Impact Factor:	ISI (Dubai, UAE) GIF (Australia)	= 6.317 = 1.582 = 0.564 = 1.500	SIS (USA) РИНЦ (Russ ESJI (KZ) SJIF (Moroc	sia) = 3.939 = 9.035	ICV (Poland) PIF (India) IBI (India) OAJI (USA)	= 6.630 = 1.940 = 4.260 = 0.350
				QR – Issue	Q	R – Article
SOI: <u>1.1/</u> International S Theoretical & p-ISSN: 2308-4944 (print) Year: 2021 Issue: 10 Published: 11.10.2021	Applied Sci e-ISSN: 2409-0085	rnal ence (online)				

Zulxumor Tuxtasinovna Abdukaxorova Namangan International School in Chust Master

ABOUT NON-ARCHIMEDIAN FUNCTION DYNAMICAL SYSTEM

Abstract: In this paper we consider the discrete time p -adic dynamic system of the family of rational functions in the form $\frac{1}{x^2+a}$. In order to solve the problem in this study, a number of real non-negative functions were constructed using the properties of the p -adic norm and some substitutions. The following conclusions were drawn about the discrete time dynamics of p-adic rational functions under consideration using their results by studying their dynamics:

This rational function cannot have a unique fixed point, the parameter a has two fixed points at a single value of $a = -\frac{3}{\sqrt[3]{4}}$ and the parameter a has three fixed points at the values of $a \neq -\frac{3}{\sqrt[3]{4}}$ proved to be. The *p* -adic dynamical system with two fixed points was studied at p = 2. Conditions were found for the parameters that attractor and indifferent fixed points. Also, basin of attraction, Siegel disks were found and trajectories were studied.

Key words: p -adic norm, fixed point, attractor fixed point, basin of attraction, indifferent fixed point, Siegel disk, a maximum Siegel disk (SI((x)), 2-adic norm, open ball, closed ball, sphere.

Language: English

Citation: Abdukaxorova, Z. T. (2021). About non-Archimedian function dynamical system. *ISJ Theoretical & Applied Science*, *10* (*102*), 413-418.

Soi: <u>http://s-o-i.org/1.1/TAS-10-102-30</u> *Doi*: **crosses** <u>https://dx.doi.org/10.15863/TAS.2021.10.102.30</u> *Scopus ASCC*: 2600.

Introduction

In the world many scientific and applied research are reduced to the studies that have focused on discrete-time dynamics of the functions defined in Archimedean or non-Archimedean fields. *p*-Adic dynamical systems generated by rational functions are effective in informatics, digital analysis and cryptography, psychodynamics and automation theory, genetic coding and population management. In *p*-adic analysis, rational functions play an important role similar to those of analytical functions in complex analysis. Therefore, the study of the dynamics of rational functions in the field of *p*-adic numbers is one of the most important tasks in the theory of dynamical systems.

It is known that the analytic functions play important role in complex analysis. In the p -adic analysis the rational functions play a similar role to the analytic functions in complex analysis [1]. Therefore, naturally one arises a question to study the dynamics of these functions in the p -adic analysis.

The study of p -adic dynamical systems arises in Diophantine geometry in the constructions of

canonical heights, used for counting rational points on algebraic vertices over a number field, as in [2].

In [3, 4] p -adic field have arisen in physics in the theory of superstrings, promoting questions about their dynamics. Also some applications of p -adic dynamical systems to some biological, physical systems has been proposed in [5,7,8,3,9].

Moreover p -adic dynamical systems are effective in computer science (straight line programs), in numerical analysis and in simulations (pseudorandom numbers), uniform distribution of sequences, cryptography (stream ciphers, T functions), combinatory (Latin squares), automata theory and formal languages, genetics. The monograph [10] contains the corresponding survey (see also [11,12] for the theory and applications of p adic dynamical systems).

In [7, 9] the behavior of a p -adic dynamical system $f(x) = x^n$ in the fields of p -adic numbers \mathbb{Q}_p and \mathbb{C}_p were studied.

