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Abstract: In this paper we consider the discrete time 𝑝 -adic dynamic system of the family of rational functions 

in the form 
1

𝑥2+𝑎
 . In order to solve the problem in this study, a number of real non-negative functions were constructed 

using the properties of the 𝑝 -adic norm and some substitutions.The following conclusions were drawn about the 

discrete time dynamics of p-adic rational functions under consideration using their results by studying their 

dynamics: 

This rational function  cannot have a unique fixed point, the parameter 𝑎 has two fixed points at a single value 

of 𝑎 = −
3

√4
3 , and the parameter 𝑎 has three fixed points at the values   of 𝑎 ≠ −

3

√4
3  proved to be. The 𝑝 -adic 

dynamical system with two fixed points was studied at 𝑝 = 2. Conditions were found for the parameters that attractor 

and indifferent fixed points. Also, basin of attraction, Siegel disks   were found and trajectories were studied. 
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Introduction 

In the world many scientific and applied research 

are reduced to the studies that have focused on 

discrete-time dynamics of the functions defined in 

Archimedean or non-Archimedean fields. p-Adic 

dynamical systems generated by rational functions are 

effective in informatics, digital analysis and 

cryptography, psychodynamics and automation 

theory, genetic coding and population management. In 

p-adic analysis, rational functions play an important 

role similar to those of analytical functions in complex 

analysis. Therefore, the study of the dynamics of 

rational functions in the field of p-adic numbers is one 

of the most important tasks in the theory of dynamical 

systems. 

It is known that the analytic functions play 

important role in complex analysis. In the 𝑝 -adic 

analysis the rational functions play a similar role to the 

analytic functions in complex analysis [1]. Therefore, 

naturally one arises a question to study the dynamics 

of these functions in the 𝑝 -adic analysis.  

The study of 𝑝 -adic dynamical systems arises in 

Diophantine geometry in the constructions of 

canonical heights, used for counting rational points on 

algebraic vertices over a number field, as in [2].  

In [3, 4] 𝑝 -adic field have arisen in physics in 

the theory of superstrings, promoting questions about 

their dynamics. Also some applications of 𝑝 -adic 

dynamical systems to some biological, physical 

systems has been proposed in [5,7,8,3,9]. 

Moreover 𝑝 -adic dynamical systems are 

effective in computer science (straight line programs), 

in numerical analysis and in simulations 

(pseudorandom numbers), uniform distribution of 

sequences, cryptography (stream ciphers, 𝑇 -

functions), combinatory (Latin squares), automata 

theory and formal languages, genetics. The 

monograph [10] contains the corresponding survey 

(see also [11,12] for the theory and applications of 𝑝 -

adic dynamical systems).  

In [7, 9] the behavior of a 𝑝 -adic dynamical 

system 𝑓(𝑥) = 𝑥𝑛 in the fields of 𝑝 -adic numbers ℚ𝑝 

and ℂ𝑝 were studied. 

In [6] the properties of the nonlinear 𝑝 -adic 

dynamic system 𝑓(𝑥) = 𝑥2 + 𝑐 with a single 
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parameter 𝑐 on the integer 𝑝 -adic numbers ℤ𝑝 are 

investigated. This dynamic system illustrates possible 

brain behaviors during remembering. 

In [13], dynamical systems defined by the 

functions 𝑓𝑞(𝑥) = 𝑥
𝑛 + 𝑞(𝑥), where the perturbation 

𝑞(𝑥) is a polynomial whose coefficients have small 𝑝 

-adic absolute value, was studied. 

 

Preliminaries 

𝒑 -adic numbers. Let ℚ be the field of rational 

numbers and 𝑝 is a fixed prime number. The greatest 

common divisor of the positive integers 𝑛 and 𝑚 is 

denoted by (𝑛,𝑚). Every rational number 𝑥 ≠ 0 can 

be represented in the form 𝑥 = 𝑝𝛾(𝑥)
𝑛

𝑚
, where 

𝛾(𝑥), 𝑛𝜖ℤ, 𝑚 is a positive integer,  (𝑝, 𝑛) =
1, (𝑝,𝑚) = 1. 

