ISRA $($ India)	$=6.317$	SIS (USA)	$=0.912$	ICV (Poland)	$=6.630$
ISI (Dubai, UAE)	$=\mathbf{1 . 5 8 2}$	PИHЦ (Russia)	$=3.939$	PIF (India)	$=\mathbf{1 . 9 4 0}$
GIF (Australia)	$=0.564$	ESJI (KZ)	$=9.035$	IBI (India)	$=4.260$
JIF	$=1.500$	SJIIF (Morocco)	$=7.184$	OAJI (USA)	$=\mathbf{0 . 3 5 0}$

Zulxumor Tuxtasinovna Abdukaxorova

Namangan International School in Chust
Master

ABOUT NON-ARCHIMEDIAN FUNCTION DYNAMICAL SYSTEM

Abstract

In this paper we consider the discrete time p-adic dynamic system of the family of rational functions in the form $\frac{1}{x^{2}+a}$. In order to solve the problem in this study, a number of real non-negative functions were constructed using the properties of the p-adic norm and some substitutions.The following conclusions were drawn about the discrete time dynamics of p-adic rational functions under consideration using their results by studying their dynamics:

This rational function cannot have a unique fixed point, the parameter a has two fixed points at a single value of $a=-\frac{3}{\sqrt[3]{4}}$, and the parameter a has three fixed points at the values of $a \neq-\frac{3}{\sqrt[3]{4}}$ proved to be. The p-adic dynamical system with two fixed points was studied at $p=2$. Conditions were found for the parameters that attractor and indifferent fixed points. Also, basin of attraction, Siegel disks were found and trajectories were studied.

Key words: p-adic norm,fixed point, attractor fixed point, basin of attraction, indifferent fixed point, Siegel disk, a maximum Siegel disk (SI((x)), 2-adic norm, open ball, closed ball, sphere.

Language: English

Citation: Abdukaxorova, Z. T. (2021). About non-Archimedian function dynamical system. ISJ Theoretical \& Applied Science, 10 (102), 413-418.

Soi: http://s-o-i.org/1.1/TAS-10-102-30
Doi: crostes https://dx.doi.org/10.15863/TAS.2021.10.102.30
Scopus ASCC: 2600.

Introduction

In the world many scientific and applied research are reduced to the studies that have focused on discrete-time dynamics of the functions defined in Archimedean or non-Archimedean fields. p-Adic dynamical systems generated by rational functions are effective in informatics, digital analysis and cryptography, psychodynamics and automation theory, genetic coding and population management. In p-adic analysis, rational functions play an important role similar to those of analytical functions in complex analysis. Therefore, the study of the dynamics of rational functions in the field of p-adic numbers is one of the most important tasks in the theory of dynamical systems.

It is known that the analytic functions play important role in complex analysis. In the p-adic analysis the rational functions play a similar role to the analytic functions in complex analysis [1]. Therefore, naturally one arises a question to study the dynamics of these functions in the p-adic analysis.

The study of p-adic dynamical systems arises in Diophantine geometry in the constructions of
canonical heights, used for counting rational points on algebraic vertices over a number field, as in [2].

In [3, 4] p-adic field have arisen in physics in the theory of superstrings, promoting questions about their dynamics. Also some applications of p-adic dynamical systems to some biological, physical systems has been proposed in [5,7,8,3,9].

Moreover p-adic dynamical systems are effective in computer science (straight line programs), in numerical analysis and in simulations (pseudorandom numbers), uniform distribution of sequences, cryptography (stream ciphers, T functions), combinatory (Latin squares), automata theory and formal languages, genetics. The monograph [10] contains the corresponding survey (see also $[11,12]$ for the theory and applications of p adic dynamical systems).

In $[7,9]$ the behavior of a p-adic dynamical system $f(x)=x^{n}$ in the fields of p-adic numbers \mathbb{Q}_{p} and \mathbb{C}_{p} were studied.

In [6] the properties of the nonlinear p-adic dynamic system $f(x)=x^{2}+c$ with a single

Impact Factor:

ISRA (India)	$=6.317$	SIS (USA)	$=0.912$	ICV (Poland)	$=6.630$
ISI (Dubai, UAE)	$=1.582$	PИHL (Russia)	$=3.939$	PIF (India)	$=1.940$
GIIF (Australia)	$=0.564$	ESJI (KZ)	$=9.035$	IBI (India)	$=4.260$
JIIF	$=1.500$	SJIF (Morocco)	$=7.184$	OAJI (USA)	$=0.350$

parameter c on the integer p-adic numbers \mathbb{Z}_{p} are investigated. This dynamic system illustrates possible brain behaviors during remembering.

