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Abstract: Let K be a linear operator from H to H with discrete spectrum and let ,...2,1, =ii  be the sequence 

of Eigen-values of K repeated according to their multiplicity. Let 𝔛 be a real separable Hilbert space; smooth, 𝔛-

valued functionals on (W, H, 𝜇) are functionals of the form 

( ) ( )=
n

imi xwhwhwa

1

1 ,,....,,  

with ix 𝔛  and ( bi C ℝ HWhi
m  *), . 
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Introduction 

The purpose of this paper is to present detailed 

show of the measurability of the forward images of 

Borel sets under the perturbation of identity maps, the 

Sard inequality and some applications of these results. 

Some of these results are applied in [6] to degree 

theory on the Wiener space. 

We will summarize some definitions and results 

of stochastic analysis that will be needed in the 

section. The measurability problem will be discussed 

is devoted to the Sard inequality. The strategy of the 

show follows Smale [3]: T is shown to be 

representable locally as GS TTT =  where GT  is 

invertible and ST  is finite dimensional. This is done 

in Lemma (2.1.8) following the technique of Kusuoka 

[4]. It is then shown, Lemma (2.1.9), that the Sard 

inequality for T  follows from the application of the 

finite dimensional Sard inequality to ST . Devoted to a 

certain extension of the Sard inequality and the 

infinite dimensional extension of (2.4) is also given 

there. Some applications to the question of absolute 

continuity are discussed. 

 

II. Preliminaries 

Let ( ),,HW  be an abstract Wiener space. We 

start with a short summary of the notations of the 

Malliavin calculus. The Carleman- Fredholm 

determinant of K is defined as: 

( ) ( )


=

−
+=+

1

2 1det

i

i
ieKI

   (1) 

and the product is known to converge for Hilbert-

Schmidt operators. For F  𝔻 ( ) FHloc
p ,1,  is Hilbert-

Schmidt and define 

( ) ( ) .
2

1
expdet

2

2 







−−+=

HF FFFIw   (2) 

 

Theorem (1): Let D and T be as above and let 

( )xJ  denote the Jacobian determinant of T  at x ; 
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also, let E  be a measurable subset of D , then ( )ET  

is measurable and 

∫ 1𝑇𝐸(𝑥)𝑑𝑥

ℝ𝑛

≤ ∫ 𝐼𝐸(𝑥)|𝐽(𝑥)|𝑑𝑥.

ℝ𝑛

    (3) 

 

In order to represent this result for the case where 

the Lebesgue measure is replaced with the standard 

Gaussian measure on ℝ𝑛, note that if ( )x  is 

measurable and nonnegative, then (3) implies that 

∫ 𝜓(𝑥)1𝑇𝐸(𝑥)𝑑𝑥 ≤

ℝ𝑛

≤ ∫ 𝜓(𝑇𝑥)1𝐸(𝑥)|𝐽(𝑥)|𝑑𝑥.

ℝ𝑛

       (4) 

  

In particular, setting 

( ) ( )

( ) ( )
( )xfxTx

dxxdx

xx
n

+=

=

−=
−



 2/exp2
22/

 

and 

( ) ( ) ( ) ( ) 







−=

2

2

1
,exp xfxfxxJx  

Yields 

∫ 1𝑇𝐸(𝑥)𝑑𝜇(𝑥)

ℝ𝑛

≤ ∫ 1𝐸(𝑥)|Λ(𝑥)|𝜇(𝑑𝑥)

ℝ𝑛

 

or 

𝜇(𝑇𝐸) ≤ ∫|Λ(𝑥)|𝜇(𝑑𝑥)

E

.        (5) 

An extension of (3) where the condition of T  

being continuously differentiable is replaced by a 

weaker assumption is a part of Federer's area theorem 

for nm = , (Theorem 3.2.3 of [1]). Cf., also, Theorem 

5.6 of [2]. 

Lemma (1): Let 321 ,, FFF  belong to 𝔻𝑝,1
𝑙𝑜𝑐(𝐻) 

and let 

( ) .3,2,1, =+= iwFwwT ii    

Assume that:  

( )  −1
2Ti   and  

( ) 213 TTTii =  (i.e., 2123 TFFF += ).  

