
65 535 and 𝑠𝑠 ≤ 458 745.  

5.1. Datasets 

In the tests of the proposed ΔRLE compression algorithm, there were used volumetric 
datasets consisting of regular three-dimensional grids of scalar values. In the range of 
< 0; 255 > values were saved to 8b and in the range of < 0; 4095 > to 16b. Datasets 
had been obtained through medical imaging techniques such as Computed 
Tomography (CT) or Magnetic Resonance Imaging (MRI). Above these volumetric 
data a thresholding was performed whose output was the regular three-dimensional 
grid of scalar values with 1b/vox. The data was then linearized and the stream of bits 
obtained was subjected to compression via the classical RLE algorithm, RLE 
algorithm with properties that are part of the proposed ΔRLE algorithm, and finally a 
full-featured proposed ΔRLE algorithm. Parameters of examples of individual 
volumetric datasets used in the tests are summarized in Table 2 and visualizations of 
two-dimensional sections of these volumetric datasets can be seen in Figure 10. 
 

 Volume 
dataset 

Volume 
dimensions 

Voxels 
[Millions] 

b/vox Size 
[MB] 

Threshold 

a Head 256 × 256 × 113 7.40 16 14.13 200 
b Brain 256 × 256 × 109 7.14 16 13.63 1150 
c Visual Cortex 1024 × 1024 × 314 329.25 8 314.00 25 
d Abdomen 512 × 512 × 174 45.61 16 87.00 200 
e Human Skull 256 × 256 × 256 16.78 8 16.00 25 
f Pancreas 240 × 512 × 512 62.91 16 120.00 225 

Table 2. Characteristics of medical imaging volume datasets that were binarized by using 
thresholding and used for the test purpose. 

5.2. Test Results 

In the first of the tests, a classical RLE algorithm was applied to the bit stream of the 
original uncompressed data which uses the 8b RLE packet for encoding in which one 
bit is used to encode the respective symbol and the other 7 bits are used to encode run-
length. In Table 3 this encoding is referred to as RLE-I. 
 In the second test, the RLE packet described in section 3.1.3.2 was used. The 
encoding word length of this packet was constantly set to 8b. In Table 3, this encoding 
is referred to as RLE-II. As shown in the test results the change in the RLE packet 
encoding resulted in an increase in the compression ratio of 1.058 to 1.819 times in 
comparison to the RLE-I encoding. 

In the third test, the RLE packet described in section 3.1.3.2 was used with 
the length of the binary representation of the encoding word of this packet 
being optimized ranging between < 2; 15 > bits. In Table 3 this encoding is 
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referred to as RLE-III. For each dataset, there is also given the optimal EW 
length. 
 

 
Figure 10. Slices of volume datasets obtained by different medical imaging methods that 

were used in tests of designed ΔRLE lossless compression algorithm. 

 As shown in Figure 11 for the dataset a - Head, the optimal length of the encoding 
packet was set to 7b which allowed a further increase in the compression ratio 
compared to RLE-I 1.143 times and compared to RLE-II 1.040 times. For all the 
datasets mentioned in this paper this change in encoding to RLE-III produced from 
1.143 to 4.290 times higher compression ratio over RLE-I. Encoding word lengths 
from 6b to 12b have been shown to be optimal for the individual datasets. 

 
Figure 11. Optimization of encoding word length which is performed by the function 

findMin in compression algorithm (see chap. 4) allows to choose optimal encoding word 
length from the range of < 2; 15 >. For a particular dataset the optimal encoding word 
length is 7, when data after compression represent the smallest file size (1 494 549 b). 
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 The fourth test criteria were pretty much the same as in the previous test, the only 
change was made that for the symbol 0 and 1 the EW length of RLE packets were 
dissociated. In Table 3 this encoding is referred to as RLE-IV. As shown by the results 
of the tests, this change in encoding made a 1.150 to 7.030 times increase in 
compression ratio over RLE-I encoding. The EW lengths for the symbol 0 were from 
the range of < 2; 8 > b for different datasets and for the symbol 1 was in the range of 
< 3; 13 > b. The largest difference in the EW lengths was shown in the dataset f - 
pancreas where for the symbol 0 the EW length was 2b and for the symbol 1 it was 
13b. How the change in the EW length in the range of < 2; 15 > b separately for the 
symbols 0 and 1 in case of the dataset a – Head influenced the length of compressed 
data is shown in Figure 12. For this dataset, the optimum EW length for the symbol 0 
was set to 7b and for the symbol 1 to 6b. 