In [6] the properties of the nonlinear p-adic dynamic system $f(x) = x^2 + c$ with a single

	ISRA (India)	= 6.317	SIS (USA)	= 0.912	ICV (Poland)	= 6.630
Impact Factor:	ISI (Dubai, UAE) = 1.582	РИНЦ (Russia) = 3.939	PIF (India)	= 1.940
	GIF (Australia)	= 0.564	ESJI (KZ)	= 9.035	IBI (India)	= 4.260
	JIF	= 1.500	SJIF (Morocco) = 7.184	OAJI (USA)	= 0.350

parameter c on the integer p -adic numbers \mathbb{Z}_p are investigated. This dynamic system illustrates possible brain behaviors during remembering.

In [13], dynamical systems defined by the functions $f_q(x) = x^n + q(x)$, where the perturbation q(x) is a polynomial whose coefficients have small p -adic absolute value, was studied.

Preliminaries

p -adic numbers. Let \mathbb{Q} be the field of rational numbers and p is a fixed prime number. The greatest common divisor of the positive integers n and m is denoted by (n, m). Every rational number $x \neq 0$ can be represented in the form $x = p^{\gamma(x)} \frac{n}{m}$, where $\gamma(x), n \in \mathbb{Z}, m$ is a positive integer, (p, n) =1, (p, m) = 1.

The p -adic norm of rational number x is given by

$$|x|_{p} = \begin{cases} p^{-\gamma(x)}, \text{for } x \neq 0\\ 0 & \text{for } x = 0 \end{cases}$$

It has following properties: 1) $|x|_p \ge 0$ and $|x|_p = 0$ if and only if x = 0.

2) $|xy|_p = |x|_p |y|_p$,

3) The strong triangle inequality $|x + y|_p \le$ $\max\{|x|_{p}, |y|_{p}\},\$

3.1) if $|x|_p \neq |y|_p$ then $|x + y|_p =$ $\max\{|x|_p, |y|_p\}$

3.2) if $|x|_p = |y|_p$ then $|x + y|_p \le |x|_p$,

This is a non-Atchimedean one.

The completion of \mathbb{Q} with respect to p -adic norm defines the *p* -adic \mathbb{Q}_p .

The algebraic completion of \mathbb{Q}_p is denoted by \mathbb{C}_p and it is called *complex p-adic numbers*. For any $a \in \mathbb{C}_p$ and r > 0 denote

$$U_r(a) = \{ x \in \mathbb{C}_p : |x - a|_p < r \}, \\ V_r(a) = \{ x \in \mathbb{C}_p : |x - a|_p \le r \}, \\ S_r(a) = \{ x \in \mathbb{C}_p : |x - a|_p = r \}.$$

Dynamical system in \mathbb{C}_p . Recall some known facts concerning dynamical systems (f, U) in \mathbb{C}_p , where $f: U \to f(x) \in U$ is an analytic function and $U = U_r(a)$ or \mathbb{C}_p .

Now let $f: U \to U$ be an analytic function. Denote $f^n = \underbrace{f \circ \cdots \circ f}_{n \to \infty}$.

If $f(x_0) = x_0$ then x_0 is called a fixed point. The set of all fixed points of f is denoted by Fix(f). A fixed point x_0 is called an attractor if there exists a neighborhood $U(x_0)$ of x_0 such that for all points $x \in$ $U(x_0)$ it holds $\lim_{n\to\infty} f^n(x) = x_0$. If x_0 is an attractor then its basin of attraction is

 $A(x_0) = \{ x \in \mathbb{C}_p : f^n(x) \to x_0, n \to \infty \}.$

Let x_0 be a fixed point of a function f(x). Put $\lambda = f'(x_0)$. The point x_0 is attractive if $0 < |\lambda|_p < 1$ 1, indifferent if $|\lambda|_p = 1$.

The ball $U_r(x_0)$ (contained in V) is said to be a Siegel disk if each sphere $S_{\rho}(x_0), \rho < r$ is an invariant sphere of f(x), i.e. if $x \in S_{\rho}(x_0)$ then all iterated points $f^n(x) \in S_\rho(x_0)$ for all n = 1, 2, ... The union of all Siegel disks with the center at x_0 is said to a maximum Siegel disk and denoted by $SI(x_0)$.