Then 

(a) ( )( ) ( )2213 FITFIFI ++=+  

(b) ( ) .
213 2 FFF T =   

The proof is straight forward (cf. Lemma 6.1 of 

[4] or [7] and uses the fact that for ( ) ( )wuwwT +=  

( ) ( ) ( )( ) .., uTFTraceuTFTFTF
H

++=    

With every measurable subset A  of W  we 

associate the random variable ( )wA  which plays an 

important role in the construction of a class of 

mollifiers: 

Theorem (2): Let HWF →:  be a measurable 

map belonging to 𝔻𝑃,1(𝐻) for some 1p . Assume 

that there exist constants dc,  (with 1c ) such that 

for almost every Ww  

( ) 1 cwF  

and 

( )  dwF
2

 

where   denotes the operator norm and 

HH
=

2
 denotes the Hilbert-Schmidt (or 

HH  ) norm (in other words, for almost all 

( ) ( )
HH

hcwFhwFWw −+ ,  for all Hh  

where c  is a constant, 1c  and     

( )HHLF   , ).  

Then: 

(a)  Almost surely 𝑤 ⟼ 𝑇(𝑤) = 𝑤 + 𝐹(𝑤) is 

bijective, the inverse 1−T  satisfies ( )wLwwT +=−1  

where ( ) ( ) cwFwL
HH

− 1/   and 

.1/
2

cdL −  

(b) The measures   and *T  are mutually 

absolutely continuous. 

(c)    FTfEfE =  for all bounded and 

measurable f  on W  and in particular   1=FE . 

Definition (1): Let ( )wu  be an H-valued random 

variable 

(a) ( )wu  is said to be an H  — C  map if, for 

almost all Ww , ℎ ↦ 𝑢(𝑤 + ℎ) is a continuous 

function of Hh . 

(b) ( )wu  is said to be 1CH −  if it is CH −  and 

for almost all Ww , ℎ ↦ 𝑢(𝑤 + ℎ) is continuously 

Frechet differentiable on H . 

(c) ( )wu  is said to be “Locally 1CH − ” if there 

exists an almost surely strictly positive random 

variable   such that ℎ ↦ 𝑢(𝑤 + ℎ) is 1C  on the set 

( ) whHh  : . 

(d) ( )wu   will be said to be 1CH −− , if there 

exists a non-negative random variable ( )w  such that 

( )  00 w  and for all 

( )  ( )hwuwwQw += ,0:  is Frechet 

differentiable on ( ) whHh
H

 , . 

Theorem (3):  Suppose that 𝑢: 𝑊 → 𝐻 is a 

measurable map. Then for any measurable 

( )( ) ( )ATAuIWA W =+ ,  is in the universally 

completed Borel sigma algebra of W . 
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Proof: If ( )ATw , then ( ) uw +=  where 

A . Otherwise stated, setting hhw ,+=  satisfies 

( )hwuh ++=0  

and 

Ahw + . 

Let ( )w  be the multifunction taking values in 

subsets of H: 

( ) ( ) ( ) Ahwandhwuhhw +=++= 0: . 

Then 

( ) ( )  ( )( ),: == GwWwAT W  

where ( )G  is the graph of 

( ) ( ) ( ) whwhG = :,:  and ( ) wwhW =, . 

Since (𝑤, ℎ) ↦ 𝑤 + ℎ is measurable, ( )G  is 

measurable in HW   hence ( )GW  is universally 

measurable (c.f. Theorem 23, p. 75 of [9]). 

The following result is the infinite dimensional 

version of the Sard inequality which implies the Sard 

lemma. 

Theorem (4): Suppose that HWu →:  is a 

measurable map in some 𝔻𝑃,1(𝐻) and is 1CH −− , 

i.e. there exists a nonnegative random variable  , 

with ( )   00 = nQ   and the map ℎ ↦ 𝑢(𝑤 + ℎ) 

is continuously Frechet differentiable on the random 

open ball ( ) whHh
H

 : . Then we have, for any 

( )WBA , 

( )( )  

QA

u dQAT



  . 

The proof of the theorem will follow from the 

following two lemmas. 

Lemma (2): Under the assumptions of Theorem 

(6), there exists a countable cover nmQ ,  of Q  and two 

sequences in 𝔻𝑃,1(𝐻), denoted by )(, wK nm  and 

)(, wS nm  such that 

i. 1,2,  nmnmK   

for almost all Ww , where 
2

  denotes the Hilbert 

- Schmidt norm. 

ii. ( )wS nm,  is finite dimensional on nmQ , , i.e. 

there exists a finite dimensional subspace of H , say 

nmH , , such that ( ) nmnm HwS ,,   for all nmQw , . 

iii. 1

,,

−=
nmnm KS TTT  . 