In [13], dynamical systems defined by the functions $f_{q}(x)=x^{n}+q(x)$, where the perturbation $q(x)$ is a polynomial whose coefficients have small p -adic absolute value, was studied.

Preliminaries

\boldsymbol{p}-adic numbers. Let \mathbb{Q} be the field of rational numbers and p is a fixed prime number. The greatest common divisor of the positive integers n and m is denoted by (n, m). Every rational number $x \neq 0$ can be represented in the form $x=p^{\gamma(x)} \frac{n}{m}$, where $\gamma(x), n \in \mathbb{Z}, \quad m$ is a positive integer, $(p, n)=$ $1,(p, m)=1$.

The p-adic norm of rational number x is given by

$$
|x|_{p}= \begin{cases}p^{-\gamma(x)}, & \text { for } x \neq 0, \\ 0, & \text { for } x=0\end{cases}
$$

It has following properties:

1) $|x|_{p} \geq 0$ and $|x|_{p}=0$ if and only if $x=0$.
2) $|x y|_{p}=|x|_{p}|y|_{p}$,
3) The strong triangle inequality $|x+y|_{p} \leq$ $\max \left\{|x|_{p},|y|_{p}\right\}$,
3.1) if $|x|_{p} \neq|y|_{p}$ then $|x+y|_{p}=$
$\max \left\{|x|_{p},|y|_{p}\right\}$
3.2) if $|x|_{p}=|y|_{p}$ then $\quad|x+y|_{p} \leq|x|_{p}$,

This is a non-Atchimedean one.
The completion of \mathbb{Q} with respect to p-adic norm defines the p-adic \mathbb{Q}_{p}.

The algebraic completion of \mathbb{Q}_{p} is denoted by \mathbb{C}_{p} and it is called complex p-adic numbers. For any $a \in \mathbb{C}_{p}$ and $r>0$ denote

$$
\begin{aligned}
U_{r}(a)= & \left\{x \in \mathbb{C}_{p}:|x-a|_{p}<r\right\}, \\
& V_{r}(a)=\left\{x \in \mathbb{C}_{p}:|x-a|_{p} \leq r\right\}, \\
& S_{r}(a)=\left\{x \in \mathbb{C}_{p}:|x-a|_{p}=r\right\} .
\end{aligned}
$$

Dynamical system in $\mathbb{C}_{\boldsymbol{p}}$. Recall some known facts concerning dynamical systems (f, U) in \mathbb{C}_{p}, where $f: U \rightarrow f(x) \in U$ is an analytic function and $U=U_{r}(a)$ or \mathbb{C}_{p}.

Now let $f: U \rightarrow U$ be an analytic function. Denote $f^{n}=\underbrace{f \circ \cdots \circ f}_{n}$.

If $f\left(x_{0}\right)=x_{0}$ then x_{0} is called a fixed point. The set of all fixed points of f is denoted by Fix (f). A fixed point x_{0} is called an attractor if there exists a neighborhood $U\left(x_{0}\right)$ of x_{0} such that for all points $x \in$ $U\left(x_{0}\right)$ it holds $\lim _{n \rightarrow \infty} f^{n}(x)=x_{0}$. If x_{0} is an attractor then its basin of attraction is

$$
A\left(x_{0}\right)=\left\{x \in \mathbb{C}_{p}: f^{n}(x) \rightarrow x_{0}, n \rightarrow \infty\right\}
$$

Let x_{0} be a fixed point of a function $f(x)$. Put $\lambda=f^{\prime}\left(x_{0}\right)$. The point x_{0} is attractive if $0<|\lambda|_{p}<$ 1 , indifferent if $|\lambda|_{p}=1$.

The ball $U_{r}\left(x_{0}\right)$ (contained in V) is said to be a Siegel disk if each sphere $S_{\rho}\left(x_{0}\right), \rho<r$ is an invariant sphere of $f(x)$, i.e. if $x \in S_{\rho}\left(x_{0}\right)$ then all iterated points $f^{n}(x) \in S_{\rho}\left(x_{0}\right)$ for all $n=1,2, \ldots$. The union of all Siegel disks with the center at x_{0} is said to a maximum Siegel disk and denoted by $\operatorname{SI}\left(x_{0}\right)$.

