
365

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

JIOS, VOL. 44, NO. 2 (2020) SUBMITTED 03/20; ACCEPTED 10/20

Complete SAT based Cryptanalysis of RC5 Cipher

Artur Soboń artur.sobon@gmail.com
Developers Division
HSBC Service Delivery (Polska) Sp. z o.o., Kraków, Poland

Mirosław Kurkowski m.kurkowski@uksw.edu.pl
Institute of Computer Science
Card. St. Wyszynski University, Warsaw, Poland

Sylwia Stachowiak sstachowiak@swps.edu.pl
Department of Computer Science
SWPS University of Social Sciences and Humanities, Warsaw, Poland

Abstract
Keeping the proper security level of ciphers used in communication networks is today
a very important problem. Cryptanalysts ensure a constant need for improvement
complexity and ciphers' security by trying to break them. Sometimes they do not
instantly try to break the strongest version of the cipher, but they are looking for
weaknesses by splitting it and independently checking all algorithm components.
Often cryptanalysts also attempt to break cipher by using its weaker version or
configuration. There are plenty of mechanisms and approaches to cryptanalysis to
solve those challenges. One of them is SAT-based method, that uses logical encoding.
In this article, we present our wide analysis and new experimental results of SAT-
based, direct cryptanalysis of the RC5 cipher. To perform such actions on the given
cipher, we initially create a propositional logical formula, that describes and
represents the entire RC5 algorithm. The second step is to randomly generate key and
plaintext. Then we determine the ciphertext. In the last step of our computations, we
use SAT-solvers. They are particularly designed tools for checking the satisfiability of
the Boolean formulas. In our research, we make cryptanalysis of RC5 cipher in the
case with plaintext and ciphertext. To get the best result, we compared many SAT-
solvers and choose several. Some of them were relatively old, but still very efficient
and some were modern and popular.
Keywords: Symmetric ciphers, satisfiability, SAT-based cryptanalysis, RC5 Cipher

1. Introduction
Satisfiability problem is one of the NP-complete problems that allow investigations
about the computational complexity of many algorithms. In this case, SAT can be
successfully used for solving problems that can be encoded as the propositional
Boolean formula [2]. The main problem in this area is that usually, the formulas

UDC 004.056.55
Original Scientific Paper

DOI: https://doi.org/10.31341/jios.44.2.10
 Open Access

366

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

SOBOŃ, KURKOWSKI AND STACHOWIAK COMPLETE SAT BASED CRYPTANALYSIS OF…

obtained have a very huge size, and in the whole case, solving satisfiability is very
hard. However, there are many examples, where conducted experiments show that
the satisfiability of formulas with hundreds or thousands of variables can be done
quite quickly. Considering such problems, we can say that almost all of the
implemented algorithms for SAT computations are modified and/or optimized
versions of the DPLL algorithm [8, 9]. For several decades, for solving satisfiability
special programs/tools, called SAT-solvers, have been developed and successfully
used.

It is obvious that none of such solvers can check all considered, big formulas
that sometimes consist of thousands or more variables. The reason is that in the
worst-case searching of quite a big binary tree with depth over hundreds or
thousands is needed. An interesting observation is that these tools can often answer
the question about boolean satisfiability, even for big formulas [14, 15]. SAT-
solvers takes as input the conjunctive normal form of the formula investigated
(CNF). It is a conjunction of clauses, where a clause is a disjunction of literals, and a
literal is a propositional variable or its negation.

SAT procedures among others are successfully used for cryptanalysis of some
cryptographic algorithms or their parts/modifications, especially symmetric ciphers.
This idea supplements other classic methods of cryptanalysis [5, 6, 13, 20, 21]. In
the literature can be still found new papers devoted to this topic [7, 10, 11, 16, 17,
18, 19, 22, 24].

The studies described in this work relate to generating a propositional logic
formula that encodes the whole RC5 algorithm included encryption and key
expansion. Here we follow for some ideas introduced in [7, 10], where the efficiency
of SAT-based cryptanalysis of the Feistel Network and some modifications of the
DES cipher have been showed. This work is based on our previous paper [23],
where we investigated a restricted version of RC5 cipher. Here we try to check our
encoding methods and SAT solutions for the full, complete the RC5 cipher. We also
checked and compared how several new SAT solvers work in this case.

That logic formula is converted into a conjunctive normal form (CNF). It is a
conjunction of clauses, where a clause is a disjunction of literals, and a literal is a
propositional variable or its negation. SAT-solvers usually takes as input this CNF
form. The generated formula besides the implemented algorithm idea also has
included bits evaluations describing the plaintext and the key. This resulting formula
in the form of CNF can be tested by using the SAT-Solver. As a result, we should
get an evaluation of all bits included the resulting evaluation of ciphertext bits.

Once we have ciphertext evaluation, we add it to our formula by removing key
bits' valuations. It is good to remember about the update count of clauses in
DIMACS header. Usually, it will be the number of lines in CNF file, without
counting the header itself. Such modified formula can be now run in SAT-Solver.
The cipher is now being broken. By that, we can understand an attempt to solve a
complicated logic formula and find the right evaluation of key bits.

Obtaining a ciphertext should be a relatively quick operation regardless of the
cipher's parameters, it should take maximally a few seconds. While breaking the
cipher and recovering the secret key is a much longer operation depending on the

367

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

parameters and complexity of the cipher. It can take from several seconds to many
days. There is also a possibility that valuations may not be found because the
formula turns out to be too complicated to solve.

The rest of this paper is organized as follows. In Section 2, we present all
needed, basic information on RC5 ciphers. We do this, to the extent necessary for
explaining our ideas and boolean encoding. Section 3 contains information about
cryptanalysis procedure and an algorithm of a direct, boolean encoding of the
ciphers investigated. In Section 4, we present experimental results as we have
obtained. At the end of the paper, we will give some conclusion and future
directions connected to our research.

2. RC-5 cipher
Here we present, published in 1994, the RC5 cipher [13, 21]. It is an interesting
example of ciphers because it can be parameterized. When designing the algorithm,
Rivest set himself the following goals [13, 21].
• Implementation of the algorithm should be simple regard to hardware and

software.
• The algorithm should be fast enough to give a result almost instantly. That is the

reason why all operations are performed on a bits-blocks with a reference to the
size of the word length in terms of hardware.

• Parameters used in the algorithm should be adjustable in order to have control
over the relation between the algorithm's efficiency and its security level.

• The algorithm shouldn’t be complicated so that the cryptographic strength of
RC5 can be quickly determined.

• Memory and hardware requirements for algorithm should be undemanding to
have possibility implement it on e.g. on smart cards or minicomputers.

• The security level provided by the algorithm should be strong enough.
Below are presented the main algorithm components.

2.1. Key Expansion

Key Expansion is the first stage before starting encryption or decryption. From the
secret key, the array S is generated. It is filled with the generated subkey strings. The
size of S depends on the number of rounds. Each subkey from S is used only once in
encryption or decryption algorithm. Following the naming scheme of the original
paper, the following variable names are used:

𝑤𝑤 − 𝑇𝑇ℎ𝑒𝑒 𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑤𝑤𝑜𝑜𝑤𝑤𝑤𝑤 𝑖𝑖𝑙𝑙 𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏.
 𝐴𝐴𝑙𝑙𝑙𝑙𝑜𝑜𝑤𝑤𝑒𝑒𝑤𝑤 𝑣𝑣𝑎𝑎𝑙𝑙𝑣𝑣𝑒𝑒𝑏𝑏: 16, 32 𝑜𝑜𝑤𝑤 64.
𝑣𝑣 = 𝑤𝑤/8 − 𝑇𝑇ℎ𝑒𝑒 𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑤𝑤𝑜𝑜𝑤𝑤𝑤𝑤 𝑖𝑖𝑙𝑙 𝑏𝑏𝑏𝑏𝑙𝑙𝑒𝑒.
𝑏𝑏 − 𝑇𝑇ℎ𝑒𝑒 𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑙𝑙ℎ𝑒𝑒 𝑘𝑘𝑒𝑒𝑏𝑏 𝑖𝑖𝑙𝑙 𝑏𝑏𝑏𝑏𝑙𝑙𝑒𝑒𝑏𝑏.
 𝐴𝐴𝑙𝑙𝑙𝑙𝑜𝑜𝑤𝑤𝑒𝑒𝑤𝑤 𝑤𝑤𝑎𝑎𝑙𝑙𝑙𝑙𝑒𝑒: 0 − 255 𝑏𝑏𝑏𝑏𝑙𝑙𝑒𝑒𝑏𝑏.
𝐾𝐾[] − 𝑇𝑇ℎ𝑒𝑒 𝑘𝑘𝑒𝑒𝑏𝑏, 𝑐𝑐𝑜𝑜𝑙𝑙𝑏𝑏𝑖𝑖𝑤𝑤𝑒𝑒𝑤𝑤𝑒𝑒𝑤𝑤 𝑎𝑎𝑏𝑏 𝑎𝑎𝑙𝑙 𝑎𝑎𝑤𝑤𝑤𝑤𝑎𝑎𝑏𝑏 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑙𝑙𝑒𝑒𝑏𝑏.
𝑐𝑐 = 𝑏𝑏/𝑣𝑣 − 𝑇𝑇ℎ𝑒𝑒 𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑙𝑙ℎ𝑒𝑒 𝑘𝑘𝑒𝑒𝑏𝑏 𝑖𝑖𝑙𝑙 𝑤𝑤𝑜𝑜𝑤𝑤𝑤𝑤𝑏𝑏 (𝑜𝑜𝑤𝑤 1, 𝑖𝑖𝑜𝑜 𝑏𝑏 = 0).

368

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

SOBOŃ, KURKOWSKI AND STACHOWIAK COMPLETE SAT BASED CRYPTANALYSIS OF…

𝐿𝐿[] − 𝐴𝐴 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢 𝑢𝑢𝑢𝑢𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 𝑘𝑘𝑡𝑡𝑡𝑡 𝑢𝑢𝑠𝑠ℎ𝑡𝑡𝑢𝑢𝑢𝑢𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑.
 𝐼𝐼𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑𝑡𝑡𝑒𝑒𝑑𝑑𝐼𝐼𝑡𝑡𝑢𝑢 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑡𝑡 𝑘𝑘𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑 𝑤𝑤𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢.
𝑡𝑡 − 𝑇𝑇ℎ𝑡𝑡 𝑑𝑑𝑢𝑢𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 𝑡𝑡𝑜𝑜 𝑡𝑡𝑡𝑡𝑢𝑢𝑑𝑑𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑡𝑡 𝑤𝑤ℎ𝑡𝑡𝑑𝑑 𝑡𝑡𝑑𝑑𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡.
 𝐴𝐴𝑒𝑒𝑒𝑒𝑡𝑡𝑤𝑤𝑡𝑡𝑢𝑢 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑡𝑡: 0 − 255.
𝑡𝑡 = 2(𝑡𝑡 + 1) − 𝑇𝑇ℎ𝑡𝑡 𝑑𝑑𝑢𝑢𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡 𝑡𝑡𝑜𝑜 𝑢𝑢𝑢𝑢𝑛𝑛𝑘𝑘𝑡𝑡𝑡𝑡𝑢𝑢 𝑡𝑡𝑡𝑡𝑟𝑟𝑢𝑢𝑑𝑑𝑡𝑡𝑡𝑡𝑢𝑢.
𝑆𝑆[] − 𝑇𝑇ℎ𝑡𝑡 𝑡𝑡𝑡𝑡𝑢𝑢𝑑𝑑𝑢𝑢 𝑢𝑢𝑢𝑢𝑛𝑛𝑘𝑘𝑡𝑡𝑡𝑡𝑢𝑢 𝑤𝑤𝑡𝑡𝑡𝑡𝑢𝑢𝑢𝑢.
𝑃𝑃𝑤𝑤 − 𝑇𝑇ℎ𝑡𝑡 𝑜𝑜𝑑𝑑𝑡𝑡𝑢𝑢𝑡𝑡 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑠𝑠 𝑠𝑠𝑡𝑡𝑑𝑑𝑢𝑢𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡.
𝑄𝑄𝑤𝑤 − 𝑇𝑇ℎ𝑡𝑡 𝑢𝑢𝑡𝑡𝑠𝑠𝑡𝑡𝑑𝑑𝑢𝑢 𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑𝑠𝑠 𝑠𝑠𝑡𝑡𝑑𝑑𝑢𝑢𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡.

𝑃𝑃𝑤𝑤 is defined as 𝑂𝑂𝑢𝑢𝑢𝑢((𝑡𝑡 − 2) ∗ 2𝑤𝑤, where 𝑂𝑂𝑢𝑢𝑢𝑢 is the nearest odd integer to the
given input, 𝑡𝑡 is the base of the natural logarithm, and 𝑤𝑤 is defined above. For
allowed values of 𝑤𝑤, the associated values of 𝑃𝑃𝑤𝑤 will be as follows:

𝐹𝐹𝑡𝑡𝑡𝑡 𝑤𝑤 = 16: 0𝑥𝑥𝑥𝑥7𝐸𝐸1
𝐹𝐹𝑡𝑡𝑡𝑡 𝑤𝑤 = 32: 0𝑥𝑥𝑥𝑥7𝐸𝐸15163
𝐹𝐹𝑡𝑡𝑡𝑡 𝑤𝑤 = 64: 0𝑥𝑥𝑥𝑥7𝐸𝐸151628𝐴𝐴𝐸𝐸𝐴𝐴2𝐴𝐴6𝑥𝑥

Similarly 𝑄𝑄𝑤𝑤 is defined as 𝑂𝑂𝑢𝑢𝑢𝑢((𝜙𝜙 − 1) ∗ 2𝑤𝑤, where 𝑂𝑂𝑢𝑢𝑢𝑢 is the nearest odd
integer to the given input, 𝜙𝜙 is the golden ratio, and 𝑤𝑤 is defined above. For allowed
values of 𝑤𝑤, the values of 𝑄𝑄𝑤𝑤 will be as follows:

𝐹𝐹𝑡𝑡𝑡𝑡 𝑤𝑤 = 16: 0𝑥𝑥9𝐸𝐸37
𝐹𝐹𝑡𝑡𝑡𝑡 𝑤𝑤 = 32: 0𝑥𝑥9𝐸𝐸3779𝑥𝑥9
𝐹𝐹𝑡𝑡𝑡𝑡 𝑤𝑤 = 64: 0𝑥𝑥9𝐸𝐸3779𝑥𝑥97𝐹𝐹4𝐴𝐴7𝐶𝐶15

2.2. Converting the Secret Key from Bytes to Words

The first algorithmic step of key expansion is to copy the secret key 𝐾𝐾[0 … 𝑛𝑛 − 1]
into an array 𝐿𝐿[0 … 𝑠𝑠 − 1], where 𝑛𝑛 and 𝑠𝑠 is defined above. This operation is
performed in a logical way, by taking consecutive key bytes of array 𝐾𝐾, to fill up
each successive word in array 𝐿𝐿, low-order byte to high-order byte. Any unfilled
byte positions of array 𝐿𝐿 are zeroed.