The 𝑝 -adic norm of rational number 𝑥is given 

by 

|𝑥|𝑝 = {
𝑝−𝛾(𝑥),for𝑥 ≠ 0,
0,        for𝑥 = 0.

 

It has following properties: 

1) |𝑥|𝑝 ≥ 0 and |𝑥|𝑝 = 0 if and only if 𝑥 = 0. 

2) |𝑥𝑦|𝑝 = |𝑥|𝑝|𝑦|𝑝 , 

3) The strong triangle inequality |𝑥 + 𝑦|𝑝 ≤

max{|𝑥|𝑝 , |𝑦|𝑝},  

3.1) if |𝑥|𝑝 ≠ |𝑦|𝑝 then    |𝑥 + 𝑦|𝑝 =

max{|𝑥|𝑝 , |𝑦|𝑝} 

3.2) if |𝑥|𝑝 = |𝑦|𝑝 then    |𝑥 + 𝑦|𝑝 ≤ |𝑥|𝑝, 

This is a non-Atchimedean one.  

 The completion of ℚ with respect to 𝑝 -adic 

norm defines the 𝑝 -adic ℚ𝑝. 

 The algebraic completion of  ℚ𝑝 is denoted 

by  ℂ𝑝 and it is called complex p-adic numbers.  For 

any 𝑎 ∈ ℂ𝑝 and 𝑟 > 0 denote  

𝑈𝑟(𝑎) = {𝑥 ∈ ℂ𝑝 ∶ |𝑥 − 𝑎|𝑝 < 𝑟},

𝑉𝑟(𝑎) = {𝑥 ∈ ℂ𝑝 ∶ |𝑥 − 𝑎|𝑝 ≤ 𝑟},

𝑆𝑟(𝑎) = {𝑥 ∈ ℂ𝑝 ∶ |𝑥 − 𝑎|𝑝 = 𝑟}.   

Dynamical system in ℂ𝒑. Recall some known 

facts concerning dynamical systems (𝑓, 𝑈) in ℂ𝒑, 

where 𝑓: 𝑈 → 𝑓(𝑥) ∈ 𝑈 is an analytic function and 

𝑈 = 𝑈𝑟(𝑎) or  ℂ𝑝. 

Now let 𝑓: 𝑈 → 𝑈 be an analytic function. 

Denote 𝑓𝑛 = 𝑓 ∘⋅⋅⋅∘ 𝑓⏟    
𝑛

.  

If 𝑓(𝑥0) = 𝑥0 then 𝑥0 is called a fixed point. The 

set of all fixed points of 𝑓 is denoted by 𝐹𝑖𝑥(𝑓). A 

fixed point 𝑥0 is called an attractor if there exists a 

neighborhood 𝑈(𝑥0) of 𝑥0 such that for all points 𝑥 ∈
𝑈(𝑥0) it holds lim

𝑛→∞
𝑓𝑛(𝑥) = 𝑥0. If 𝑥0 is an attractor 

then its basin of attraction is  

𝐴(𝑥0) = {𝑥 ∈ ℂ𝑝: 𝑓
𝑛(𝑥) → 𝑥0, 𝑛 → ∞}. 

Let 𝑥0 be a fixed point of a function 𝑓(𝑥). Put 

𝜆 = 𝑓′(𝑥0). The point 𝑥0  is attractive if 0 < |𝜆|𝑝 <

1, indifferent if |𝜆|𝑝 = 1. 

The ball 𝑈𝑟(𝑥0) (contained in V) is said to be a 

Siegel disk  if each sphere 𝑆𝜌(𝑥0), 𝜌 < 𝑟 is an 

invariant sphere of 𝑓(𝑥), i.e. if 𝑥𝜖𝑆𝜌(𝑥0) then all 

iterated points 𝑓𝑛(𝑥)𝜖𝑆𝜌(𝑥0) for all 𝑛 = 1,2, …. The 

union of all Siegel disks with the center at 𝑥0 is said 

to a maximum Siegel disk and denoted by 𝑆𝐼(𝑥0). 
 