Proof: Let ( nn; ℕ) be a sequence of 

orthogonal projections of H  increasing to HI . Let   

be a fixed positive number (to be specified later), set 

 

( ) ( )

( ) ( ) ( ) ( ) ,
4

,,
1

,
1

:

1
,:

2
2

2,



















−+=

m
wmwuwu

nm
wu

n
Ww

m
hallforwuhwuWwQ

H

Hnm












 

 

 

where 
2

  denotes the Hilbert-Schmidt norm. By the 

1CH −  - property, mnQ nm ,;( , ℕ) covers Q  almost 

surely (here, if necessary, we add a negligible set to 

have equality everywhere instead of almost 

everywhere but we keep the same notation). 

Let us denote nmQ ,  by q . It is easy to see that for 

qw  and any mhHh
H

/1,   

            ( )  2
1

2

+ hwu
n

 (6) 

and, assuming that 1 , 

 

( ) ( ) ( ) .
32111

1

0 2 mmm
dththwu

n
wu

n
hwu

n H
HH


 +++          (7) 

 

 

Let   be a smooth function on ℝ such that 

( ) 1t  and ( ) 2 t  for all t  ℝ, furthermore 

assume that ( ) 1=t  on 
2

1
t  and ( ) 0=t  on      

2t . 

Let ( )  .,:inf, qhwHhhqw
H

+=  

Set 

( ) ( )( )qwmwg ,=  

and 

( ) ( ) ( ).
1

wu
n

wgwG =  

Therefore, if ( ) 0wg , then ( ) 1,  qwm  , 

hence for some qw 0 , mww
H

/10 − . Therefore, 

by (1) and (2), for all Ww , 

( )
m

wG
H

3
          (8) 

and 
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( ) .82
3

2
11

22
2




 =++
m

mu
n

gu
n

gwG  (9) 

 

Setting, now, 21050 −= , it follows from 

Theorem (2) that GIT WG +=  is a.s. bijective. Let 

( )qTE G= , then by the result of the previous section, 

E  is measurable and for any w  satisfying 

( ) mEw 3/1,   there exists some qw 0 , such that 

HwTw G − 0  and 0,
3

1
0 

+
− 



m
wTw

HG . 

Therefore, by (a) of Theorem (3) and (9) 

.
2

1

81

0

0
1

m

wTw
wwT HG

H
G 

−

−
−−


 

Hence, ( ) mqwTG 2/1,1 −  and 

( )( ) 1,1 = − qwTm G , i.e. ( ) ( )wuwG n=  and 

consequently 

wwTu
n

I G =







+ −11

  (10) 

for any w  such that ( ) mEw 3/1,   and in particular 

to any Ew . Now set 

 

( ) ( )( ) ( )( ) ( )( ) ( )( )wGIGEwmwGIwEwmwK
11

,8,8
−−

+=+−=−  . (11) 

 

Hence by Theorem (3) and (8) 

          ( )
m

wK
H

3
  

and 

 

( ) ( ) ( )( ) .3.0
81

8
18

48
116

2

1

2

1

1










−
++






 −−+++

−−








m

m
GIIwGIGwGmK

H
  

 

Setting KW TTSI =+ , i.e.,  

( ) ( ) ( )( )wTuwKwS K+= , if ( ) mEw 8/1,    

(in particular, if Ew ) then by (10), (11) 

 ( ) wTwT GK
1−=  and  

( ) ( ) ( )( ).
11

wTu
n

wKwwTu
n

Iw KKW  ++=







+=  

Therefore 

( ) ( )( )wTu
n

wS K

1
−=  and ( ) ( ) ( )( ) ( )( ) ( )( ).

1
1 wTuwTu

n
wTuwKwS KnKK  =








−=+=  

 

Consequently, for ( ) ( )wSmEw ,8/1,   is in a 

finite dimensional space. 

Setting nmKK ,=  and nmSS ,=  completes the 

proof of the lemma. 