On little-endian bytes order machines, the above operation can be done literally
by zeroing the array 𝐿𝐿, and then copying the string 𝐾𝐾 directly into the memory
positions representing array 𝐿𝐿. The following pseudo-code obtains the same effect,
assuming that all bytes are unsigned and that array 𝐿𝐿 is initially zeroed:

𝑠𝑠 = [𝑡𝑡𝑡𝑡 𝑥𝑥(𝑛𝑛, 1) /𝑢𝑢];
𝒇𝒇𝒇𝒇𝒇𝒇 𝑑𝑑 = 𝑛𝑛 − 1 𝒅𝒅𝒇𝒇𝒅𝒅𝒅𝒅𝒅𝒅𝒇𝒇 0 𝒅𝒅𝒇𝒇:

𝐿𝐿[𝑑𝑑/𝑢𝑢] = (𝐿𝐿[𝑑𝑑/𝑢𝑢] ≪ 8) + 𝐾𝐾[𝑑𝑑];
As we can see, as a result of a left bits shift by a fixed value of 8 (number of bits

in a byte) and addition a consecutive key byte of array 𝐾𝐾 we get filled the 𝐿𝐿 array
with bytes from the array 𝐾𝐾, starting from the low-order byte and finish with the
high-order byte. Any empty 𝐿𝐿 byte positions are zeroed. For a better understanding
of the above algorithm, we can provide a few examples:

369

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

𝑅𝑅𝑅𝑅5 − 16/1/3
𝐾𝐾𝐾𝐾𝐾𝐾 = [AB, 𝑅𝑅𝐶𝐶, 𝐸𝐸𝐸𝐸]
𝐿𝐿 = [𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶, 00𝐸𝐸𝐸𝐸]

𝑅𝑅𝑅𝑅5 − 32/1/6
𝐾𝐾𝐾𝐾𝐾𝐾 = [AB, 𝑅𝑅𝐶𝐶, 𝐸𝐸𝐸𝐸, 𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅]
𝐿𝐿 = [𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶, 0000𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶]

𝑅𝑅𝑅𝑅5 − 16/1/16
𝐾𝐾𝐾𝐾𝐾𝐾 = [AB, CD, EF, AA, BB, CC, DD, 11, 22, 33, 44, 55, 66, 77, 88, 99]
𝐿𝐿 = [𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸, 𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶, 11𝐶𝐶𝐶𝐶, 3322, 5544, 7766, 9988]

Let's consider in detail one of them:

𝑅𝑅𝑅𝑅5 − 16/1/3
𝐾𝐾𝐾𝐾𝐾𝐾 = [AB, CD, EF] − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝐾𝐾𝑎𝑎 𝑏𝑏𝑖𝑖 𝑚𝑚𝐾𝐾𝑚𝑚𝑎𝑎𝑚𝑚𝐾𝐾 ∶
 {33, 34, … , 56},
 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 {57, 58, … , 64} 𝑤𝑤𝑏𝑏𝑎𝑎𝑎𝑎 𝑏𝑏𝐾𝐾 𝑧𝑧𝐾𝐾𝑚𝑚𝑎𝑎𝐾𝐾𝑎𝑎.
𝐸𝐸𝐸𝐸𝐸𝐸𝐾𝐾𝑎𝑎𝑏𝑏𝐾𝐾𝑎𝑎 𝐿𝐿 = [𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶, 00𝐸𝐸𝐸𝐸] − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝐾𝐾𝑎𝑎 𝑏𝑏𝑖𝑖 𝑚𝑚𝐾𝐾𝑚𝑚𝑎𝑎𝑚𝑚𝐾𝐾 ∶
 {65, 66, … , 96}

In this case, the key needs only 3 bytes (24 bits) to save it. However, the formula
will be much simpler to generate if we allocated additional bits filled with 0 as a
supplement of the key. The key size should be multiple of the word. We can present
this logic by the following pseudo-code:

𝑎𝑎 = [𝑚𝑚𝑎𝑎 x(𝑏𝑏, 1) /𝑢𝑢];
𝑘𝑘𝐾𝐾𝐾𝐾𝐶𝐶𝑏𝑏𝑏𝑏𝑘𝑘𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑖𝑖 = 1;
𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝐾𝐾𝐿𝐿𝐶𝐶𝑏𝑏𝑏𝑏𝑘𝑘𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑖𝑖 = 𝑘𝑘𝐾𝐾𝐾𝐾𝐶𝐶𝑏𝑏𝑏𝑏𝑘𝑘𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑖𝑖 + (𝑎𝑎 ∗ 𝑤𝑤);

𝒇𝒇𝒇𝒇𝒇𝒇 𝑏𝑏 = 1 𝒕𝒕𝒇𝒇 𝑎𝑎 𝒅𝒅𝒇𝒇:
𝑞𝑞 = 𝑏𝑏 ∗ 𝑤𝑤;

𝒇𝒇𝒇𝒇𝒇𝒇 𝑗𝑗 = 𝑞𝑞 𝒅𝒅𝒇𝒇𝒅𝒅𝒅𝒅𝒕𝒕𝒇𝒇 𝑗𝑗 − 𝑤𝑤 𝒔𝒔𝒕𝒕𝒔𝒔𝒔𝒔 − 8 𝒅𝒅𝒇𝒇:
𝒇𝒇𝒇𝒇𝒇𝒇 𝑘𝑘 = 8 𝒅𝒅𝒇𝒇𝒅𝒅𝒅𝒅𝒕𝒕𝒇𝒇 0 𝒅𝒅𝒇𝒇:

𝐿𝐿[arrayLBitPosition] = 𝐾𝐾[keyBitPosition + j − k];
𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝐾𝐾𝐿𝐿𝐶𝐶𝑏𝑏𝑏𝑏𝑘𝑘𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝐾𝐾𝐿𝐿𝐶𝐶𝑏𝑏𝑏𝑏𝑘𝑘𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑖𝑖 + 1;

The conducted tests confirmed the correctness of the generated formula and the
result was as expected. By development this algorithm for transforming the 𝐾𝐾 key
into the auxiliary array 𝐿𝐿, we have avoided a lot of operations related to the bits shift
and addition operation.

2.3. Initialization of the key-independent, pseudo-random array S

The second algorithmic step of key expansion is to initialize array 𝑆𝑆 to a particular
fixed (key-independent) pseudo-random bit pattern. For this we will using the magic
constants 𝑘𝑘𝑤𝑤 and 𝑄𝑄𝑤𝑤. First element of the array 𝑆𝑆 is filled by 𝑘𝑘𝑤𝑤 value. Then, each

370

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

SOBOŃ, KURKOWSKI AND STACHOWIAK COMPLETE SAT BASED CRYPTANALYSIS OF…

next element is filled by result of addition variable 𝑄𝑄𝑤𝑤 and previous element of the
array 𝑆𝑆. This logic can be presented in the form of the following pseudo-code:

𝑆𝑆[0] = 𝑃𝑃𝑤𝑤;
𝒇𝒇𝒇𝒇𝒇𝒇 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑡𝑡 − 1 𝒅𝒅𝒇𝒇

𝑆𝑆[𝑖𝑖] = 𝑆𝑆[𝑖𝑖 − 1] + 𝑄𝑄𝑤𝑤;
Let’s take an example:

𝑅𝑅𝑅𝑅5 − 16/1/3
𝑃𝑃𝑤𝑤 = 𝐵𝐵7𝐸𝐸1 − 𝑏𝑏𝑖𝑖𝑡𝑡𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑚𝑚𝑎𝑎𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚 ∶ {97, 98, … , 112}
𝑄𝑄𝑤𝑤 = 9E37 − 𝑏𝑏𝑖𝑖𝑡𝑡𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑚𝑚𝑎𝑎𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚 ∶ {113, 114, … , 128}
𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑆𝑆 = [B7E1, 5618, F44F, 9286] − 𝑏𝑏𝑖𝑖𝑡𝑡𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑚𝑚𝑎𝑎𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚:
 [{129, 130, … , 144}, {241, 242, … , 256},
 {353, 354, … , 368}, {465, 466, … , 480}]

The conducted tests confirmed the correctness of the generated formula and the
result was as expected. We can see that for a relatively small result array and just
one simple mathematical operation (addition), we got a large formula. The reason
for that is because to perform the addition in the binary system we need to
additionally allocate 6 auxiliary variables, each of them with a word size - more
information is described in the chapter about arithmetic operations used in the
algorithm.