Main part 

In this paper we considered the function 𝑓 can be 

written in the following form:  

𝑓(𝑥) =
1

𝑥2+𝑎
,    𝑎 ∈ ℂ𝑝 ,                  (1) 

where 𝑥 ≠ �̂�1,2 = ±√−𝑎. 
It is easy to see that for rational function (1) the 

equation 𝑓(𝑥) = 𝑥 for fixed points is equivalent to the 

equation 

𝑥3 + 𝑎𝑥 − 1 = 0.                       (2) 

Since ℂ𝑝 is algebraic closed the equation (2) may 

have three solution with one of the following 

relations: 

(i) One solution having multiplicity three; 

(ii) Two solutions, one of which has multiplicity 

two; 

(iii) Three distinct solutions. 

Theorem 1. For (1) rational functions, the 

following holds: 

1. (1) rational function cannot have a unique 

fixed point. 

2. The function (1) has two distinct fixed points 

if and only if 𝑎 = −
3

√4
3 . 

Proof. 1. Assume (1) has a unique fixed point, 

say 𝑥0. Then the LHS of equation (2) (which is 

equivalent to 𝑓(𝑥) = 𝑥 ) can be written as        

𝑥3 + 𝑎𝑥 − 1 = 𝑥3 − 3𝑥0𝑥
2 + 3𝑥0

2𝑥 − 𝑥0
3. 

Consequently, 

{

−3𝑥0 = 0

3𝑥0
2 = 𝑎

𝑥0
3 = 1

. 

It is easy to see from the last equations that our 

assume is incorrect. Hence, (1) function does not have 

a unique fixed point. 

2. Denote by 𝑥1 and 𝑥2 solution of equation (2), 

𝑥1 has multiplicity two. Then we have  𝑥3 + 𝑎𝑥 − 1 =
(𝑥 − 𝑥1)

2(𝑥 − 𝑥2) and  

𝑥3 + 𝑎𝑥 − 1 = 𝑥3 − (2𝑥1 + 𝑥2)𝑥
2 + (2𝑥1𝑥2 + 𝑥1

2)𝑥
− 𝑥1

2𝑥2. 
Hence,              

{

2𝑥1 + 𝑥2 = 0

2𝑥1𝑥2 + 𝑥1
2 = 𝑎

𝑥1
2𝑥2 = 1

. 

As are result  

{
 
 

 
 𝑥1 = −

1

√2
3

𝑥2 = √4
3

𝑎 = −
3

√4
3

. 
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The function has 𝑥1 = −
1

√2
3  and 𝑥2 = √4

3

 
two  

fixed points at a single value of 𝑎 = −
3

√4
3 . Theorem is 

proved.  

Corollary. If 𝑎 ≠ −
3

√4
3 , then the function (1) has 

three distinct fixed points. 

We know the rational function (1) has two 

distinct fixed points if and only if 𝑎 = −
3

√4
3 . When 

𝑎 = −
3

√4
3 , it is easy to see that (1) function has two 

distinct fixed points 𝑥1 = −
1

√2
3  and 𝑥2 = √4

3
  

Let 𝑓:𝑈 → 𝑈 and 𝑔: 𝑉 → 𝑉 be two maps. 𝑓and 

𝑔 are said to be topologically conjugate if there exists 

a homeomorphism ℎ: 𝑈 → 𝑉 such that, ℎ ∘ 𝑓 = ℎ ∘ 𝑔. 
The homeomorphism ℎ is called a topological 

conjugacy. Mappings that are topologically conjugate 

are completely equivalent in terms of their dynamics. 

For example, if 𝑓 is topologically conjugate to 𝑔 via 

ℎ, and 𝑥0 is a fixed point for 𝑓, thenℎ(𝑥0)  is fixed 

point for 𝑔. Indeed, ℎ(𝑥0) = ℎ𝑓(𝑥0) = 𝑔ℎ(𝑥0). 
Let homeomorphism ℎ: ℂ𝑝 → ℂ𝑝 is defined by  

𝑥 = ℎ(𝑡) = 𝑡 + 𝑥1 = 𝑡 −
1

√2
3 . So ℎ−1(𝑥) = 𝑥 +

1

√2
3 . 