 The last of the tests applied all the properties of the algorithm proposed in this 
work when the data was divided into blocks with a length equal to the number of 
voxels on the edge of the respective dataset parallel to the x-axis. At the same time, 
encoding word length optimization was applied separately for the symbols 0 and 1 
and all four types of data blocks were used i.e. RawDB, RleDB, DelDB, and RepDB. 
This encoding is referred to as ΔRLE in the results table. Compared to the original 
data (thresholded), a compression ratio of 3.972 to 48.911 was achieved and compared 
to the classical algorithm (RLE-I), compression rates of 1.24 to 3.44 times higher were 
achieved. The comparison of the compression ratio of classical RLE algorithm 
(referred to as RLE-I) and ΔRLE algorithm, proposed in this work, can be seen in 
Figure 13.  

 
Figure 12. Optimization of EW length dissociated for symbol 0 and 1 allows to choose the 

optimal length of EW from the range of < 2; 15 > b, for symbol 0 and for symbol 1, 
separately. As it can be seen from the graph, for particular dataset the optimal length of EW 
for symbol 0 is 7b and for symbol 1 is 6b. In that case the data after compression represent 

the smallest file size (693 588 b + 791 042 b = 1 484 630 b). 
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Dataset 

a b c d e f 

Original data    7 405 568       7 143 424       329 252 864       45 613 056       16 777 216       62 914 560    

RLE-I    1 708 056       2 074 792       113 812 768          6 200 848          5 393 216          4 418 528    

  4.336*1 3.443 2.893 7.356 3.111 14.239 
  23.06*2 29.04 34.57 13.59 32.15 7.02 

RLE-II    1 553 680       1 913 272       107 207 224          4 906 792          5 096 336          2 429 064    

  4,766 3,734 3,071 9,296 3,292 25,901 
  20.98 26.78 32.56 10.76 30.38 3.86 

RLE-III    1 494 549       1 815 443          96 845 382          4 906 792          4 628 934          1 030 032    

  4.955 3.935 3.400 9.296 3.624 61.080 
  20.18 25.41 29.41 10.76 27.59 1.64 

WL [b] 7 7 6 8 6 12 
RLE-IV    1 484 630       1 749 466          78 515 216          4 902 737          3 892 132             628 533    

  4.988 4.083 4.193 9.304 4.311 100.097 
  20.05 24.49 23.85 10.75 23.20 1.00 

0WL / 1WL 
[b] 7 / 6 7 / 5 7 / 3 8 / 9 7 / 3 2 / 13 
ΔRLE    1 376 192       1 563 792          68 217 184          4 452 256          4 223 248    1 286 312 

  5.381 4.568 4.827 10.232 3.972 48.911 

  18.58 21.89 20.72 9.76 25.17 2.04 

Table 3. Size of original data and size of data after compression for individual compression 
algorithms and their settings for particular datasets. Compression ratios (*1) and the 

percentage of data size after compression as compared to the original data (*2) are shown, 
too. 

 
Figure 13. Compression ratio of classical RLE algorithm (referred to as RLE-I) and ΔRLE 

algorithm for individual datasets. 
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Table 4 and Figure 14 show the number of individual data block types and their 
percentage for each dataset. It was not necessary to use RawDB for compression. 
 

  

Dataset 

a b c d e f 

RawDB  
0 

0.00% 
0 

0.00% 
0 

0.00% 
0 

0.00% 
0 

0.00% 
0 

0.00% 

RleDB  
11 428 
39.50% 

13 221 
47.38% 

187 766 
58.40% 

48 024 
53,91% 

38 581 
58.61% 

41 775 
15.93% 

DelDB  
11 897 
41.13% 

7 646 
27.40% 

41 912 
13.03% 

13 461 
15.11% 

24 540 
37.70% 

124 
0.05% 

RepDB  
5603 
19.37 

7037 
25.22% 

91 858 
28.57% 

27 603 
30.98% 

2 415 
3.69% 

220245 
84.02% 

Table 4. The number of individual types of data blocks in the target data structure along with 
their percentage representation. 

 
Figure 14. Graphical representation of data block types in ΔRLE compressed data for 

individual datasets. 

Compression  

Dataset 

a b C d e f 

RLE  

Time [s] 0.017 0.016 0.740 0.099 0.038 0.134 

Data throughput [MB] 52.73 52.89 53.02 55.00 52.80 55.81 

ΔRLE  

Time [s] 0.051 0.051 2.071 0.185 0.133 0.058 

Data throughput [MB] 17.25 16.68 18.95 29.38 15.08 129.46 

  Ratio 3.06 3.17 2.80 1.87 3.50 0.43 

Table 5. Compression time and data throughput for RLE and ΔRLE algorithms for various volume 
datasets. Data throughput is calculated in relation to uncompressed data amount. 