2.4. Mixing arrays S and L

Arrays mixing process consists in performing the operations of circular left shift and
addition. For this algorithm, besides arrays 𝑆𝑆 and 𝐿𝐿, also are used two auxiliary
variables 𝐴𝐴 and 𝐵𝐵. This logic can be presented in the form of the following pseudo-
code:

𝑖𝑖 = 𝑗𝑗 = 𝐴𝐴 = 𝐵𝐵 = 0;
𝒅𝒅𝒇𝒇 3 ∗ 𝑚𝑚𝑎𝑎𝐸𝐸(𝑡𝑡, 𝑎𝑎) 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕:

𝐴𝐴 = 𝑆𝑆[𝑖𝑖] = (𝑆𝑆[𝑖𝑖] + 𝐴𝐴 + 𝐵𝐵) ≪ 3;
𝐵𝐵 = 𝐿𝐿[𝑗𝑗] = (𝐿𝐿[𝑗𝑗] + 𝐴𝐴 + 𝐵𝐵) ≪ (𝐴𝐴 + 𝐵𝐵);
𝑖𝑖 = (𝑖𝑖 + 1)𝑚𝑚𝑡𝑡𝑎𝑎(𝑡𝑡);
𝑗𝑗 = (𝑗𝑗 + 1)𝑚𝑚𝑡𝑡𝑎𝑎(𝑎𝑎);

The conducted tests confirmed the correctness of the generated formula and the
result was as expected. We can see that we needed about 4,000 declared variables to
perform all circular shift operations and addition. The reason of that is because to
perform the addition in the binary system we need additional auxiliary variable, like
mentioned before. However, the circular shift needs only a lot of clauses for each
possible case, which enlarges the whole formula, but does not generate any auxiliary
variables - more information is described in the chapter about arithmetic operations
used in the algorithm.

371

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

The whole key extension algorithm is quite clearly called one-way and it is
difficult to determine the 𝐾𝐾 key on the basis of the received array 𝑆𝑆. This difficulty
can be seen in times that SAT-solvers need to find the key.

3. Cipher’s encoding and SAT based cryptanalysis
Cryptanalysis is a domain of knowledge and research dealing with methods of
breaking ciphers containing possible violations of all assumed security features. The
cipher is breakable if it is possible to obtain plaintext or the key based on ciphertext,
or key based on plaintext and ciphertext. In our case, we try to find the key by
possessing plaintext and ciphertext. For this purpose, we use the SAT-based method.
This method is the propositional satisfiability problem, determining whether for a
given logical formula is such evaluation of variables when the formula is satisfiable.
To obtain that result we examine the formula by special tools named SAT-solvers.

3.1. Main idea

Follow a method presented in [7, 10, 23] we can transfer the whole algorithm into a
propositional boolean formula. In the case of round-ciphers we encode each round of
cipher and join these formulas into a one.

Let assume, that we deal with a cipher with 64-bit plaintext block and 𝑗𝑗 rounds.
Let denote by (𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝64) plaintext bits and by (𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐64) a ciphertext.
Additionally let (𝑝𝑝1

𝑘𝑘, 𝑝𝑝2
𝑘𝑘, … , 𝑝𝑝64

𝑘𝑘) and (𝑐𝑐1
𝑘𝑘, 𝑐𝑐2

𝑘𝑘, … , 𝑐𝑐64
𝑘𝑘) input and output strings of 𝑘𝑘-th

round. Observe that of course output of 𝑘𝑘 round is an input of 𝑘𝑘 + 1 round, for 𝑘𝑘 =
1, … , 𝑗𝑗 − 1.

Having such expressions, we can write the formula, that encode the whole 𝑗𝑗
rounds of the cipher considered:

𝜑𝜑(𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝64, 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐64) ≡
≡ ⋀𝑘𝑘=1

𝑗𝑗 𝜑𝜑𝑘𝑘(𝑝𝑝1
𝑘𝑘, 𝑝𝑝2

𝑘𝑘, … , 𝑝𝑝64
𝑘𝑘 , 𝑐𝑐1

𝑘𝑘, 𝑐𝑐2
𝑘𝑘, … , 𝑐𝑐64

𝑘𝑘) ∧ ⋀𝑘𝑘=1
𝑗𝑗−1 ∧𝑠𝑠=1

64 (𝑝𝑝𝑘𝑘
𝑠𝑠 ⇔ 𝑐𝑐𝑘𝑘+1

𝑠𝑠).

In such formula, 𝜑𝜑(𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝64, 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐64) denote the whole algorithm
formula, dependent of the plaintext bits 𝑝𝑝1

𝑘𝑘, 𝑝𝑝2
𝑘𝑘, … , 𝑝𝑝64

𝑘𝑘 and a cipher ones
𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐64. 𝜑𝜑𝑘𝑘(𝑝𝑝1

𝑘𝑘, 𝑝𝑝2
𝑘𝑘, … , 𝑝𝑝64

𝑘𝑘 , 𝑐𝑐1
𝑘𝑘, 𝑐𝑐2

𝑘𝑘, … , 𝑐𝑐64
𝑘𝑘) is the formula that encodes 𝑘𝑘-th

round (dependent of (𝑝𝑝1
𝑘𝑘, 𝑝𝑝2

𝑘𝑘, … , 𝑝𝑝64
𝑘𝑘), and (𝑐𝑐1

𝑘𝑘, 𝑐𝑐2
𝑘𝑘, … , 𝑐𝑐64

𝑘𝑘)). As we said before the
conjunction 𝑝𝑝𝑘𝑘

𝑠𝑠 ⇔ 𝑐𝑐𝑘𝑘+1
𝑠𝑠 (𝑠𝑠 = 1, … , 64) denote that each of output bit of 𝑘𝑘-th round

is an input of 𝑘𝑘 + 1-th round. Using this we can encode each cipher’s fragment as
simple equivalences of bits dependences.

Here we show such equivalences that represent small parts of the whole
algorithm.

3.2. Cryptanalysis procedure

For our research, we do the following work. Firstly having a given cipher, we built a
propositional logical formula that encodes the whole RC5 algorithm. Next, we

372

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

SOBOŃ, KURKOWSKI AND STACHOWIAK COMPLETE SAT BASED CRYPTANALYSIS OF…

randomly generate plaintext and key bits. Then, using SAT solvers, specially
designed tools for checking about the satisfiability of the Boolean formulas, we
compute ciphertext bits. At the end of our computations, we once more use SAT-
solvers trying to compute key bits having only plaintext and ciphertext bits. That
means that in our experiments, we explore RC5 properties in the case of
cryptanalysis with plaintext and ciphertext. In our investigations, we use and
compare several SAT-solvers: a few new ones and a few rather old but still efficient
and popular.

The studies described in this work relate to generating a propositional logic
formula that encodes the whole RC5 algorithm, including encryption and key
expansion. That logic formula is converted into conjunctive normal form (CNF). It
is a conjunction of clauses, where a clause is a disjunction of literals, and a literal is
a propositional variable or its negation. SAT-solvers take this CNF form as an input
data. They are specific build tools for checking the satisfiability of the Boolean
formulas. To obtain reliable results, we compared many SAT-solve and choose a
few. All of them were very efficient, some relatively old, some modern and popular.

The generated formula besides the implemented algorithm idea also has
included bits evaluations describing the plaintext and the key. This resulting formula
in the form of CNF can be run by using the SAT-Solver. As a result, we should get
an evaluation of all bits included the resulting evaluation of ciphertext bits.

Once we have ciphertext evaluation, we add it to our formula by removing key
evaluation. It is good to remember about update the count of clauses in DIMACS
header. Usually, it will be the number of lines in CNF file, without counting the
header itself. Such modified formula can be now run in SAT-Solver. The cipher is
now being broken. By that, we can understand an attempt to solve a complicated
logic formula and find the right evaluation of key bits.

Obtaining a ciphertext should be a relatively quick operation regardless of the
cipher's parameters. It should take maximally a few seconds. While breaking the
cipher and recovering the secret key is a much longer operation depending on the
parameters and complexity of the cipher. It can take from several seconds to many
days. There is also the possibility that evaluations may not be found when the
formula turns out to be too complicated to solve.