Main part

In this paper we considered the function f can be written in the following form:

$$
\begin{equation*}
f(x)=\frac{1}{x^{2}+a}, \quad a \in \mathbb{C}_{p} \tag{1}
\end{equation*}
$$

where $x \neq \hat{x}_{1,2}= \pm \sqrt{-a}$.
It is easy to see that for rational function (1) the equation $f(x)=x$ for fixed points is equivalent to the equation

$$
\begin{equation*}
x^{3}+a x-1=0 . \tag{2}
\end{equation*}
$$

Since \mathbb{C}_{p} is algebraic closed the equation (2) may have three solution with one of the following relations:
(i) One solution having multiplicity three;
(ii) Two solutions, one of which has multiplicity two;
(iii) Three distinct solutions.

Theorem 1. For (1) rational functions, the following holds:

1. (1) rational function cannot have a unique fixed point
2. The function (1) has two distinct fixed points if and only if $a=-\frac{3}{\sqrt[3]{4}}$.

Proof. 1. Assume (1) has a unique fixed point, say x_{0}. Then the LHS of equation (2) (which is equivalent to $f(x)=x$) can be written as
$x^{3}+a x-1=x^{3}-3 x_{0} x^{2}+3 x_{0}^{2} x-x_{0}^{3}$.
Consequently,

$$
\left\{\begin{array}{l}
-3 x_{0}=0 \\
3 x_{0}^{2}=a \\
x_{0}^{3}=1
\end{array} .\right.
$$

It is easy to see from the last equations that our assume is incorrect. Hence, (1) function does not have a unique fixed point.

2 . Denote by x_{1} and x_{2} solution of equation (2), x_{1} has multiplicity two. Then we have $x^{3}+a x-1=$ $\left(x-x_{1}\right)^{2}\left(x-x_{2}\right)$ and $x^{3}+a x-1=x^{3}-\left(2 x_{1}+x_{2}\right) x^{2}+\left(2 x_{1} x_{2}+x_{1}^{2}\right) x$

$$
-x_{1}^{2} x_{2} .
$$

Hence,

$$
\left\{\begin{array}{l}
2 x_{1}+x_{2}=0 \\
2 x_{1} x_{2}+x_{1}^{2}=a . \\
x_{1}^{2} x_{2}=1
\end{array}\right.
$$

As are result

$$
\left\{\begin{array}{l}
x_{1}=-\frac{1}{\sqrt[3]{2}} \\
x_{2}=\sqrt[3]{4} \\
a=-\frac{3}{\sqrt[3]{4}}
\end{array}\right.
$$

	ISRA (India)	$=6.317$	SIS (USA)	$=0.912$	ICV (Poland)	$=6.630$
Impact Factor:	ISI (Dubai, UAE) $=1.582$	PИHL (Russia) $=3.939$	PIF (India)	$=1.940$		
GIF (Australia)	$=0.564$	ESJI (KZ)	$=9.035$	IBI (India)	$=4.260$	
	$=1.500$	SJIF (Morocco) $=\mathbf{7 . 1 8 4}$	OAJI (USA)	$=0.350$		

The function has $x_{1}=-\frac{1}{\sqrt[3]{2}}$ and $x_{2}=\sqrt[3]{4}$ two fixed points at a single value of $a=-\frac{3}{\sqrt[3]{4}}$. Theorem is proved.

Corollary. If $a \neq-\frac{3}{\sqrt[3]{4}}$, then the function (1) has three distinct fixed points.

We know the rational function (1) has two distinct fixed points if and only if $a=-\frac{3}{\sqrt[3]{4}}$. When $a=-\frac{3}{\sqrt[3]{4}}$, it is easy to see that (1) function has two distinct fixed points $x_{1}=-\frac{1}{\sqrt[3]{2}}$ and $x_{2}=\sqrt[3]{4}$

Let $f: U \rightarrow U$ and $g: V \rightarrow V$ be two maps. f and g are said to be topologically conjugate if there exists a homeomorphism $h: U \rightarrow V$ such that, $h \circ f=h \circ g$. The homeomorphism h is called a topological conjugacy. Mappings that are topologically conjugate are completely equivalent in terms of their dynamics. For example, if f is topologically conjugate to g via h, and x_{0} is a fixed point for f, thenh $\left(x_{0}\right)$ is fixed point for g. Indeed, $h\left(x_{0}\right)=h f\left(x_{0}\right)=g h\left(x_{0}\right)$.