Note that, the function
 
𝑓  is topologically conjugate 

ℎ
−1 ∘ 𝑓 ∘ ℎ.  We have  

𝑓(𝑥) =

1

√2
3 𝑥2− √2

3
𝑥

𝑥2− √4
3
𝑥− √2

3 ,                        (3) 

where 𝑥 ≠ �̆�1,2 =
1±√3

√2
3 . 

Thus we study the dynamical system  (𝑓, ℂ𝑝)

 with 𝑓

 

given by (3).Note that, function (3) has two 

fixed points 𝑥1 = 0 and 𝑥2 =
3

√2
3 . So we have 

𝑓′(𝑥1) = 1 and 𝑓′(𝑥2) = 8. Thus, the point 𝑥1 = 0 is 

an indifferent point for (3). For any 𝑥 ∈ ℂ𝑝,  𝑥 ≠ �̆�1,2, 

by simple calculation we get  

|𝑓(𝑥)|𝑝 = |𝑥|𝑝

|
1

√2
3 𝑥− √2

3
|
𝑝

|𝑥−𝑥1|𝑝|𝑥−𝑥2|𝑝
.                    (4) 

Denote    𝛲 = {𝑥 ∈ ℂ𝑝: ∃𝑛 ∈ ℕ ∪ {0}, 𝑓𝑛(𝑥) ∈

{�̆�1, �̆�2}}.  

Case 𝒑 = 𝟐.
 

Now let us calculate the 2-adic norm of �̆�𝟏 and 

�̆�2. We know √3 ∉ ℚ2. Consider  the quadratic 

extension of 𝐾 = ℚ2(√3). We can write any element 

of 𝐾in the form 𝑎 + 𝑏√3.  ℕ𝐾\ℚ2(𝑎 + 𝑏√3) = 𝑎
2 −

3𝑏2. 

|1 + √3|
2
= √|ℕ𝐾\ℚ2(1 + √3)|2

= √|1 − 3|2

=
1

√2
. 

We know √2
3

∉ ℚ2. Consider  the cubic 

extension of 𝐾 = ℚ2(√2
3
). We can  write any element 

of 𝐾in the form 𝑎 + 𝑏√2
3

+ 𝑐√4
3

.         

 ℕ𝐾\ℚ2(𝑎 + 𝑏√2
3

+ 𝑐√4
3
)

= 𝑎3 + 4𝑐3 + 2𝑏3 − 6𝑎𝑏𝑐. 

|√2
3
|
2
= √ ℕ𝐾\ℚ2(√2

3
)

3
= √|2|2

3
=
1

√2
3 . 

It follows that |�̆�1|2 = |�̆�2|2 =
1

√2
6 , and for 

coefficient  we get |
1

√2
3 | = √2

3
. From this relation and 

equality (4) we can define the function 𝜑: 0, +∞) →
0,+∞) by  

𝜑(𝑟) =

{
 
 
 
 
 

 
 
 
 
 𝑟,         if  𝑟 <

1

√4
3 ,

�̃�,        if  𝑟 =
1

√4
3 ,

√4
3
𝑟2,   if 

1

√4
3 < 𝑟 < 

1

√2
6 ,

�̃�,         if  𝑟 =
1

√2
6 ,

√2
3
,      if  𝑟 >

1

√2
6 .

 

where �̃� and  �̃� some positive numbers with �̃� <
1

√4
3 ,   and  �̃� > √2

3
. The graph of the function 𝜑 

is 
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Picture 1. 

 

Lemma 1. If 𝑝 = 2 and 𝑥 ∈ 𝑆𝑟(𝑥1), then for the 

function (3) the following holds 
|𝑓𝑛(𝑥)|2 = 𝜑

𝑛(𝑟) 
By this lemma we see that the real dynamical 

system compiled from 𝜑𝑛  is directly related to the 

2 −adic dynamical system 𝑓𝑛(𝑥),   𝑛 ≥ 1,   𝑥 ∈ ℂ2\
𝛲.  