Lemma (3): Let A  be any measurable subset of 

W  and let nmQ ,  be as defined in Lemma (2), then 

( )( ) ( ) ( ).
,

,  

nmQA

unm dwwQAT



   

Proof: Let nmnm SSQAA ,, ;
~

==   and 

nmKK ,=  are as defined in Lemma (2). By Theorem 

(5), AT
~

 is measurable. Set ATE G

~
= , then E  is also 

measurable since GT  satisfies the conditions of 

Theorem (3). Now, KS TTT =  on E , therefore by 

Lemma (2), | ( ) ( )( ) ( )wwTw KKS =  on E . Let 

,...2,1, =ihi  be a C.O.N.B. on H  and nm,  is the 

projection on nmH ,  defined in Lemma (2). 

 
 
 

,

1,

,

...,, 21

ba

ib

ia

www

nihw

nihw

hhw

=

+=

=

=







 

where ba ww   denotes the concatenation of aw  with 

bw . 

Define    1,,, +== nihFnihF ibia   

and ba  ,  the restriction of   to aF  and bF  

respectively. Then 
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( ) ( ) ( ) ( ) =

W

bbaaba dwdwwwFWEF .  

Note that ( )Aw,  is Lipschitz continuous (cf. 

property (ii) of ( )Aw, . 

Consequently for all ( )hwKEw + ,  and 

( )hwS +  are Lipschitz continuous on ( ) nmQhw ,+  

and for any ( )ba ww   in ( )ba wwSE ,  is Lipschitz 

continuous in the aw  variables. Now, the area 

theorem of Federer (cf. [1, p. 243, Theorem 3.2.3]), 

for a Lipschitz function f : ℝ𝑛 → ℝ𝑛 yields 

 

∫ 𝐽𝑚𝑓(𝑥)𝑑𝑥

𝐴

= ∫ 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝐴 ∩ 𝑓−1(𝑦))𝑑𝑦

ℝ𝑛

≥ ∫ 1𝑓(𝐴)(𝑦)𝑑𝑦

ℝ𝑛

 

 

which extends the Sard inequality to  

Lipschitz functions. Therefore, setting 

( ) aban www =  

we have 

( )( ) ( ) ( ).1  

WE

aabaSbET

n

S
dwwwFwE







 

Consequently 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )  ( ) ( ).1~ ==

W

KKuA

E

KKu

E

SS dwwwTdwwwTdwwET    

 

 

Applying part (c) of Theorem (4) to KT  yields 

( ) ( ) ( ),
~
 

A

uS dwwET   

which completes the proof of the lemma, since 

ATETS

~
= . 

Turning to the proof of Theorem (6), cutting and 

pasting nmQ ,  to form a partition of QA  (keeping 

the same notation), 

( )( ) ( )( )
( )

( )( )

( )

( ),

,

,

,

,,



 



=





=

=

QA

u

Q

u

nm

nm

nmnm

dw

dw

QT

TQ

QTQAT

nm

















 

which completes the proof of the theorem. 

  

III. Application of the Transformation 

Formula 

If in Theorem (4), the set Q  has full measure 

then we have 

( )( ) , 

A

u dQAT    

we would like to have in this case that 

( )( ) . 

A

u dAT   

However, due to adding negligeable sets to A in 

the course of the proof of Lemma (2), this result is not 

true unless the things are reinterpreted as explained in 

the following extension of Theorem 5.2 of [8]. 

Theorem (5): i. Suppose that HWu →:  is 

locally in some 𝔻𝑝,1(𝐻) and that it is 1CH −−  with 

( )   00 =  Q . Let uIT W += . For any 

positive, bounded, measurable functions f  and g  on 

W , we have 

  ( )
 

,1
1 













= 

− QWTy

uQ ygfETgfE



  

where ( ) .
2

1
expdet

2

2 







−−+=

HHu uuuI   

ii. Furthermore, if u  is 1
IocCH − , then there 

exists a modification of u , denoted by u  (i,e., 

  1== uu ), such that the corresponding shift T   

satisfies 

  ( )
 

.
1 













= 

−



wTy

u ygfEgTfE   

In particular, we have 
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( )( ) , dAT

A

u   

for any ( )WBA . 

iii. If moreover QHQ + , then the restriction 

of T  to the set Q  satisfies the conclusion of (ii) where 

T   is replaced by QT \ . In other words we can replace 

( ),,HW  by ( ),, HQ  and think of it as an abstract 

Wiener space on which it holds that 

( )( ) , 

A

u dAT   

for any ( )QBA A, where ( )QB  denotes the trace of 

( )WB  on Q .  