Let homeomorphism $h: \mathbb{C}_{p} \rightarrow \mathbb{C}_{p}$ is defined by $x=h(t)=t+x_{1}=t-\frac{1}{\sqrt[3]{2}}$. So $h^{-1}(x)=x+\frac{1}{\sqrt[3]{2}}$. Note that, the function f is topologically conjugate $h^{-1} \circ f \circ h$. We have

$$
\begin{equation*}
f(x)=\frac{\frac{1}{\sqrt[3]{2}} x^{2}-\sqrt[3]{2} x}{x^{2}-\sqrt[3]{4} x-\sqrt[3]{2}} \tag{3}
\end{equation*}
$$

where $x \neq \breve{x}_{1,2}=\frac{1 \pm \sqrt{3}}{\sqrt[3]{2}}$.
Thus we study the dynamical system $\left(f, \mathbb{C}_{p}\right)$ with f given by (3).Note that, function (3) has two fixed points $x_{1}=0$ and $x_{2}=\frac{3}{\sqrt[3]{2}}$. So we have $f^{\prime}\left(x_{1}\right)=1$ and $f^{\prime}\left(x_{2}\right)=8$. Thus, the point $x_{1}=0$ is an indifferent point for (3). For any $x \in \mathbb{C}_{p}, x \neq \breve{x}_{1,2}$, by simple calculation we get

$$
\begin{equation*}
|f(x)|_{p}=|x|_{p} \frac{\left|\frac{1}{\sqrt[3]{2}} x-\sqrt[3]{2}\right|_{p}}{\left|x-\widetilde{x}_{1}\right| p\left|x-\widetilde{x}_{2}\right|_{p}} \tag{4}
\end{equation*}
$$

Denote $P=\left\{x \in \mathbb{C}_{p}: \exists n \in \mathbb{N} \cup\{0\}, f^{n}(x) \in\right.$ $\left.\left\{\breve{x}_{1}, \breve{x}_{2}\right\}\right\}$.

Case $\boldsymbol{p}=2$.

Now let us calculate the 2-adic norm of $\breve{\boldsymbol{x}}_{\mathbf{1}}$ and \breve{x}_{2}. We know $\sqrt{3} \notin \mathbb{Q}_{2}$. Consider the quadratic extension of $K=\mathbb{Q}_{2}(\sqrt{3})$. We can write any element of K in the form $a+b \sqrt{3}$. $\quad \mathbb{N}_{K \backslash \mathbb{Q}_{2}}(a+b \sqrt{3})=a^{2}-$ $3 b^{2}$.

$$
\begin{gathered}
|1+\sqrt{3}|_{2}=\sqrt{\left|\mathbb{N}_{K \backslash Q_{2}}(1+\sqrt{3})\right|_{2}}=\sqrt{|1-3|_{2}} \\
=\frac{1}{\sqrt{2}}
\end{gathered}
$$

We know $\sqrt[3]{2} \notin \mathbb{Q}_{2}$. Consider the cubic extension of $K=\mathbb{Q}_{2}(\sqrt[3]{2})$. We can write any element of K in the form $a+b \sqrt[3]{2}+c \sqrt[3]{4}$.

$$
\begin{aligned}
& \mathbb{N}_{K \backslash Q_{2}}(a+b \sqrt[3]{2}+c \sqrt[3]{4}) \\
&=a^{3}+4 c^{3}+2 b^{3}-6 a b c \\
&|\sqrt[3]{2}|_{2}=\sqrt[3]{\mathbb{N}_{K \backslash Q_{2}}(\sqrt[3]{2})}=\sqrt[3]{|2|_{2}}=\frac{1}{\sqrt[3]{2}}
\end{aligned}
$$

It follows that $\left|\breve{x}_{1}\right|_{2}=\left|\breve{x}_{2}\right|_{2}=\frac{1}{\sqrt[6]{2}}$, and for coefficient we get $\left|\frac{1}{\sqrt[3]{2}}\right|=\sqrt[3]{2}$. From this relation and equality (4) we can define the function $\varphi: 0,+\infty) \rightarrow$ $0,+\infty$) by

$$
\varphi(r)= \begin{cases}r, & \text { if } r<\frac{1}{\sqrt[3]{4}} \\ \tilde{a}, & \text { if } r=\frac{1}{\sqrt[3]{4}} \\ \sqrt[3]{4} r^{2}, & \text { if } \frac{1}{\sqrt[3]{4}}<r<\frac{1}{\sqrt[6]{2}} \\ \tilde{b}, & \text { if } r=\frac{1}{\sqrt[6]{2}} \\ \sqrt[3]{2}, & \text { if } r>\frac{1}{\sqrt[6]{2}}\end{cases}
$$

where \tilde{a} and \tilde{b} some positive numbers with $\tilde{a}<$ $\frac{1}{\sqrt[3]{4}}, \quad$ and $\tilde{b}>\sqrt[3]{2} . \quad$ The graph of the function φ is

	ISRA (India)	$=6.317$	SIS (USA)	$=0.912$	ICV (Poland)	$=6.630$
Impact Factor:	ISI (Dubai, UAE) $=\mathbf{1 . 5 8 2}$	PИHL (Russia) $=\mathbf{3 . 9 3 9}$	PIF (India)	$=\mathbf{1 . 9 4 0}$		
	GIF (Australia)	$=0.564$	ESJI (KZ)	$=9.035$	IBI (India)	$=\mathbf{4 . 2 6 0}$
	JIF	$=1.500$	SJIF (Morocco) $=\mathbf{7 . 1 8 4}$	OAJI (USA)	$=0.350$	

Picture 1.