 The following lemma gives properties to this 

real dynamical system.  

Lemma 2. The dynamical system generated by 

𝜑(𝑟) has the following properties: 

1. 𝐹𝑖𝑥(𝜑) = {𝑟:  0 ≤ 𝑟 <
1

√4
3 } ∪ {

1

√4
3 :   if  �̃� =

1

√4
3 } ∪ {√2

3
}. 

2.  If  𝑟 >
1

√4
3 ,   then  

 

 

                                               𝑙𝑖𝑚
𝑛→∞

𝜑𝑛(𝑟) = √2
3
. 

3. If  𝑟 =
1

√4
3    and   �̃� <

1

√4
3 ,   then  𝜑𝑛(𝑟) = �̃�   for  all  𝑛 ≥ 1. 

Proof. 1. This is the result of a simple analysis of 

the equation 𝜑(𝑟) = 𝑟. 

2. By definition of 𝜑(𝑟), for 𝑟 >
1

√2
6  we have 

𝜑(𝑟) = √2
3
, i.e., the function is constant. For 𝑟 =

1

√2
6  

we have 𝜑 (
1

√2
6 ) = �̃� ≥ √2

3
 and thus we get 𝜑 (

1

√2
6 ) >

1

√2
6 . Consequently, 

𝑙𝑖𝑚
𝑛→∞

𝜑𝑛 (
1

√2
6 ) = √2

3
. 

Assume now 
1

√4
3 < 𝑟 < √2

3
 then 𝜑(𝑟) =

√4
3
𝑟2,   𝜑′(𝑟) = 2√4

3
𝑟 > 2 and 

𝜑((
1

√4
3 ,

1

√2
6 )) = (

1

√4
3 , √2

3
) ∪ {�̃�}. 

Since 𝜑′(𝑟) > 2 for 𝑟 ∈ (
1

√4
3 ,

1

√2
6 ) there exists 

𝑛0 ∈ ℕ such that 𝜑𝑛0(𝑟) ∈ (
1

√2
6 , √2

3
). Hence for 𝑛 ≥

𝑛0  we get 𝜑𝑛(𝑟) >
1

√2
6  and consequently 

𝑙𝑖𝑚
𝑛→∞

𝜑𝑛(𝑟) = √2
3
. 

3. If 𝑟 =
1

√4
3   and  �̃� <

1

√4
3   then 𝜑(𝑟) = �̃� <

1

√4
3  . Moreover, �̃� is a fixed point for the function 𝜑(𝑟). 

Thus for 𝑛 ≥ 1 we obtain 𝜑𝑛(𝑟) = �̃�.  
By Lemma 1 and Lemma 2 we get  

Theorem 2. The 2-adic dynamical system 

generated by function (3) has the following properties:  

1. 𝑆𝐼(𝑥1) = 𝑈 1

√4
3  
(0). 

2. 𝑥2 ∈ 𝑆 √23 (0). The  fixed point 𝑥2 is 

attractive and  

𝐴(𝑥2) = ℂ2\(𝑉 1

√4
3
(0) ∪ 𝛲). 

3. If 𝑥 ∈ 𝑆 1

√4
3
(0), then there exists  𝜇1 <

1

√4
3  

such that 𝑓𝑚(𝑥) ∈ 𝑆𝜇1(0) for any𝑚 ≥ 1. 

Proof. 1.  By Lemma 1 and part 1 of Lemma 2 

we see that spheres 𝑆𝑟(0),   𝑟 <
1

√4
3  

and𝑆
√2
3 (0) are 

invariant for 𝑓. Thus𝑆𝐼(𝑥1) = 𝑈 1

√4
3
(0). Consequently, 

|𝑥2|2 = |
3

√2
3 |

2
= √2

3
, i.e., 𝑥2 ∈ 𝑆 √23 (0). 