Proof: From Theorem 5.2 of [8], we have 

  ( )
 

.1
1 













= 

− QMwTy

uQ ygfETgfE



  

Therefore, if gg =  almost surely on Q  then 

( )
 

( )
 


−− 

=

MQwTyMQwTy

ygyg

 11

 

almost surely. Moreover, we have 

( )
 

( )( )
( )

 













=
















−−  QwTy

QMT
QMwTy

ygfEygE CC




 11

1  

and the first part of the theorem follows from Theorem 

(2.1.7). For the second part, it suffices to define 

( ) ( ) ( )wuwwu Q1=  and to note that ( ) 1=Q . Since 

( )( ) ( )AwNwAT ,1  , where ( )AwN ,  is the cardinal 

of the set   AwT 1− , which is equal to ( )AQwN ,  

almost surely, we have 

( )( ) ( ) 
( ) 

 
 .1

1

,

,

uA

uA

E

E

QAwNE

AwNEAT

=



=







 

The third claim follows from the fact that 

( ) QQT   whenever QHQ +  (note that in this 

case CQ  is a slim set). 

Below we give the proof of the inequality (2.4) 

in the setting of the abstract Wiener space: 

Corollary (1): Let u  be a 1
IocCH − . Then there 

exists uu =  almost surely and uIT w +=  satisfies 

( )   ,11 uAAT TEE     

for any ( )WBA  and 0  any measurable function 

on W . If u  is 1CH − , then we can take TT =  above 

provided that the triple ( ),,HW  is replaced by 

( ),, HQ . 

Proof: Set uu Q1=  and let 

( )( ) 0det: 2 += wuIWwM . From Theorem 

(5), we have ( )( ) 0=QMT C  , hence 

( )  ( ) .11 MATAT EE  =  

M  has a countable partition ( )nM  such that on 

each uITM wn +=,  is equal to a bijective 

transformation, say nT  (cf. [5,10]) such that 

( )  dTd nn =− *1
. Hence 

 

 

( )  ( )   

   

   .11

11

111 1

AuAu

n

AM

n

nAMn

n

nAM

n

AMTMAT

TETE

TETE

TEEE

nn

nnn



−

==

===

==





















 

 

 

IV. Applications to Absolute Continuity 

In the following three propositions we show how 

the Sard property and the existence of a right inverse 

yield new results on the absolute continuity of certain 

measures. The results will be presented under some 

general assumptions. ( )( ),, WBW  

Definition (2): Let ( )( ),, WBW  be any 

probability space and T  a measurable transformation 

on W . The pair ( ),T  will be said to possess the Sard 

property with respect to ( )WBQ  if for every 

( )WBV   

(i) ( )QVT   is universally measurable. 

(ii) ( )( ) 0=QVT   whenever ( ) 0=QV  . 

Proposition (1): Let ( ),T  possess the Sard 

property with respect to Q and v  another probability 

measure on ( )( )WBW ,  for which ( ) 0Qv  such that 

Q
  and   are mutually singular; then ( )( )

Q
T *

 and 

  are mutually singular. 

Proof: Let N  denote the set 

( ) ( ) ( )QNNQN  == ,0, , then ( ) 0=TN  and 
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( )( ) ( )

( )
( ),

*

Q

N

QNTNT
Q







=

=

 

 

which completes the proof. 

Proposition (2): Assume that ( ),T  possesses 

the Sard property with respect to Q . Further assume 

that T  has a measurable right inverse (i.e. wTSw=  

for almost all w ) then 

( )
( ).*

1 QQS
T  −  

Therefore 
( )

.*
1  T

QS
−  

Proof: 21
*  +=S  where  ⊥ 21 , , 

then  ⊥
Q2 ; hence by Proposition (1), 

( )  ⊥
Q

T 2
* . 

On the other hand 

( ) ( ) ( )
( )

.1

**
2

*
1

*

QSQ
STQTQT −=








=+   

Hence ( )QT 2
* 

( )QS 1−  . Consequently 

( ) 02
* =

Q
T   and 

( )
( ) ( )

QQQS
TT  *

1
*

1 =− , since 

21    implies 

2
*

1
*  TT  . 

Definition (3): ( ),T  is said to possess the 

strong Sard property if, for any measurable TVV ,  is 

universally measurable and there exists a non-

negative a.s. finite random variable  such that 

( ) 

V

dTV .  