Lemma 1. If $p=2$ and $x \in S_{r}\left(x_{1}\right)$, then for the function (3) the following holds

$$
\left|f^{n}(x)\right|_{2}=\varphi^{n}(r)
$$

By this lemma we see that the real dynamical system compiled from φ^{n} is directly related to the 2 -adic dynamical system $f^{n}(x), \quad n \geq 1, \quad x \in \mathbb{C}_{2} \backslash$ P.

The following lemma gives properties to this real dynamical system.

Lemma 2. The dynamical system generated by $\varphi(r)$ has the following properties:

1. Fix $(\varphi)=\left\{r: 0 \leq r<\frac{1}{\sqrt[3]{4}}\right\} \cup\left\{\frac{1}{\sqrt[3]{4}}:\right.$ if $\tilde{\alpha}=$ $\left.\frac{1}{\sqrt[3]{4}}\right\} \cup\{\sqrt[3]{2}\}$.
2. If $r>\frac{1}{\sqrt[3]{4}}$, then

$$
\lim _{n \rightarrow \infty} \varphi^{n}(r)=\sqrt[3]{2}
$$

3. If $r=\frac{1}{\sqrt[3]{4}}$ and $\tilde{a}<$ $\frac{1}{\sqrt[3]{4}}$, then $\varphi^{n}(r)=\tilde{a}$ for all $n \geq 1$.

Proof. 1. This is the result of a simple analysis of the equation $\varphi(r)=r$.
2. By definition of $\varphi(r)$, for $r>\frac{1}{\sqrt[6]{2}}$ we have $\varphi(r)=\sqrt[3]{2}$, i.e., the function is constant. For $r=\frac{1}{\sqrt[6]{2}}$ we have $\varphi\left(\frac{1}{\sqrt[6]{2}}\right)=\tilde{b} \geq \sqrt[3]{2}$ and thus we get $\varphi\left(\frac{1}{\sqrt[6]{2}}\right)>$ $\frac{1}{\sqrt[6]{2}}$. Consequently,

$$
\lim _{n \rightarrow \infty} \varphi^{n}\left(\frac{1}{\sqrt[6]{2}}\right)=\sqrt[3]{2}
$$

Assume now $\frac{1}{\sqrt[3]{4}}<r<\sqrt[3]{2}$ then $\varphi(r)=$ $\sqrt[3]{4} r^{2}, \quad \varphi^{\prime}(r)=2 \sqrt[3]{4} r>2$ and

$$
\varphi\left(\left(\frac{1}{\sqrt[3]{4}}, \frac{1}{\sqrt[6]{2}}\right)\right)=\left(\frac{1}{\sqrt[3]{4}}, \sqrt[3]{2}\right) \cup\{\tilde{\alpha}\}
$$

Since $\varphi^{\prime}(r)>2$ for $r \in\left(\frac{1}{\sqrt[3]{4}}, \frac{1}{\sqrt[6]{2}}\right)$ there exists $n_{0} \in \mathbb{N}$ such that $\varphi^{n_{0}}(r) \in\left(\frac{1}{\sqrt[6]{2}}, \sqrt[3]{2}\right)$. Hence for $n \geq$ n_{0} we get $\varphi^{n}(r)>\frac{1}{\sqrt[6]{2}}$ and consequently

$$
\lim _{n \rightarrow \infty} \varphi^{n}(r)=\sqrt[3]{2}
$$

3. If $r=\frac{1}{\sqrt[3]{4}}$ and $\tilde{a}<\frac{1}{\sqrt[3]{4}}$ then $\varphi(r)=\tilde{a}<$ $\frac{1}{\sqrt[3]{4}}$. Moreover, \tilde{a} is a fixed point for the function $\varphi(r)$. Thus for $n \geq 1$ we obtain $\varphi^{n}(r)=\tilde{a}$.