(*1) Ratio represents time of DRLE compression / time of RLE compression. 

Execution time measurement was performed using program implementation in C 
language, applying the same programming approaches where it was applicable, in 
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compression and decompression programs for RLE and ΔRLE. Tests were performed 
on the computer with Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz, 8GB RAM, 
Debian Linux version 4.19.0-6, gcc version 8.3.0. To eliminate influence of the data 
transfer from secondary storage, that can be of different technology and data transfer 
speed, the time measurement started when all input data were stored in operating 
memory and stopped when output data were also stored in the operating memory. Due 
the binary representation of the ΔRLE compressed data, that is not byte aligned, and 
time consuming analysis of optimal encoding word lengths, compression time of 
ΔRLE was 3.50 times longer in comparison to RLE in the worst case. However, 
effective work with repeating data blocks, especially when there is higher number of 
those blocks consecutively in ΔRLE, allowed ΔRLE compression to use 0.43 of the 
time in comparison to RLE in most optimistic case, as it is shown in the Table 5. Same 
reasons allowed slower decompression time of ΔRLE ranging from 2.66 times in the 
worst case to 1.73 times in the best case, in comparison to RLE, as it is shown in the 
Table 6. 

 

Decompression  

Dataset 

a b c d e f 

RLE  

Time [s] 0.007 0.007 0.321 0.037 0.017 0.045 

Data throughput [MB] 124.66 124.04 122.34 146.96 114.67 167.41 

ΔRLE  

Time [s] 0.018 0.018 0.772 0.084 0.046 0.077 

Data throughput [MB] 49.45 47.22 50.83 64.65 43.17 96.87 

  Ratio*1 2.52 2.63 2.41 2.27 2.66 1.73 

Table 6. Decompression time and data throughput for RLE and ΔRLE algorithms for various 
volume datasets. Data throughput is calculated in relation to uncompressed data amount. 

(*1) Ratio represents time of DRLE decompression / time of RLE decompression. 

Memory consumption for variables storing includes the use of 64b variable for 
storing the information on the size of uncompressed data, for both RLE and ΔRLE 
and another 32b for storing of the data block size in case of ΔRLE. Overall size of the 
space for storing variables is 12B for both RLE compressor and decompressor and 
57B for ΔRLE compressor and 33B for ΔRLE decompressor. ΔRLE compressor and 
decompressor include also 2 × 𝑛𝑛 bits space for the storage of two data blocks of 𝑛𝑛-
bits size and 32B Look-Up-Table. ΔRLE also uses another 64B data structure for 
encoding words length optimization. 

6. Conclusions 
The paper deals with the problematics of data compression and specifically lossless 
data compression as part of the research of the domain-specific data structures 
dedicated to volume data representation. 

 There is an introduction of the Run-Length Encoding compression principle and 
several modifications of RLE, including bit-level RLE, byte-level RLE, and pixel-
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level RLE with scan-line option were mentioned in the first part of the paper. Related 
works in the field of RLE compression principle and their use in different application 
areas including medical applications are mentioned in the related works part of the 
paper. 

In the second part of the paper enhanced bit-level ΔRLE algorithm is introduced, 
which optimizes the RLE packet and brings multi encoding word RLE packets with 
various number of encoding words and with optimized and variable encoding word 
lengths. Dissociation of RLEPs for symbol 0 and symbol 1 are part of this 
modification as well.  ΔRLE algorithm includes the possibility to use four different 
data blocks - raw data block, RLE encoded data block, delta transformed RLE 
encoded data block, which combines processing of the data block into the form of 
differential information, which is then encoded similarly as the RLE encoded data 
block, and last of them is repeating data block, which indicates that the data block is 
identical with the previous data block. This allows not only to optimize RLE encoding 
but also to choose the best possibility of how to encode each data block. This results 
in a better compression ratio. 

In the last part of the paper there are results of tests described, in which volumetric 
datasets that were obtained by medical imaging methods and then thresholded were 
compressed, using the classical RLE method, alternatively using to the different levels 
optimized RLE methods and finally using ΔRLE algorithm introduced in this paper. 
The results show that in all volume dataset cases there was a possibility to compress 
data with the compression ratio higher than 1. In comparison to the classical RLE 
compression algorithm, the compression ratio was higher in all cases, when 1.24 to 
3.43 times higher compression ratio in comparison to the classical RLE was obtained. 

There is a possibility to get potentially even higher compression ratio optimizing 
the length of data blocks according to a particular dataset when each data block has 
the same size (except last data block) or optimizing the length of each data block 
separately. This optimization was not included in this research and proposed data 
structure and algorithm of its construction.  
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