Main part

In this paper we considered the function f can be written in the following form:

$$f(x) = \frac{1}{x^2 + a}, \quad a \in \mathbb{C}_p,$$

re $x \neq \hat{x}_{1,p} = \pm \sqrt{-a}$

where $x \neq \hat{x}_{1,2} = \pm \sqrt{-a}$.

It is easy to see that for rational function (1) the equation f(x) = x for fixed points is equivalent to the equation

$$x^3 + ax - 1 = 0. (2)$$

(1)

Since \mathbb{C}_p is algebraic closed the equation (2) may have three solution with one of the following relations:

(i) One solution having multiplicity three;

(ii) Two solutions, one of which has multiplicity two;

> (iii) Three distinct solutions.

Theorem 1. For (1) rational functions, the following holds:

1. (1) rational function cannot have a unique fixed point.

2. The function (1) has two distinct fixed points if and only if $a = -\frac{3}{\sqrt[3]{4}}$

Proof. 1. Assume (1) has a unique fixed point, say x_0 . Then the LHS of equation (2) (which is equivalent to f(x) = x) can be written as

$$x^{3} + ax - 1 = x^{3} - 3x_{0}x^{2} + 3x_{0}^{2}x - x_{0}^{3}.$$

Consequently,
$$\int_{3x_{0}^{2} = a}^{-3x_{0} = 0}$$

$$\begin{cases} 5x_0 = a \\ x_0^3 = 1 \end{cases}$$

It is easy to see from the last equations that our assume is incorrect. Hence, (1) function does not have a unique fixed point.

2. Denote by x_1 and x_2 solution of equation (2), x_1 has multiplicity two. Then we have $x^3 + ax - 1 =$ $(x - x_1)^2 (x - x_2)$ and

$$x^{3} + ax - 1 = x^{3} - (2x_{1} + x_{2})x^{2} + (2x_{1}x_{2} + x_{1}^{2})x - x_{1}^{2}x_{2}.$$

Hence,

$$\begin{cases} 2x_1 + x_2 = 0\\ 2x_1x_2 + x_1^2 = a.\\ x_1^2x_2 = 1 \end{cases}$$

As are resul

$$\begin{cases} x_1 = -\frac{1}{\sqrt[3]{2}} \\ x_2 = \sqrt[3]{4} \\ a = -\frac{3}{\sqrt[3]{4}} \end{cases}$$

	ISRA (India) ISI (Dubai, UAE	= 6.317	SIS (USA) РИНЦ (Russia		ICV (Poland) PIF (India)	= 6.630 = 1.940
Impact Factor:	GIF (Australia)	= 0.564	ESJI (KZ)	= 9.035	IBI (India)	= 4.260
	JIF	= 1.500	SJIF (Morocco) = 7.184	OAJI (USA)	= 0.350

The function has $x_1 = -\frac{1}{\sqrt[3]{2}}$ and $x_2 = \sqrt[3]{4}$ two fixed points at a single value of $a = -\frac{3}{\sqrt[3]{4}}$. Theorem is proved.

Corollary. If $a \neq -\frac{3}{\sqrt[3]{4}}$, then the function (1) has three distinct fixed points.

We know the rational function (1) has two distinct fixed points if and only if $a = -\frac{3}{\sqrt[3]{4}}$. When $a = -\frac{3}{\sqrt[3]{4}}$ it is easy to see that (1) function has two distinct fixed points $x_1 = -\frac{1}{\sqrt[3]{2}}$ and $x_2 = \sqrt[3]{4}$

Let $f: U \to U$ and $g: V \to V$ be two maps. f and g are said to be topologically conjugate if there exists a homeomorphism $h: U \to V$ such that, $h \circ f = h \circ g$. The homeomorphism h is called a topological conjugacy. Mappings that are topologically conjugate are completely equivalent in terms of their dynamics. For example, if f is topologically conjugate to g via h, and x_0 is a fixed point for f, then $h(x_0)$ is fixed point for g. Indeed, $h(x_0) = hf(x_0) = gh(x_0)$.