By Lemma 1 and Lemma 2 we get
Theorem 2. The 2-adic dynamical system generated by function (3) has the following properties:

1. $S I\left(x_{1}\right)=U_{\frac{1}{\sqrt[3]{4}}}(0)$.
2. $x_{2} \in S_{\sqrt[3]{2}}(0)$. The fixed point x_{2} is attractive and

$$
A\left(x_{2}\right)=\mathbb{C}_{2} \backslash\left(V_{\frac{1}{\sqrt[3]{4}}}(0) \cup P\right)
$$

3. If $x \in S_{\frac{1}{\sqrt[3]{4}}}(0)$, then there exists $\mu_{1}<\frac{1}{\sqrt[3]{4}}$ such that $f^{m}(x) \in S_{\mu_{1}}(0)$ for anym ≥ 1.

Proof. 1. By Lemma 1 and part 1 of Lemma 2 we see that spheres $S_{r}(0), \quad r<\frac{1}{\sqrt[3]{4}}$ and $S_{\sqrt[3]{2}}(0)$ are invariant for f. Thus $S I\left(x_{1}\right)=U_{\frac{1}{\sqrt[3]{4}}}(0)$. Consequently, $\left|x_{2}\right|_{2}=\left|\frac{3}{\sqrt[3]{2}}\right|_{2}=\sqrt[3]{2}$, i.e., $x_{2} \in S_{\sqrt[3]{2}}(0)$.
2. In this case x_{2} will be attractive fixed point, i.e.,

$$
\left|f^{\prime}\left(x_{2}\right)\right|_{2}=|2 \sqrt[3]{2}|_{2}=\frac{1}{2 \sqrt[3]{2}}<1
$$

From Lemma 1 and part 2 of Lemma 2 we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} f^{n}(x) \in S_{\sqrt[3]{2}}(0) \\
& \text { for all } x \in S_{r}(0) \backslash P, \quad r>\frac{1}{\sqrt[3]{4}} .
\end{aligned}
$$

Let $x \in S_{\sqrt[3]{2}}(0)$. We have

	ISRA (India)	$=6.317$	SIS (USA)	$=0.912$	ICV (Poland)	$=6.630$
Impact Factor:	ISI (Dubai, UAE) $=1.582$	PVHL (Russia) $=3.939$	PIF (India)	$=\mathbf{1 . 9 4 0}$		
	GIF (Australia)	$=0.564$	ESJI (KZ)	$=9.035$	IBI (India)	$=4.260$
	JIF	$=1.500$	SJIF (Morocco) $=\mathbf{7 . 1 8 4}$	OAJI (USA)	$=0.350$	

$$
\left|f(x)-\frac{3}{\sqrt[3]{2}}\right|_{2}=\left|x-\frac{3}{\sqrt[3]{2}}\right|_{2} \cdot \frac{|-\sqrt[3]{4} x-\sqrt[3]{2}|_{2}}{\left|x^{2}-\sqrt[3]{4} x-\sqrt[3]{2}\right|_{2}}
$$

By $\quad|-\sqrt[3]{4} x-\sqrt[3]{2}|_{2}=\frac{1}{2 \sqrt[3]{2}}$ and $\left|x-\breve{x}_{2}\right|_{2}=$ $\left|x-\breve{x}_{1}\right|_{2}=\left|\frac{\sqrt{3}}{\sqrt[3]{2}}\right|_{2}=\sqrt[3]{2}$ we get $\left|f(x)-\frac{3}{\sqrt[3]{2}}\right|_{2}<\mid x-$ $\left.\frac{3}{\sqrt[3]{2}}\right|_{2}$ for any $x \in S_{\sqrt[3]{2}}(0) \backslash P$. Consequently,
$\lim _{n \rightarrow \infty} f^{n}(x)=x_{2}$, for all $x \in S_{r}(0) \backslash P, \quad r>\frac{1}{\sqrt[3]{4}}$,
i.e., $A\left(x_{2}\right)=\mathbb{C}_{2} \backslash\left(V_{\frac{1}{\sqrt[3]{4}}}(0) \cup P\right)$.
3. If $x \in S_{\frac{1}{\sqrt[3]{4}}}$ (0) then by (4) we have

$$
|f(x)|_{2}=\frac{1}{\sqrt[3]{4}} \cdot \frac{\left|\frac{1}{\sqrt[3]{2}} x-\sqrt[3]{2}\right|_{2}}{\left(\frac{1}{\sqrt[6]{2}}\right)^{2}}<\frac{1}{\sqrt[3]{4}}
$$

Thus, there is $\mu_{1}<\frac{1}{\sqrt[3]{4}}$ such that $f^{m}(x) \in$ $S_{\mu_{1}}(0)$ for any $m \geq 1$ (see part 1 of Lemma 2). Hence if $x \in S_{\frac{1}{\sqrt[3]{4}}}(0)$, then there exists $\mu_{1}<\frac{1}{\sqrt[3]{4}}$ such that $f^{m}(x) \in S_{\mu_{1}}(0)$ for anym ≥ 1.