4. Boolean encoding of RC5 Cipher
First, we present propositional logical formulas that encode the most popular in
ciphers operations: a permutation and a bit addition.

4.1. Permutations and bit addition

Let consider permutation 𝜃𝜃 of a 64-bit vector 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝64. As before we denote by
𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐64 bits obtained after a permutation considered. For such functions we
have the following formula:

 ⋀𝑙𝑙=1
64 (𝑐𝑐𝑙𝑙 ⇔ 𝑝𝑝𝜃𝜃(𝑙𝑙)).

373

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

The second popular operation in RC5 cipher is a binary addition modulo 32. In
the case of Boolean encoding of such division we can observe that binary addition
follows the same principle as adding a decimal system except that instead of moving
the remainder 1 when the added values are (10)2, we move it when the result of the
addition is (2)10. To better illustrate this, we give an example below:

1 + 0 = 0,
0 + 1 = 1,
1 + 0 = 1,
1 + 1 = 0, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 𝑡𝑡ℎ𝑜𝑜 1.

For the purpose of further discussion of the algorithms and notation of addition,
let’s assume that:

𝑐𝑐 − 𝑐𝑐 𝑓𝑓𝑓𝑓𝑐𝑐𝑓𝑓𝑡𝑡 𝑏𝑏𝑓𝑓𝑡𝑡,
𝑏𝑏 − 𝑐𝑐 𝑓𝑓𝑜𝑜𝑐𝑐𝑜𝑜𝑠𝑠𝑠𝑠 𝑏𝑏𝑓𝑓𝑡𝑡,
𝑝𝑝 − 𝑐𝑐 𝑐𝑐𝑜𝑜𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡 𝑜𝑜𝑓𝑓 𝑐𝑐𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡𝑓𝑓𝑜𝑜𝑠𝑠 𝑜𝑜𝑝𝑝𝑜𝑜𝑐𝑐𝑐𝑐𝑡𝑡𝑓𝑓𝑜𝑜𝑠𝑠,
𝑞𝑞, 𝑐𝑐, 𝑓𝑓, 𝑡𝑡, 𝑟𝑟 − 𝑐𝑐𝑟𝑟𝑎𝑎𝑓𝑓𝑟𝑟𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝑏𝑏𝑟𝑟𝑜𝑜𝑓𝑓.

⊕ − 𝑋𝑋𝑋𝑋𝑋𝑋 𝑜𝑜𝑝𝑝𝑜𝑜𝑐𝑐𝑐𝑐𝑡𝑡𝑓𝑓𝑜𝑜𝑠𝑠,
∧ − 𝑐𝑐𝑜𝑜𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑐𝑐𝑡𝑡𝑓𝑓𝑜𝑜𝑠𝑠,
∨ − 𝑠𝑠𝑓𝑓𝑓𝑓𝑐𝑐𝑟𝑟𝑠𝑠𝑐𝑐𝑡𝑡𝑓𝑓𝑜𝑜𝑠𝑠.

We can denote the formula for an addition operation as follows:

𝑝𝑝 ⇔ (𝑐𝑐 ⊕ 𝑏𝑏) ⊕ 𝑐𝑐,
𝑝𝑝 ⇔ (𝑐𝑐 ∧ 𝑏𝑏) ∨ (𝑐𝑐 ∧ 𝑐𝑐) ∨ (𝑏𝑏 ∧ 𝑐𝑐).

Note that, using well-known logical laws, we can convert these formulas to
conjunction with the auxiliary factors in the following way:

𝑞𝑞 ⇔ (𝑐𝑐 ⊕ 𝑏𝑏),
𝑝𝑝 ⇔ (𝑞𝑞 ⊕ 𝑐𝑐),
𝑐𝑐 ⇔ (𝑐𝑐 ∧ 𝑏𝑏),
𝑓𝑓 ⇔ (𝑐𝑐 ∧ 𝑐𝑐),
𝑡𝑡 ⇔ (𝑏𝑏 ∧ 𝑐𝑐),
𝑟𝑟 ⇔ (𝑐𝑐 ∨ 𝑓𝑓),
𝑐𝑐 ⇔ (𝑟𝑟 ∨ 𝑡𝑡).

4.2. Circular bit shift

Looking at the circular bit shift from the decimal number system point of view, it
might seem complicated and difficult to encode. However, if we consider it from the
binary system point of view, it looks simplest and logical. The formula proposal
comes to create an appropriate condition from the bits describing the shift value.
This condition will be implied by assigning the old bits to the new ones considering
the shift value.

374

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

SOBOŃ, KURKOWSKI AND STACHOWIAK COMPLETE SAT BASED CRYPTANALYSIS OF…

As an example, assume the right circular shift and:

𝑝𝑝 = [1, 1, 0, 0] = (1100)2 = (12)10 − 𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑡𝑡
𝑞𝑞 = [0, 1] = (01)2 = (1)10 − 𝑎𝑎 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑡𝑡 𝑣𝑣𝑎𝑎𝑣𝑣𝑛𝑛𝑛𝑛
𝑠𝑠 = [0, 1, 1, 0] = (0110)2 = (6)10 − 𝑎𝑎 𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑣𝑣𝑡𝑡

We can construct the encoding formula in this case as follows:

𝑞𝑞1 ∧ 𝑞𝑞2 ⇒ (𝑝𝑝0 ⇔ 𝑠𝑠0) ∧ (𝑝𝑝1 ⇔ 𝑠𝑠1) ∧ (𝑝𝑝2 ⇔ 𝑠𝑠2) ∧ (𝑝𝑝3 ⇔ 𝑠𝑠3),
𝑞𝑞1 ∧ 𝑞𝑞2 ⇒ (𝑝𝑝0 ⇔ 𝑠𝑠1) ∧ (𝑝𝑝1 ⇔ 𝑠𝑠2) ∧ (𝑝𝑝2 ⇔ 𝑠𝑠3) ∧ (𝑝𝑝3 ⇔ 𝑠𝑠0),
𝑞𝑞1 ∧ 𝑞𝑞2 ⇒ (𝑝𝑝0 ⇔ 𝑠𝑠2) ∧ (𝑝𝑝1 ⇔ 𝑠𝑠3) ∧ (𝑝𝑝2 ⇔ 𝑠𝑠0) ∧ (𝑝𝑝3 ⇔ 𝑠𝑠1),
𝑞𝑞1 ∧ 𝑞𝑞2 ⇒ (𝑝𝑝0 ⇔ 𝑠𝑠3) ∧ (𝑝𝑝1 ⇔ 𝑠𝑠0) ∧ (𝑝𝑝2 ⇔ 𝑠𝑠1) ∧ (𝑝𝑝3 ⇔ 𝑠𝑠2).

Note that we can convert these formulas to conjunction in the following way:

𝑞𝑞1 ∧ 𝑞𝑞2 ⇒ (𝑝𝑝0 ⇔ 𝑠𝑠0),
𝑞𝑞1 ∧ 𝑞𝑞2 ⇒ (𝑝𝑝1 ⇔ 𝑠𝑠1),
𝑞𝑞1 ∧ 𝑞𝑞2 ⇒ (𝑝𝑝2 ⇔ 𝑠𝑠2),
𝑞𝑞1 ∧ 𝑞𝑞2 ⇒ (𝑝𝑝3 ⇔ 𝑠𝑠3),

𝑞𝑞1 ∧ 𝑞𝑞2 ⇒ (𝑝𝑝0 ⇔ 𝑠𝑠1),
𝑞𝑞1 ∧ 𝑞𝑞2 ⇒ (𝑝𝑝1 ⇔ 𝑠𝑠2),
…….
𝑞𝑞1 ∧ 𝑞𝑞2 ⇒ (𝑝𝑝2 ⇔ 𝑠𝑠1),
𝑞𝑞1 ∧ 𝑞𝑞2 ⇒ (𝑝𝑝3 ⇔ 𝑠𝑠2).