Let homeomorphism $h: \mathbb{C}_p \to \mathbb{C}_p$ is defined by $x = h(t) = t + x_1 = t - \frac{1}{\sqrt[3]{2}}$. So $h^{-1}(x) = x + \frac{1}{\sqrt[3]{2}}$. Note that, the function f is topologically conjugate $h^{-1} \circ f \circ h$. We have

$$f(x) = \frac{\frac{1}{32}x^2 - \sqrt[3]{2}x}{x^2 - \sqrt[3]{4}x - \sqrt[3]{2}},$$

$$\neq \breve{x}_{1,2} = \frac{1\pm\sqrt{3}}{3/2}.$$
(3)

Thus we study the dynamical system (f, \mathbb{C}_p) with f given by (3).Note that, function (3) has two fixed points $x_1 = 0$ and $x_2 = \frac{3}{\sqrt[3]{2}}$. So we have $f'(x_1) = 1$ and $f'(x_2) = 8$. Thus, the point $x_1 = 0$ is an indifferent point for (3). For any $x \in \mathbb{C}_p$, $x \neq \tilde{x}_{1,2}$, by simple calculation we get

where x

$$|f(x)|_{p} = |x|_{p} \frac{\left|\frac{1}{\sqrt{2}}x^{-\sqrt{2}}\right|_{p}}{|x-\tilde{x}_{1}|_{p}|x-\tilde{x}_{2}|_{p}}.$$
(4)

Denote $P = \{x \in \mathbb{C}_p : \exists n \in \mathbb{N} \cup \{0\}, f^n(x) \in \{\breve{x}_1, \breve{x}_2\}\}.$

Case p = 2.

Now let us calculate the 2-adic norm of \breve{x}_1 and \breve{x}_2 . We know $\sqrt{3} \notin \mathbb{Q}_2$. Consider the quadratic extension of $K = \mathbb{Q}_2(\sqrt{3})$. We can write any element of *K* in the form $a + b\sqrt{3}$. $\mathbb{N}_{K \setminus \mathbb{Q}_2}(a + b\sqrt{3}) = a^2 - 3b^2$.

$$|1 + \sqrt{3}|_{2} = \sqrt{|\mathbb{N}_{K \setminus \mathbb{Q}_{2}}(1 + \sqrt{3})|_{2}} = \sqrt{|1 - 3|_{2}}$$
$$= \frac{1}{\sqrt{2}}.$$

We know $\sqrt[3]{2} \notin \mathbb{Q}_2$. Consider the cubic extension of $K = \mathbb{Q}_2(\sqrt[3]{2})$. We can write any element of *K* in the form $a + b\sqrt[3]{2} + c\sqrt[3]{4}$.

 $\mathbb{N}_{K\setminus\mathbb{Q}_{2}}(a+b\sqrt[3]{2}+c\sqrt[3]{4}) = a^{3}+4c^{3}+2b^{3}-6abc.$ $\left|\sqrt[3]{2}\right|_{2} = \sqrt[3]{\mathbb{N}_{K\setminus\mathbb{Q}_{2}}}(\sqrt[3]{2}) = \sqrt[3]{|2|_{2}} = \frac{1}{\sqrt[3]{2}}.$

It follows that $|\tilde{x}_1|_2 = |\tilde{x}_2|_2 = \frac{1}{6\sqrt{2}}$, and for coefficient we get $\left|\frac{1}{3\sqrt{2}}\right| = \sqrt[3]{2}$. From this relation and equality (4) we can define the function $\varphi: 0, +\infty$) $\rightarrow 0, +\infty$) by

$$\rho(r) = \begin{cases} r, & \text{if } r < \frac{1}{\sqrt[3]{4}}, \\ \tilde{a}, & \text{if } r = \frac{1}{\sqrt[3]{4}}, \\ \sqrt[3]{4}r^2, & \text{if } \frac{1}{\sqrt[3]{4}} < r < \frac{1}{\sqrt[6]{2}}, \\ \tilde{b}, & \text{if } r = \frac{1}{\sqrt[6]{2}}, \\ \sqrt[3]{2}, & \text{if } r > \frac{1}{\sqrt[6]{2}}. \end{cases}$$

9

where \tilde{a} and \tilde{b} some positive numbers with $\tilde{a} < \frac{1}{\sqrt[3]{4}}$, and $\tilde{b} > \sqrt[3]{2}$. The graph of the function φ is

Lemma 1. If p = 2 and $x \in S_r(x_1)$, then for the function (3) the following holds

 $|f^n(x)|_2 = \varphi^n(r)$

By this lemma we see that the real dynamical system compiled from φ^n is directly related to the 2-adic dynamical system $f^n(x)$, $n \ge 1$, $x \in \mathbb{C}_2 \setminus P$.