We note that

$$
P=\bigcup_{k=o}^{\infty} P_{k}, \quad P_{k}=\left\{x \in \mathbb{C}_{2}: f^{k}(x) \in\left\{\breve{x}_{1}, \breve{x}_{2}\right\}\right\} .
$$

Theorem 3. 1. $P_{k} \neq 0$, for any $k=0,1,2, \ldots$.
2. $P_{k} \subset S_{r_{k}}(0)$, where $r_{k}=\frac{1}{\sqrt[6]{2}} \cdot\left(\frac{1}{\sqrt{2}}\right)^{\frac{2^{k}-1}{2^{k}}}, \quad k=$ 0,1,2, \ldots.

Proof. 1. In case $k=0$ we have $P_{0}=\left\{\breve{x}_{1}, \breve{x}_{2}\right\} \neq$ \emptyset.

Assume for $k=n$ that $P_{n}=\left\{x \in \mathbb{C}_{p}: f^{n}(x) \in\right.$ $\left.\left\{\breve{x}_{1}, \breve{x}_{2}\right\}\right\} \neq \emptyset$.

Now for $k=n+1$ to prove $P_{n+1}=\{x \in$ $\left.\mathbb{C}_{p}: f^{n+1}(x) \in\left\{\breve{x}_{1}, \breve{x}_{2}\right\}\right\} \neq \varnothing$ we have to show that the following equation has at least one solution:
$f^{n+1}(x)=\breve{x}_{i}$, for some $i=1,2$.
By our assumption $P_{k} \neq 0$, there exists $y \in P_{n}$ such that $f^{n}(y) \in\left\{\breve{x}_{1}, \breve{x}_{2}\right\}$. Now we show that there exists x such that $f(x)=y$. We note that the equation $f(x)=y$ can be written as

$$
\begin{equation*}
\left(\frac{1}{\sqrt[3]{2}}-y\right) x^{2}-(\sqrt[3]{2}-\sqrt[3]{4} y) x+\sqrt[3]{2} y=0 \tag{5}
\end{equation*}
$$

Since $\breve{x}_{1}, \breve{x}_{2} \in S_{\frac{1}{\sqrt[6]{2}}}(0)$, by the Lemma 1 and the part1 of Lemma 2 we know that $S_{\sqrt[3]{2}}(0)$ is an
invariant, consequently, $P \cap S_{\sqrt[3]{2}}(0)=\emptyset$. Thus $\frac{1}{\sqrt[3]{2}} \notin$ P, hence, $\frac{1}{\sqrt[3]{2}}-y \neq 0$. Since \mathbb{C}_{2} is algebraic closed the equation (5) has two solutions, say $x=t_{1}, t_{2}$. For $x \in$ $\left\{t_{1}, t_{2}\right\}$ we get
$f^{n+1}(x)=f^{n}(f(x))=f^{n}(y) \in\left\{\breve{x}_{1}, \breve{x}_{2}\right\}$.
Hence $P_{n+1} \neq \emptyset$. Therefore, by induction we get $P_{k} \neq 0$, for any $k=0,1,2, \ldots$.
2. We know that $\left|\breve{x}_{1}\right|_{2}=\left|\breve{x}_{2}\right|_{2}=\frac{1}{\sqrt[3]{2}}$. By (4) and

$$
\lim _{n \rightarrow \infty} f^{n}(x) \in S_{\sqrt[3]{2}}(0)
$$

i.e., $S_{\frac{1}{\sqrt[6]{2}}}(0) \cap P=\left\{\breve{x}_{1}, \breve{x}_{2}\right\}=P_{0}$. Denoting $r_{0}=$ $\frac{1}{\sqrt[6]{2}}$ we write $P_{0} \subset S_{r_{0}}(0)$.

For each $k=1,2,3, \ldots$ we want to find some r_{k} such that the solution x of $f^{k}(x)=\breve{x}_{i}$, (for some $i=$ 1,2.) belongs to $S_{r_{k}}(0)$, i.e., $x \in S_{r_{k}}(0)$. By Lemma 1 we should have

$$
\psi_{\frac{1}{\sqrt[6]{2}}}^{k}\left(r_{k}\right)=\frac{1}{\sqrt[6]{2}}
$$

Now if we show that the last equation has unique solution r_{k} for each k, then we get

$$
P_{k}=\left\{x \in \mathbb{C}_{2}: f^{k}(x) \in\left\{\breve{x}_{1}, \breve{x}_{2}\right\}\right\} \subset S_{r_{k}}(0) .
$$