2. In this case 𝑥2 will be attractive fixed point, 

i.e.,  

|𝑓 ′(𝑥2)|2 = |2√2
3
|
2
=

1

2√2
3 < 1. 

From Lemma 1 and part 2 of Lemma 2 we have 

𝑙𝑖𝑚
𝑛→∞

𝑓𝑛(𝑥) ∈ 𝑆
√2
3 (0) 

for all 𝑥 ∈ 𝑆𝑟(0)\𝛲,   𝑟 >
1

√4
3 . 

Let 𝑥 ∈ 𝑆
√2
3 (0).  We have  
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|𝑓(𝑥) −
3

√2
3 |

2

= |𝑥 −
3

√2
3 |

2

⋅
|−√4

3
𝑥 − √2

3
|
2

|𝑥2 − √4
3
𝑥 − √2

3
|
2

 

By  |−√4
3
𝑥 − √2

3
|
2
=

1

2 √2
3  and |𝑥 − �̆�2|2 =

|𝑥 − �̆�1|2 = |
√3

√2
3 |

2
= √2

3
 we get |𝑓(𝑥) −

3

√2
3 |

2
< |𝑥 −

3

√2
3 |

2
 for any 𝑥 ∈ 𝑆

√2
3 (0)\𝛲. Consequently,  

𝑙𝑖𝑚
𝑛→∞

𝑓𝑛(𝑥) = 𝑥2, for all  𝑥 ∈ 𝑆𝑟(0)\𝛲,   𝑟 >
1

√4
3 , 

i.e., 𝐴(𝑥2) = ℂ2\(𝑉 1

√4
3
(0) ∪ 𝛲). 

3. If 𝑥 ∈ 𝑆 1

√4
3
(0) then by (4) we have  

|𝑓(𝑥)|2 =
1

√4
3 ⋅

|
1

√2
3 𝑥 − √2

3
|
2

(
1

√2
6 )

2 <
1

√4
3 . 

Thus, there is  𝜇1 <
1

√4
3   such that 𝑓𝑚(𝑥) ∈

𝑆𝜇1(0) for any 𝑚 ≥ 1 (see part 1 of Lemma 2). Hence 

if 𝑥 ∈ 𝑆 1

√4
3
(0), then there exists  𝜇1 <

1

√4
3  such that 

𝑓𝑚(𝑥) ∈ 𝑆𝜇1(0) for any𝑚 ≥ 1. 

We note that  

𝛲 =⋃𝛲𝑘 ,    𝛲𝑘 = {𝑥 ∈ ℂ2: 𝑓
𝑘(𝑥) ∈ {�̆�1, �̆�2}}

∞

𝑘=𝑜

. 

Theorem 3.    1. 𝛲𝑘 ≠ 0, for any 𝑘 = 0,1,2, . . . . 

2. 𝛲𝑘 ⊂ 𝑆𝑟𝑘(0), where 𝑟𝑘 =
1

√2
6 ⋅ (

1

√2
)

2𝑘−1

2𝑘 ,   𝑘 =

0,1,2, . . . . 
Proof. 1. In case 𝑘 = 0  we have 𝛲0 = {�̆�1, �̆�2} ≠

∅.  

Assume for 𝑘 = 𝑛 that 𝛲𝑛 = {𝑥 ∈ ℂ𝑝: 𝑓
𝑛(𝑥) ∈

{�̆�1, �̆�2}} ≠ ∅. 