The following lemma gives properties to this real dynamical system.

Lemma 2. The dynamical system generated by $\varphi(r)$ has the following properties:

1.
$$Fix(\varphi) = \left\{r: \ 0 \le r < \frac{1}{\sqrt[3]{4}}\right\} \cup \left\{\frac{1}{\sqrt[3]{4}}: \ \text{if } \tilde{\alpha} = \frac{1}{\sqrt[3]{4}}\right\} \cup \left\{\sqrt[3]{2}\right\}.$$

2. If $r > \frac{1}{\sqrt[3]{4}}$, then
 $\lim_{n \to \infty} \varphi^n(r) = \sqrt[3]{2}.$
3. If $r = \frac{1}{\sqrt[3]{4}}$ and $\tilde{\alpha} <$

 $\frac{1}{3\sqrt{4}}$, then $\varphi^n(r) = \tilde{a}$ for all $n \ge 1$.

Proof. 1. This is the result of a simple analysis of the equation $\varphi(r) = r$.

2. By definition of $\varphi(r)$, for $r > \frac{1}{6\sqrt{2}}$ we have $\varphi(r) = \sqrt[3]{2}$, i.e., the function is constant. For $r = \frac{1}{6\sqrt{2}}$ we have $\varphi\left(\frac{1}{6\sqrt{2}}\right) = \tilde{b} \ge \sqrt[3]{2}$ and thus we get $\varphi\left(\frac{1}{6\sqrt{2}}\right) > \frac{1}{6\sqrt{2}}$. Consequently,

$$\lim_{n\to\infty}\varphi^n\left(\frac{1}{\sqrt[6]{2}}\right)=\sqrt[3]{2}.$$

Assume now $\frac{1}{\sqrt[3]{4}} < r < \sqrt[3]{2}$ then $\varphi(r) = \sqrt[3]{4}r^2$, $\varphi'(r) = 2\sqrt[3]{4}r > 2$ and

$$\varphi\left(\left(\frac{1}{\sqrt[3]{4}},\frac{1}{\sqrt[6]{2}}\right)\right) = \left(\frac{1}{\sqrt[3]{4}},\sqrt[3]{2}\right) \cup \{\tilde{\alpha}\}.$$

Since $\varphi'(r) > 2$ for $r \in \left(\frac{1}{\sqrt[3]{4}}, \frac{1}{\sqrt{2}}\right)$ there exists $n_0 \in \mathbb{N}$ such that $\varphi^{n_0}(r) \in \left(\frac{1}{\sqrt[6]{2}}, \sqrt[3]{2}\right)$. Hence for $n \ge n_0$ we get $\varphi^n(r) > \frac{1}{\sqrt{2}}$ and consequently $\lim_{t \to \infty} \varphi^n(r) = \frac{3}{\sqrt{2}}$

3. If
$$r = \frac{1}{\sqrt[3]{4}}$$
 and $\tilde{a} < \frac{1}{\sqrt[3]{4}}$ then $\varphi(r) = \tilde{a} < \frac{1}{\sqrt[3]{4}}$

 $\frac{1}{\sqrt[3]{4}}$. Moreover, \tilde{a} is a fixed point for the function $\varphi(r)$.

Thus for $n \ge 1$ we obtain $\varphi^n(r) = \tilde{a}$.

By Lemma 1 and Lemma 2 we get

Theorem 2. The 2-adic dynamical system generated by function (3) has the following properties: $1 SI(x_{e}) = U_{e}(0)$

1.
$$SI(x_1) = U_{\frac{1}{\sqrt{4}}}(0)$$

2. $x_2 \in S_{\sqrt[3]{2}}(0)$. The fixed point x_2 is attractive and

$$A(x_2) = \mathbb{C}_2 \setminus (V_{\frac{1}{\sqrt{4}}}(0) \cup P).$$

3. If $x \in S_{\frac{1}{2}}(0)$, then there exists $\mu_1 < 0$

such that $f^m(x) \in S_{\mu_1}(0)$ for any $m \ge 1$.