4.3. Encryption

The basic assumption in RC5 Cipher is the operation on words with a length of 16,
32 or 64 bits. The plaintext is given as two blocks 𝐴𝐴 and 𝐵𝐵, where each of them has
a word length. Let’s assume, that the array 𝑆𝑆 has been already created. The idea of
encryption can be presented in the form of the following pseudo-code:

𝐴𝐴 = 𝐴𝐴 + 𝑆𝑆[0]
𝐵𝐵 = 𝐵𝐵 + 𝑆𝑆[1];
𝒇𝒇𝒇𝒇𝒇𝒇 𝑖𝑖 = 1 𝒕𝒕𝒇𝒇 𝑛𝑛 𝒅𝒅𝒇𝒇:

𝐴𝐴 = ((𝐴𝐴 ⊕ 𝐵𝐵) ⋘ 𝐵𝐵) + 𝑆𝑆[2 ∗ 𝑖𝑖];
𝐴𝐴 = ((𝐵𝐵 ⊕ 𝐴𝐴) ⋘ 𝐴𝐴) + 𝑆𝑆[2 ∗ 𝑖𝑖 + 1];

The conducted tests confirmed the correctness of the generated formula and the
result was as expected. We can notice that to perform all circular shift and addition
operations, we needed only about 1500 declared variables to obtain the ciphertext.
This is just around 37% of that what we needed for mixing array S. The reason for
this is that in encryption we have just 2 addition operations, while for mixing array S
there are 5 addition operations. The rest operations like XOR or circular shift don’t
need so many auxiliary variables like addition.

375

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

5. SAT-solvers and experimental results
In this section we present and compare features of SAT-solvers used for testing. We
also show our experimental results.

5.1. SAT-solvers

For our investigation we use some new and a few rather old but still very efficient
and popular SAT-solvers:

1. MiniSAT – ver. 2.2,
2. PrecoSat – ver. 576-7e5e66f-120112,
3. PicoSAT – ver. 960,
4. Glucose – ver. 4.1,
5. RSat 2.01 – ver. 2.01,
6. Rsat Race08 – ver. 3.01,
7. COMiniSATPS Pulsar,
8. Lingeling – ver. bcj-78ebb86-180517,
9. Glu_VC,
10. Maple LCM,
11. CaDiCaL – ver. 1.0.3-cb89cbf,
12. CaDiCaL Agile – ver. sc17,
13. Syrup – ver. 4.1,
14. Plingeling – ver. bbe-sc2017,
15. Painless MapleCOMSPS.

All SAT-solvers take the first parameter as the input CNF file name. For most
solvers, it is sufficient to run and see the results. Almost all display the running time
by default. Some of them need to use additional parameters to display results. All
differences were described below.

PrecoSat and PicoSAT do not display information about the running time.
Therefore, for the purposes of check and verify this time we recommend using the
“time” command when running those SAT-solvers. This command displays process
running time when process is finished [1,3].

RSat 2.01 and RsatRace08 do not display results by default. You must provide
the run “-s” option to see the outcome.

MiniSAT, COMiniSATPS Pulsar, Glucose, Glu_VC and Syrup also do not
present results by default. You can provide a second run parameter (an output file
name) to save the outcome into a file. For Glucose, Glu_VC and Syrup in order to
display results instead of saving, you can use the run “-model” option [2, 12].

Syrup, Plingeling and Painless MapleCOMSPS are parallel SAT-solvers. Can
work multithreaded and options for that are fully configured. However, for the
purposes of our research we didn't have to change it, and we stayed with the default
settings [4].

376

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

SOBOŃ, KURKOWSKI AND STACHOWIAK COMPLETE SAT BASED CRYPTANALYSIS OF…

5.2. Experimental results

Below are presented tables with results of times individual problems for different
SAT-solvers and information about files size, count of clauses and variables for
those problems.

The following notation has been used:

𝑅𝑅𝑅𝑅5 − 𝑤𝑤/𝑟𝑟/𝑏𝑏

where,
𝑤𝑤 − 𝑇𝑇ℎ𝑒𝑒 𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑤𝑤𝑜𝑜𝑟𝑟𝑤𝑤 𝑖𝑖𝑙𝑙 𝑏𝑏𝑖𝑖𝑙𝑙𝑏𝑏.
 𝐴𝐴𝑙𝑙𝑙𝑙𝑜𝑜𝑤𝑤𝑒𝑒𝑤𝑤 𝑣𝑣𝑎𝑎𝑙𝑙𝑣𝑣𝑒𝑒𝑏𝑏: 16, 32 𝑜𝑜𝑟𝑟 64.
𝑟𝑟 − 𝑇𝑇ℎ𝑒𝑒 𝑙𝑙𝑣𝑣𝑛𝑛𝑏𝑏𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑟𝑟𝑜𝑜𝑣𝑣𝑙𝑙𝑤𝑤 𝑙𝑙𝑜𝑜 𝑣𝑣𝑏𝑏𝑒𝑒 𝑤𝑤ℎ𝑒𝑒𝑙𝑙 𝑒𝑒𝑙𝑙𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙 𝑤𝑤𝑎𝑎𝑙𝑙𝑎𝑎.
 𝐴𝐴𝑙𝑙𝑙𝑙𝑜𝑜𝑤𝑤𝑒𝑒𝑤𝑤 𝑟𝑟𝑎𝑎𝑙𝑙𝑙𝑙𝑒𝑒: 0 − 255.
𝑏𝑏 − 𝑇𝑇ℎ𝑒𝑒 𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑙𝑙ℎ𝑒𝑒 𝑘𝑘𝑒𝑒𝑒𝑒 𝑖𝑖𝑙𝑙 𝑏𝑏𝑒𝑒𝑙𝑙𝑒𝑒𝑏𝑏.
 𝐴𝐴𝑙𝑙𝑙𝑙𝑜𝑜𝑤𝑤𝑒𝑒𝑤𝑤 𝑟𝑟𝑎𝑎𝑙𝑙𝑙𝑙𝑒𝑒: 0 − 255 𝑏𝑏𝑒𝑒𝑙𝑙𝑒𝑒𝑏𝑏.

Also, you can find notation like 𝑅𝑅𝑅𝑅5 − 𝑤𝑤/𝑟𝑟/𝑏𝑏 − 𝑙𝑙, where 𝑙𝑙 is the number of
evaluated bits added to CNF formula. Let’s take an example: 𝑅𝑅𝑅𝑅5 − 16/1/5 − 16.

It means, that for 40 bits (5 bytes) key we have added 16 evaluated bits and try
to find only 24 left bits (3 bytes).

An interesting observation is the fact, that the odd and even length of the key has
the same number of variables and clauses. The reason of this is that the generated
formula filling the "missing" even part of the key with zeros. That part of logic was
described in detail in the section of converting the secret key from bytes to words.
However, breaking the cipher for the 4-bytes key will be much harder than for the 3-
bytes key. Regardless of the fact that we have the same number of variables and
clauses in generated formula.

Version File size [MB] Variables Clauses
RC5-16/1/3 0,56 6784 28034
RC5-16/6/3 2,40 23744 101362

RC5-16/12/3 4,60 44096 189346
RC5-32/1/3 1,90 13504 70418
RC5-32/6/3 7,80 47424 258338
RC5-32/9/3 11,40 67776 371066

Table 1. Information about variables and clauses for 3-bytes key.

Assumptions about fast obtain the ciphertext bits evaluations from SAT-solver,
were confirmed during the tests. For each case, regardless of the cipher parameters
or the size of the file contains CNF formula, it took literally fractions of a second.
Long time needed for obtain the key bits evaluations while breaking the cipher have
also been confirmed and presented in previous chapter.

Studies have shown that in each case the generated formula returned the
expected ciphertext evaluation. However, during the stage of finding the key
evaluation, the results were variety.

377

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Version File size [MB] Variables Clauses
RC5-16/1/5-16 0,56 6816 28090
RC5-16/1/5-12 0,56 6816 28086
RC5-16/1/5-8 0,56 6816 28082
RC5-16/1/4 0,56 6784 28034
RC5-16/1/5 0,56 6816 28074
RC5-32/1/4 1,90 13504 70450

Table 2. Information about variables and clauses for more than 3-bytes and custom key.