By parts 1 and 3 of Lemma 2 we have $\frac{1}{\sqrt[3]{4}}<r_{k} \leq$ $\frac{1}{\sqrt[6]{2}}$. Moreover, we have $r_{0}=\frac{1}{\sqrt[6]{2}}$ and $\frac{1}{\sqrt[3]{4}}<r_{k}<\frac{1}{\sqrt[6]{2}}$ for each $k=1,2, \ldots$. For such r_{k}, by definition of $\psi_{\frac{1}{\sqrt[6]{2}}}(r)$, we have

$$
\psi_{\frac{1}{\sqrt[6]{2}}}\left(r_{k}\right)=\sqrt[3]{4} r_{k}^{2}
$$

Thus $\psi_{\frac{1}{\sqrt[6]{2}}}^{k}\left(r_{k}\right)=\frac{1}{\sqrt[6]{2}}$ has the form

$$
\psi_{\sqrt[1]{\sqrt[6]{2}}}^{k}\left(r_{k}\right)=\frac{\sqrt[3]{2} 2^{2^{k}-1}}{\left(\frac{1}{\sqrt[6]{2}}\right)^{2\left(2^{k}-1\right)}} r_{k}^{2^{k}}=\frac{1}{\sqrt[6]{2}}
$$

consequently,

$$
r_{k}^{2^{k}}=\left(\frac{1}{\sqrt[6]{2}}\right)^{2^{k}} \cdot\left[\left(\frac{1}{\sqrt{2}}\right)^{\frac{2^{k}-1}{2^{k}}}\right]^{2^{k}}
$$

Taking $2^{k}-$ root we obtain unique positive solution: $r_{k}=\frac{1}{\sqrt[6]{2}} \cdot\left(\frac{1}{\sqrt{2}}\right)^{\frac{2^{k}-1}{2^{k}}}$.

References:

1. Robert, A.M. (2000). A course of p-adic analysis. Springer, New York.

	ISRA (India)	$=6.317$	SIS (USA)	$=0.912$	ICV (Poland)	$=6.630$
Impact Factor:	ISI (Dubai, UAE) $=1.582$	PИHL (Russia) $=\mathbf{3 . 9 3 9}$	PIF (India)	$=1.940$		
GIF (Australia)	$=0.564$	ESJI (KZ)	$=9.035$	IBI (India)	$=4.260$	
	JIF	$=1.500$	SJIF (Morocco) $=7.184$	OAJI (USA)	$=0.350$	

2. Call, G., \& Silverman, J. (1993). Canonical height on varieties with morphisms. Compositio Mathematics, 89 (1993), pp. 163-205.
3. Khrennikov, A.Yu. (1997). Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models. Kluwer, Netherlands.
4. Thiran, E., Verstegen, D., \& Weters, J. (1989). p-adic dynamics. Journal of Statistical Physics, 54(3/4) (1989), pp. 893-913.
5. Avetisov, V.A., Bikulov, A.H., Kozyrev, S.V., \& Osipov, V.A. (2002). p-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes. Journal of Physics A: Mathematical and General, 35 (2002), pp. 177189.
6. Albeverio, S., Khrennikov, A., \& Kloeden, P.E. (1999). Memory retrieval as a p-adic dynamical system. BioSystems, 49 (1999), pp. 105-115.
7. Albeverio, S., Khrennikov, A., Tirozzi, B., \& Smedt, S.De. (1998). p-adic dynamical systems. Theoretical and Mathematical Physics, 114 (1998), pp. 276-287.
8. Call, G., \& Silverman, J. (1993). Canonical height on varieties with morphisms. Compositio Mathematics, 89 (1993), pp. 163-205.
9. Khrennikov, A.Yu. (1997). The description of Brain's functioning by the p-adic dynamical system. Preprint No. 355 (SFB-237), Ruhr Univ. Bochum, Bochum.
10. Anashin, V.S., \& Khrennikov, A.Yu. (2009). Applied Algebraic Dynamics. V. 49, de Gruyter Expositions in Mathematics. Walter de Gruyter, New York.
11. Albeverio, S., Rozikov, U.A., \& Sattarov, I.A. (2013). p-adic (2,1)-rational dynamical systems. Journal of Mathematical Analysis and Applications, 398(2) (2013), pp. 553-566.
12. Schikhof, W.H. (1984). Ultrametric calculus, An introduction to p-adic analysis. Cambridge University Press, Cambridge.
13. Khrennikov, A.Yu., \& Nilsson, M. (2004). pAdic Deterministic and Random Dynamics. Kluwer Academic Publishers.