Proof. 1. By Lemma 1 and part 1 of Lemma 2 we see that spheres $S_r(0)$, $r < \frac{1}{\sqrt{4}}$ and $S_{\sqrt{2}}(0)$ are invariant for f. Thus $SI(x_1) = U_{\frac{1}{\sqrt{4}}}(0)$. Consequently,

$$|x_2|_2 = \left|\frac{3}{\sqrt{2}}\right|_2 = \sqrt[3]{2}$$
, i.e., $x_2 \in S_{\sqrt{2}}(0)$.

2. In this case x_2 will be attractive fixed point, i.e.,

$$\begin{aligned} \left|f'(x_2)\right|_2 &= \left|2\sqrt[3]{2}\right|_2 = \frac{1}{2\sqrt[3]{2}} < 1. \end{aligned}$$

From Lemma 1 and part 2 of Lemma 2 we have
$$\lim_{n \to \infty} f^n(x) \in S_{\sqrt[3]{2}}(0) \\ \text{for all } x \in S_r(0) \setminus P, \quad r > \frac{1}{\sqrt[3]{4}}. \end{aligned}$$

Let $x \in S_{\sqrt[3]{2}}(0)$. We have

Clarivate Analytics indexed

 $\sqrt[3]{4}$

Philadelphia, USA

	ISRA (India)	= 6.317
Import Fostor	ISI (Dubai, UAE	() = 1.582
Impact Factor:	GIF (Australia)	= 0.564
	JIF	= 1.500

$$\begin{aligned} \left| f(x) - \frac{3}{\sqrt{2}} \right|_{2} &= \left| x - \frac{3}{\sqrt{2}} \right|_{2} \cdot \frac{\left| -\sqrt[3]{4}x - \sqrt[3]{2} \right|_{2}}{\left| x^{2} - \sqrt[3]{4}x - \sqrt[3]{2} \right|_{2}} \\ \text{By} & \left| -\sqrt[3]{4}x - \sqrt[3]{2} \right|_{2} = \frac{1}{2\sqrt[3]{2}} \text{ and } \left| x - \breve{x}_{2} \right|_{2} = \\ \left| x - \breve{x}_{1} \right|_{2} &= \left| \frac{\sqrt{3}}{\sqrt{2}} \right|_{2} = \sqrt[3]{2} \text{ we get } \left| f(x) - \frac{3}{\sqrt{2}} \right|_{2} < \left| x - \frac{3}{\sqrt{2}} \right|_{2} \end{aligned}$$
for any $x \in S_{\sqrt{2}}(0) \setminus P$. Consequently,

$$\lim_{n\to\infty} f^n(x) = x_2, \text{ for all } x \in S_r(0) \setminus P, \quad r > \frac{1}{\sqrt[3]{4'}}$$

i.e., $A(x_2) = \mathbb{C}_2 \setminus (V_{\frac{1}{3-r}}(0) \cup P).$

3. If $x \in S_{\frac{1}{3c}}(0)$ then by (4) we have

$$|f(x)|_{2} = \frac{1}{\sqrt[3]{4}} \cdot \frac{\left|\frac{1}{\sqrt{2}}x - \sqrt[3]{2}\right|_{2}}{\left(\frac{1}{\sqrt{2}}\right)^{2}} < \frac{1}{\sqrt[3]{4}}$$

Thus, there is $\mu_1 < \frac{1}{\sqrt[3]{4}}$ such that $f^m(x) \in S_{\mu_1}(0)$ for any $m \ge 1$ (see part 1 of Lemma 2). Hence if $x \in S_{\frac{1}{\sqrt[3]{4}}}(0)$, then there exists $\mu_1 < \frac{1}{\sqrt[3]{4}}$ such that $f^m(x) \in S_{\mu_1}(0)$ for any $m \ge 1$.