Proposition (3): Let T  possess the strong Sard 

property, set ( ) 0: = wM . Assume that T  

possesses a measurable right inverse, then 

( )
M

T  *  

and 

.*

M
S    

Proof: Note that, since S  is injective, the set 

( )AS  is measurable for any measurable subset A  of 

W . We have 

( ) ( ) ( ) ==  dTddTSAA A

W

SA

SA

11  

which proves the first part. In order to prove the 

second part 

( )( ) ( ) −

A

dTAAS ,1   

hence 
M

S  *  which completes the proof. 

From here on, we shall be working again in the 

frame of an abstract Wiener space ( ),,HW . 

Proposition (4): Suppose that u  is 1CH −−  

with the corresponding set Q  and that there exists a 

measurable map ( )WTS : ⟼ W  s. t. ( )( ) wwTS =   

- a. s. (i. e., S  is a left inverse). Then 

( )
( )

QMQT
S


 *  where 

( )( ) .0det: 2 += wuIwM  

Proof: From the change of variables formula, we 

have, for any ( )WCf b
+ , 

  ( ) QwNSfETSfE Q ,1 =   where 

( )QwN ,  is the multiplicity of T  on Q  and note that 

in this case we have ( ) ( )( )wQwN QT1, = . Hence we 

have 

  ( ) QTQ SfEfE 11 =   

and the proof follows. 

Corollary (2): Suppose moreover that u  is 
1
IocCH − , then we have 

( )
( ) .*

MQT
S    

We say that a shift uIT W +=  is locally 

monotone if there exists an increasing sequence ( )nW  

of measurable subsets of W  which covers it almost 

surely and some (𝑢𝑛; 𝑛 ∈ ℕ) ⊂ ⋃𝑝>1𝔻𝑝,1(𝐻) such 

that nuu =  almost surely on nW  and 

( )( ) 0, + hhwuI nH  almost surely for any Hh  

(the negligeable set may depend on h ). For such a 

shift T  (cf., [11]) it is known that 

   ,fETfE   

for any ( )WCf b
+ . 

Proposition (5): Let Wu : ↦ H  be 1
IocCH −  

and uIT W +=  be locally monotone. Then T  

possesses a left inverse S  and we have 

( )
( ) .*

MQT
S    

In fact 

( )   ,1 = fESfE QT  

for any ( )WCf b . 

Moreover 

( )
( ) ( ) ( )

,
1

1

*

Sw
w

d

dT

u
QT

M


=




 

 almost surely. 

Proof: Let us show that T  possesses a 

measurable left inverse on Q . In fact, from Theorem 

(5) and from the monotonicity assumption, we have 

(c.f. [11]), 

  ( )   ,, fEQwNfETfE =   
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for any ( )WCf b
+ . Hence ( ) 1,0  QwN . We have 

( ) ( ) 1,: == QwNwQT  almost surely. Let QT  be the 

restriction of T  to Q  and denote by U  the set 

( ) ( ) .1,: == QwNwQTU Q   

Define QUS →:  as ( ) yyTS Q = . Note that, if 

yTyTw QQ ==  then yy =  since ( ) 1, =QwN , 

hence S  is well-defined on U . If ( )WBA , then 

( ) ( )  ( ),1,:1 QATQzNWzQAS  ==−  

as ( )QAT   is in the universal sigma algebra by 

Theorem (2.1.6), S  is measurable with respect to the 

trace of this sigma algebra on U . To show the 

equivalence, note that we have 

  ( ) ,1 QTfETfE =   

for any positive, bounded, measurable function f  on 

W . Using this and the construction of S , 

   
 

( ) 
( ) ,1

11

11

111

QT

QTU

QU

QUU

SfE

SfE

TTSfE

TfETfE









=

==

==

==

 

since ( )QTU =  almost surely. Moreover 

  ( ) 

( ) 
 =

==

==

E

QwNE

QwNETE UU

,

,11 

 

and this implies that 11 =TU   almost surely on the 

set  0 . Combining this with the above relation, 

we obtain 

  ( ) .1 QTSfEfE =  

Note that Sf   is well-defined on the set ( )QT  

since it is almost surely equal to U . Let us now 

calculate the Radon-Nikodym density of ( )
M

T * : 

 

( )
 

( )
 

( ) ( )

( ) ( ) .1
1

1
1

1
1

1

11

1

1














=

=













=

=















=

=















=

=















=





−

−





QT

QQT

QwTy

U

QwTy

MM

Sw
fE

Sw
fE

y
fE

y
fE

TfETfE









 

 

This completes the proof. 
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