Now for 𝑘 = 𝑛 + 1 to prove 𝛲𝑛+1 = {𝑥 ∈

ℂ𝑝: 𝑓
𝑛+1(𝑥) ∈ {�̆�1, �̆�2}} ≠ ∅ we have to show that the 

following equation has at least one solution: 

𝑓𝑛+1(𝑥) = �̆�𝑖 , for some 𝑖 = 1,2. 
By our assumption 𝛲𝑘 ≠ 0, there exists 𝑦 ∈ 𝛲𝑛 

such that 𝑓𝑛(𝑦) ∈ {�̆�1, �̆�2}. Now we show that there 

exists 𝑥 such that 𝑓(𝑥) = 𝑦. We note that the equation 

𝑓(𝑥) = 𝑦 can be written as  

(
1

√2
3 − 𝑦) 𝑥2 − (√2

3
− √4

3
𝑦)𝑥 + √2

3
𝑦 = 0.  (5) 

Since �̆�1, �̆�2 ∈ 𝑆 1

√2
6
(0), by the Lemma 1 and the 

part1 of Lemma 2 we know that 𝑆
√2
3 (0) is an 

invariant, consequently, 𝛲 ∩ 𝑆
√2
3 (0) = ∅. Thus 

1

√2
3 ∉

𝛲, hence, 
1

√2
3 − 𝑦 ≠ 0. Since ℂ2 is algebraic closed the 

equation (5) has two solutions, say 𝑥 = 𝑡1, 𝑡2. For 𝑥 ∈
{𝑡1, 𝑡2} we get  

𝑓𝑛+1(𝑥) = 𝑓𝑛(𝑓(𝑥)) = 𝑓𝑛(𝑦) ∈ {�̆�1, �̆�2}. 
Hence 𝛲𝑛+1 ≠ ∅. Therefore, by induction we get 

𝛲𝑘 ≠ 0, for any 𝑘 = 0,1,2, . . . . 

2. We know that |�̆�1|2 = |�̆�2|2 =
1

√2
3 . By (4) and 

part 2 of Lemma 2 for 𝑥 ∈ 𝑆 1

√2
6
(0),   𝑥 ≠ �̆�1,2 we have  

𝑙𝑖𝑚
𝑛→∞

𝑓𝑛(𝑥) ∈ 𝑆
√2
3 (0), 

i.e.,  𝑆 1

√2
6
(0) ∩ 𝛲 = {�̆�1, �̆�2} = 𝛲0. Denoting 𝑟0 =

1

√2
6  we write 𝛲0 ⊂ 𝑆𝑟0(0). 

For each 𝑘 = 1,2,3, . .. we want to find some 𝑟𝑘 

such that the solution 𝑥 of 𝑓𝑘(𝑥) = �̆�𝑖 , (for some 𝑖 =
1,2.) belongs to 𝑆𝑟𝑘(0), i.e., 𝑥 ∈ 𝑆𝑟𝑘(0). By Lemma 1 

we should have  

𝜓 1

√2
6

𝑘 (𝑟𝑘) =
1

√2
6 . 

Now if we show that the last equation has unique 

solution 𝑟𝑘 for each  𝑘, then we get  

𝛲𝑘 = {𝑥 ∈ ℂ2: 𝑓
𝑘(𝑥) ∈ {�̆�1, �̆�2}} ⊂ 𝑆𝑟𝑘(0). 

By parts 1 and 3 of Lemma 2 we have 
1

√4
3 < 𝑟𝑘 ≤

1

√2
6 . Moreover, we have 𝑟0 =

1

√2
6  and 

1

√4
3 < 𝑟𝑘 <

1

√2
6  for 

each 𝑘 = 1,2, . . . . For such 𝑟𝑘 , by definition of 

𝜓 1

√2
6
(𝑟), we have   

𝜓 1

√2
6
(𝑟𝑘) = √4

3
𝑟𝑘
2. 

Thus 𝜓 1

√2
6

𝑘 (𝑟𝑘) =
1

√2
6  has the form  

𝜓 1

√2
6

𝑘 (𝑟𝑘) =
√2
3 2𝑘−1

(
1

√2
6 )

2(2𝑘−1)
𝑟𝑘
2𝑘 =

1

√2
6  

consequently, 

𝑟𝑘
2𝑘 = (

1

√2
6 )

2𝑘

⋅ [(
1

√2
)

2𝑘−1

2𝑘

]

2𝑘

. 

Taking 2𝑘 − root we obtain unique positive 

solution: 𝑟𝑘 =
1

√2
6 ⋅ (

1

√2
)

2𝑘−1

2𝑘 .    
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