The initial assumptions were to examination RC5 Cipher with following
parameters: word size: 16 and 32 bits, rounds number: 1, 3, 6, 9 and 12, and a key
size: 1, 2, 3, 4 and 5 bytes.

Version Time [s]
MiniSAT

Time [s]
PrecoSat

Time [s]
PicoSat

Time [s]
Glucose

Time [s]
Rsat_2.01

RC5-16/1/2 1,37 20,99 26,25 9,52 11,76
RC5-16/6/2 37,60 98,52 103,52 10,85 100,49

RC5-16/12/2 91,25 85,40 474,02 130,50 386,99
RC5-32/1/2 31,85 47,07 40,90 33,19 15,49
RC5-32/6/2 99,36 409,09 11,52 52,36 968,60

RC5-32/12/2 467,57 482,69 23,87 329,68 167,32
RC5-32/24/2 101,78 235,61 49,44 376,89 961,74
RC5-32/48/2 1216,27 426,75 2946,13 1876,09 4793,57

Version Time [s]
Rsat_Race

Time [s]
COMiniSA

T

Time [s]
Lingeling

Time [s]
Glu_VC

Time [s]
Maple

RC5-16/1/2 35,96 23,12 24,90 5,04 20,51
RC5-16/6/2 160,42 97,02 139,18 36,20 Error

RC5-16/12/2 177,67 40,95 350,4 67,32 Error
RC5-32/1/2 31,48 48,42 7,69 5,45 5,68
RC5-32/6/2 192,04 35,45 145,20 214,15 Error

RC5-32/12/2 832,03 140,77 1156,63 172,35 Error
RC5-32/24/2 1518,74 197,45 369,05 822,02 Error
RC5-32/48/2 3147,42 1779,48 4340,35 2206,03 Error

Version Time [s]
CaDiCal

Time [s]
CDC_Agile

Time [s]
Syrup*

Time [s]
PlingeL*

Time [s]
Painless*

RC5-16/1/2 9,51 9,51 0,86 9,80 71,62
RC5-16/6/2 79,4 60,04 29,08 12,25 42,52

RC5-16/12/2 184,19 184,19 94,83 120,38 227,02
RC5-32/1/2 24,99 22,83 9,27 4,95 18,92
RC5-32/6/2 323,70 297,65 165,98 5,08 137,78

RC5-32/12/2 54,42 375,54 174,25 15,64 124,71
RC5-32/24/2 121,67 797,23 587,35 360,56 Error
RC5-32/48/2 476,96 2639,22 97,88 643,28 Error

Table 3. Results for 2-bytes key.

378

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

SOBOŃ, KURKOWSKI AND STACHOWIAK COMPLETE SAT BASED CRYPTANALYSIS OF…

After started tests there was no problem to break the 1-byte key. It took literally
fractions of a second. Regardless of the number of rounds as well. While raising
parameters could be noticed a significant increase for the time needed to break the 2-
bytes key. The same situation was with bigger keys, like 3, 4 and 5-bytes. At some
point we came to a stage where further waiting for results became too much time-
consuming, given the limited hardware resources.

To be able to compare more results and better understanding cryptanalysis of the
RC5 cipher we abandoned calculations, that were persisted long time. Some of the
tests were interrupted and emphasis like red numbers with the grave accent as a
prefix. This number is the time after which the process was interrupted. After got
considerable count of results we were able to see some pattern of which SAT-solvers
are more credible and which are not. That was the main reason that some of tests
was not performed.

It turns out that the 2-bytes key is not difficult to break down even for a large
number of rounds. This was confirmed by additional tests with a significantly larger
number of rounds than originally assumed. The sizes of the CNF files, the number of
variables and clauses for 𝑅𝑅𝑅𝑅5 − 32/24/2 and 𝑅𝑅𝑅𝑅5 − 32/48/2 case look
impressive. SAT-solvers working times look fine and are not surprising. The
exception is the result of the Syrup program for 48 rounds case. Which found the
key quickly, faster than all other solvers and faster than itself for 24 rounds case.

Version Time [s]
MiniSAT

Time [s]
PrecoSat

Time [s]
PicoSat

Time [s]
Glucose

Time [s]
Rsat_2.01

RC5-16/1/3 78,36 3846,00 9996,72 `67540,00 `26040,00
RC5-16/3/3 11342,50 N/A N/A N/A N/A
RC5-16/6/3 `30137,00 N/A N/A N/A N/A

RC5-16/12/3 46800,00 N/A N/A N/A N/A
RC5-32/1/3 874,57 7640,59 N/A N/A N/A

Version Time [s]
Rsat_Race

Time [s]
COMiniSAT

Time [s]
Lingeling

Time [s]
Glu_VC

Time [s]
Maple

RC5-16/1/3 N/A `44658,00 N/A 609,05 N/A
RC5-32/1/3 N/A N/A N/A 294,60 Error

Version Time [s]
CaDiCal

Time [s]
CDC_Agile

Time [s]
Syrup*

Time [s]
PlingeL*

Time [s]
Painless*

RC5-16/1/3 7387,42 4465,68 44,74 4811,48 Error
RC5-32/1/3 N/A `2400,00 1063,90 7309,10 N/A

Table 4. Results for 3-bytes key.

As you can see in the results for the 3-bytes key, obtain results for just 1 round
was for most SAT-solvers pretty straightforward and usually fast. However, for 3
and more rounds efficiency has fallen dramatically, from seconds to hours. Some of
the calculations worked enough long to be interrupted, so there was no point in to
run tests for other rounds in order to get more data for analyse.

379

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Version Time [s]
MiniSAT

Time [s]
PrecoSat

Time [s]
PicoSat

Time [s]
Glucose

Time [s]
Rsat_2.01

RC5-16/1/5-16 842,59 N/A N/A N/A N/A
RC5-16/1/5-12 7202,57 N/A N/A N/A N/A
RC5-16/1/5-8 139883,44 N/A N/A N/A N/A
RC5-16/1/4 29073,90 20693,90 N/A N/A N/A
RC5-16/1/5 `579600,00 `579600,00 N/A N/A N/A
RC5-32/1/4 `550800,00 N/A N/A N/A N/A

Version Time [s]
Rsat_Race

Time [s]
COMiniSAT

Time [s]
Lingeling

Time [s]
Glu_VC

Time [s]
Maple

RC5-16/1/5-16 N/A 58,27 N/A `19583,00 N/A
RC5-16/1/5-12 N/A 849711,7 N/A N/A N/A

Version Time [s]
CaDiCal

Time [s]
CDC_Agile

Time [s]
Syrup*

Time [s]
PlingeL*

Time [s]
Painless*

RC5-16/1/5-16 153,20 3164,13 18,50 1683,91 Error
RC5-16/1/5-12 29412,92 2925,78 `63273,00 N/A N/A
RC5-16/1/5-8 N/A N/A 770599,64 N/A N/A
RC5-16/1/4 N/A N/A `54764,00 N/A N/A

Table 5. Results for more than 3-bytes and custom key.

Very unusual results have obtained from 𝑅𝑅𝑅𝑅5 − 16/1/4 case. MiniSAT after
around 8 hours of work has returned results, but key bits evaluations were not like
expected. Similar situation was with PrecoSat. After around 5 hours of work has
returned different results than MiniSAT and key bits evaluations were not like
expected as well. However, after testing both different key bits evaluations
substituted for the formula, we have got the same and like expected results of
ciphertext bits evaluations.

Analogous situation was captured for 𝑅𝑅𝑅𝑅5 − 16/1/5 − 8 case, there was also
searched the 4-bytes key, like in 𝑅𝑅𝑅𝑅5 − 16/1/4 example. MiniSAT after around 38
hours of work has returned results, but key bits evaluations were not like expected.
We have met the same situation as above after checking these results. However,
Syrup after around 214 hours of work returned expected key bits evaluations.