We note that

$$P = \bigcup_{k=0} P_k, \quad P_k = \left\{ x \in \mathbb{C}_2 : f^k(x) \in \{ \breve{x}_1, \breve{x}_2 \} \right\}.$$

Theorem 3. 1. $P_k \neq 0$, for any $k = 0, 1, 2, ...$

1 neorem 3. 1. $P_k \neq 0$, for any k = 0, 1, 2, ...2. $P_k \subset S_{r_k}(0)$, where $r_k = \frac{1}{\sqrt[6]{2}} \cdot \left(\frac{1}{\sqrt{2}}\right)^{\frac{2^{k-1}}{2^k}}$, k = 0, 1, 2, ...

Proof. 1. In case k = 0 we have $P_0 = {\tilde{x}_1, \tilde{x}_2} \neq \emptyset$.

Assume for k = n that $P_n = \left\{ x \in \mathbb{C}_p : f^n(x) \in \{ \tilde{x}_1, \tilde{x}_2 \} \right\} \neq \emptyset.$

Now for k = n + 1 to prove $P_{n+1} = \{x \in \mathbb{C}_p : f^{n+1}(x) \in \{\tilde{x}_1, \tilde{x}_2\}\} \neq \emptyset$ we have to show that the following equation has at least one solution:

 $f^{n+1}(x) = \breve{x}_i$, for some i = 1, 2.

By our assumption $P_k \neq 0$, there exists $y \in P_n$ such that $f^n(y) \in \{\tilde{x}_1, \tilde{x}_2\}$. Now we show that there exists *x* such that f(x) = y. We note that the equation f(x) = y can be written as

 $\left(\frac{1}{\sqrt[3]{2}} - y\right)x^2 - \left(\sqrt[3]{2} - \sqrt[3]{4}y\right)x + \sqrt[3]{2}y = 0.$ (5) Since $\breve{x}_1, \breve{x}_2 \in S_{\frac{1}{\sqrt[6]{2}}}(0)$, by the Lemma 1 and the

part1 of Lemma 2 we know that $S_{\sqrt{2}}(0)$ is an

References:

1. Robert, A.M. (2000). A course of p-adic analysis. Springer, New York.

 7
 SIS (USA)
 = 0.912
 ICV (Poland)
 = 6.630

 2
 PIHHI (Russia)
 = 3.939
 PIF (India)
 = 1.940

 4
 ESJI (KZ)
 = 9.035
 IBI (India)
 = 4.260

 0
 SJIF (Morocco)
 = 7.184
 OAJI (USA)
 = 0.350

invariant, consequently, $P \cap S_{3\sqrt{2}}(0) = \emptyset$. Thus $\frac{1}{\sqrt{2}} \notin P$, hence, $\frac{1}{\sqrt{2}} - y \neq 0$. Since \mathbb{C}_2 is algebraic closed the equation (5) has two solutions, say $x = t_1, t_2$. For $x \in \{t_1, t_2\}$ we get

 $f^{n+1}(x) = f^n(f(x)) = f^n(y) \in \{\breve{x}_1, \breve{x}_2\}.$ Hence $P_{n+1} \neq \emptyset$. Therefore, by induction we get

 $P_k \neq 0$, for any k = 0, 1, 2, ...2. We know that $|\tilde{x}_1|_2 = |\tilde{x}_2|_2 = \frac{1}{\sqrt{2}}$. By (4) and part 2 of Lemma 2 for $x \in S_{\frac{1}{\sqrt{2}}}(0)$, $x \neq \tilde{x}_{1,2}$ we have $\lim_{x \to \infty} f^n(x) \in S_{3,-}(0)$.

i.e.,
$$S_{\frac{1}{6\sqrt{2}}}(0) \cap P = \{\breve{x}_1, \breve{x}_2\} = P_0$$
. Denoting $r_0 =$

 $\frac{1}{6\sqrt{2}}$ we write $P_0 \subset S_{r_0}(0)$.

For each k = 1,2,3,... we want to find some r_k such that the solution x of $f^k(x) = \breve{x}_i$, (for some i = 1,2.) belongs to $S_{r_k}(0)$, i.e., $x \in S_{r_k}(0)$. By Lemma 1 we should have

$$\psi_{\frac{1}{6\sqrt{2}}}^{k}(r_{k}) = \frac{1}{\sqrt[6]{2}}.$$

Now if we show that the last equation has unique solution r_k for each k, then we get

 $P_k = \left\{ x \in \mathbb{C}_2 : f^k(x) \in \{\breve{x}_1, \breve{x}_2\} \right\} \subset S_{r_k}(0).$

By parts 1 and 3 of Lemma 2 we have $\frac{1}{\sqrt[3]{4}} < r_k \le \frac{1}{\sqrt[6]{2}}$ Moreover, we have $r_0 = \frac{1}{\sqrt[6]{2}}$ and $\frac{1}{\sqrt[3]{4}} < r_k < \frac{1}{\sqrt[6]{2}}$ for each $k = 1, 2, \dots$ For such r_k , by definition of $\psi_{\frac{1}{\sqrt[6]{2}}}(r)$, we have

$$\psi_{\frac{1}{6\sqrt{2}}}(r_k) = \sqrt[3]{4}r_k^2.$$

Thus $\psi_{\frac{1}{6\sqrt{2}}}^k(r_k) = \frac{1}{6\sqrt{2}}$ has the form
 $\psi_{\frac{1}{6\sqrt{2}}}^k(r_k) = \frac{\sqrt[3]{2}^{2^k-1}}{\left(\frac{1}{6\sqrt{2}}\right)^{2(2^k-1)}}r_k^{2^k} = \frac{1}{6\sqrt{2}}$

consequently,

$$r_k^{2^k} = \left(\frac{1}{\sqrt[6]{2}}\right)^{2^k} \cdot \left[\left(\frac{1}{\sqrt{2}}\right)^{\frac{2^{k}-1}{2^k}}\right]^{2^k}.$$

Taking 2^k – root we obtain unique positive solution: $r_k = \frac{1}{\sqrt[6]{2}} \cdot \left(\frac{1}{\sqrt{2}}\right)^{\frac{2^k-1}{2^k}}$.

Impact Factor: ISI (Dubai, OA) GIF (Australia) JIF

- 2. Call, G., & Silverman, J. (1993). Canonical height on varieties with morphisms. *Compositio Mathematics*, 89 (1993), pp. 163-205.
- 3. Khrennikov, A.Yu. (1997). Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models. Kluwer, Netherlands.
- Thiran, E., Verstegen, D., & Weters, J. (1989). p-adic dynamics. *Journal of Statistical Physics*, 54(3/4) (1989), pp. 893-913.
- Avetisov, V.A., Bikulov, A.H., Kozyrev, S.V., & Osipov, V.A. (2002). *p*-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes. *Journal of Physics A: Mathematical and General*, 35 (2002), pp. 177-189.
- Albeverio, S., Khrennikov, A., & Kloeden, P.E. (1999). Memory retrieval as a *p*-adic dynamical system. *BioSystems*, 49 (1999), pp. 105-115.
- Albeverio, S., Khrennikov, A., Tirozzi, B., & Smedt, S.De. (1998). *p*-adic dynamical systems. *Theoretical and Mathematical Physics*, 114 (1998), pp. 276-287.

- Call, G., & Silverman, J. (1993). Canonical height on varieties with morphisms. *Compositio Mathematics*, 89 (1993), pp. 163-205.
- 9. Khrennikov, A.Yu. (1997). The description of Brain's functioning by the *p*-adic dynamical system. *Preprint No. 355 (SFB-237), Ruhr Univ.* Bochum, Bochum.
- Anashin, V.S., & Khrennikov, A.Yu. (2009). *Applied Algebraic Dynamics*. V. 49, de Gruyter Expositions in Mathematics. Walter de Gruyter, New York.
- Albeverio, S., Rozikov, U.A., & Sattarov, I.A. (2013). p-adic (2,1)–rational dynamical systems. Journal of Mathematical Analysis and Applications, 398(2) (2013), pp. 553–566.
- 12. Schikhof, W.H. (1984). *Ultrametric calculus, An introduction to p-adic analysis*. Cambridge University Press, Cambridge.
- 13. Khrennikov, A.Yu., & Nilsson, M. (2004). *p*-*Adic Deterministic and Random Dynamics*. Kluwer Academic Publishers.