The conclusion that come to mind is that the RC5 cipher may in some extreme
cases return the same ciphertext for a different key, which confirms the above
studies. This case will be investigated more precisely in future.

Legend:

N/A – Not applicable.
Error – Segmentation Fault / Error / Killed.
`time – Killed after the given time – no results.
* – Parallel SAT-solvers.

To avoid glitches, all SAT-solvers was running sequentially. Heavier loaded the
processor cores by simultaneously running SAT-solvers, caused longer problem

380

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

SOBOŃ, KURKOWSKI AND STACHOWIAK COMPLETE SAT BASED CRYPTANALYSIS OF…

solving. Below you can see difference in times, when MiniSAT try to solve the
problem and was run simultaneously for 𝑅𝑅𝑅𝑅5 − 16/12/2 case:

Running MiniSAT
simultaneously

Loaded
CPU cores Time [s]

4 4 172,00
3 3 148,00
2 2 127,00
1 1 91,00

Table 6. Difference in times while running SAT-solver simultaneously.

Like we can see the difference between one and four loaded cores is almost
twice.

All experiments have been done on the same 4-cores machine. Below are
presented information about hardware and software of the used machine:
Architecture: x86_64 system Standard PC (i440FX + PIIX, 1996), CPU op-
mode(s): 32-bit, 64-bit bus Motherboard, Byte Order: Little Endian memory 96KiB
BIOS, Address sizes: 40 bits physical, 48 bits virtual processor Common KVM
processor, CPU(s): 4 memory 6GiB System Memory, On-line CPU(s) list: 0-3
memory 6GiB DIMM RAM, Thread(s) per core: 1 bridge 440FX - 82441FX PMC.
Linux 4.19.0-5-amd64 #1 SMP Debian 4.19.37-5 (2019-06-19) x86_64 GNU/Linux

6. Conclusion
In this paper, we have presented our experimental results for SAT-based, direct
cryptanalysis of the RC5 cipher. We have shown and compared results obtained
from several efficient SAT-solvers. We have checked how the solvers work in the
case of cryptanalysis of the RC5 cipher.

The results of individual SAT-solvers are not clearly deterministic. While a
particular SAT-solver seems to be faster than the others, then in some cases was
much slower. The conclusions are that heuristics and algorithms implemented in
SAT-solvers are extremely diverse and very sensitive according to the complexity
and type of the problem. However, is worth highlighting old but powerful MiniSat
and multithread Syrup. Both of them return results quite fast in most cases.

During our research, we managed to get the results for 16 and 32-bits word size
with 1, 2, 3 and 4-bytes key and for the range of rounds amount mainly from 1 to 12.
Just for 2-bytes key maximally a number of rounds were 48. It seems to be
achievable to break stronger versions of the RC5 cipher. It can be done by using
parallel or cloud computing with a big reserve of resources.

In our next work, we will try to apply our experience for the SAT cryptanalysis
of several other ciphers like Blowfish, Twofish, AES, or hash functions.

381

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

References
[1] A. Biere, PicoSAT Essentials. Journal on Satisfiability, Boolean

Modeling and Computation (JSAT), vol. 4, pp. 75 – 97, Delft
University,2008.

[2] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors,
Handbook of Satisfiability, vol. 185 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 2009.

[3] A. Biere, Lingeling, Plingeling, Picosat and Precosat at SAT Race
2010.Technical Report FMV Reports Series 10/1, Institute for Formal
Modelsand Verification, Johannes Kepler University, Linz, Austria, 2010.

[4] A. Biere, Lingeling, Plingeling and Treengeling Entering the SAT
Competition 2013. In Proceedings of SAT Competition 2013, A. Balint, A.
Belov, M. Heule, M. Jarvisalo (editors), vol. B-2013-1 of Department of
Computer Science Series of Publications B, pages 51-52, University of
Helsinki, 2013.

[5] E. Biham and A. Shamir, Differential cryptanalysis of DES-like
cryptosystems. J. Cryptology, 4(1):3–72, 1991.

[6] N. Courtois and G. V. Bard, Algebraic cryptanalysis of the Data
Encryption Standard. In S.D. Galbraith, editor, IMA Int. Conf.,
volume4887 of Lecture Notes in Computer Science, pages 152–169.
Springer, 2007.

[7] M. Chowaniec, M. Kurkowski, and M. Mazur, New Results in Direct
SAT-Based Cryptanalysis of DES-Like Ciphers. In Proc. of ACS’18. AISC,
vol. 889, pp. 282-294, Springer, Cham.

[8] M. Davis and H. Putnam, A computing procedure for quantification
theory. J. ACM, 7(3):201–215, 1960.

[9] M. Davis, G. Logemann, and D. W. Loveland, A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[10] P. Dudek, M. Kurkowski, and M. Srebrny, Towards Parallel Direct SAT-
based Cryptanalysis, in PPAM’11 Proceedings, pp. 266-275, vol. 7203of
LNCS, Springer Verlag, 2012.

[11] A. D. Dwivedi, et al., SAT-based Cryptanalysis of Authenticated Ciphers
from the CAESAR Competition, in Proc. of the 14th International Joint
Conference on e-Business and Telecommunications (ICETE 2017) - vol.4:
SECRYPT, pp. 237 – 246, 2017.

[12] https://github.com/arminbiere/cadical (accessed on 15th of Jan. 2020).

[13] Cz. Kościelny, M. Kurkowski, M. Srebrny, Modern Cryptography
Primer, Springer Verlag, 2013.

382

JIOS, VOL. 44. NO. 2 (2020), PP. 365-382

SOBOŃ, KURKOWSKI AND STACHOWIAK COMPLETE SAT BASED CRYPTANALYSIS OF…

[14] M. Kurkowski, W. Penczek, Applying timed automata to model checking
of security protocols, in ed. J. Wang, Handbook of Finite State Based
Models and Applications, pp. 223-254, Chapman and Hall/CRC Press,
2013.

[15] M. Kurkowski, W. Penczek, Verifying Timed Security Protocols via
Translation to Timed Automata, Fundamenta Informaticae, vol. 93 (1-3),
pp. 245-259, IOS Press, 2009.

[16] F. Lafitte, L. Lerman, O. Markowitch, and D. van Heule, SAT-based
cryptanalysis of ACORN, IACR Cryptology ePrint Archive, pp. 521,
vol. 2016, 2016.

[17] F. Lafitte, et.al., Applications of SAT Solversin Cryptanalysis: Finding
Weak Keys and Preimages, JSAT, vol. 9, pp.1–25, 2014.

[18] F. Massacci, Using Walk-SAT and Rel-SAT for cryptographic key search.
In T. Dean, editor, IJCAI, pages 290–295. Morgan Kaufmann, 1999.

[19] F. Massacci, L. Marraro, Logical Cryptanalysis as a SAT Problem,
Journal of Automated Reasoning, pp. 165 – 203, 24: 165, 2000.

[20] M. Matsui, The first experimental cryptanalysis of the Data Encryption
Standard. In Y. Desmedt, editor, CRYPTO, volume 839 of Lecture Notes
in Computer Science, pages 1–11. Springer, 1994.

[21] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[22] P. Morawiecki, M. Srebrny, A SAT-based preimage analysis of reduced
Keccak hash functions. Inf. Process. Lett. 113(10-11): 392-397, 2013.

[23] A. Soboń, M. Kurkowski, S. Stachowiak, Towards Complete SAT-based
Cryptanalysis of RC5 Cipher, In Proc. of 2019 IEEE 15th International
Scientific, Conference on Informatics, pp. 369-374, IEEE Press, 2019.

[24] M. Soos, K. Nohl, and C. Castelluccia, Extending SAT Solvers to
Cryptographic Problems, Theory and Applications of Satisfiability
Testing SAT 2009, In Proc. of 12th Int. Conf., SAT 2009, pp. 244 –
257, 2009.

