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Introduction 

It is important to study the dynamics of harmful 

vibrations in mechanical systems, to identify the 

factors that hinder their long-term perfect operation, 

and to address their elimination. In this regard, the 

study of the dynamics of the rod protected from 

vibrations is a urgent problem. 

Theoretical and experimental studies have been 

conducted to investigate the dynamics of nonlinear 

motion of complex mechanical systems, including 

transverse vibrations of the rod and its minimization, 

taking into account the elastic dissipative properties of 

dynamic absorbers and rods. 

Works [1-3] show the method of internal 

resonances in kinematic motion. In particular, the 

motion of a rod with variable and constant cross-

section under the influence of harmonic excitations 

was obtained using the Lagrage equations, and the 

transfer function and amplitude-frequency 

characteristics were analyzed. 

In works [4-7], the vibrational forms of 

vibration-protected rods have been studied 

experimentally. Graphs of shape modes with 

frequency variations were used to get conclusions and 

make recommendations. 

In works [8 - 12], the theoretical basis for 

determining the shape modes and frequencies of 

vibrations involved in the transfer function of rods has 

been developed taking into account the effects of 

various external loads, and the results of the 

experiment have been presented. 

The work [13,14] analyzed the dynamics of a rod 

with elastic dissipative characteristics of the hysteresis 

type, which is protected from vibrations, and liquid 

section dynamic absorber on the basis of transfer 

functions, conclusions and recommendations for the 

selection of system parameters. 

Although each of these works has its advantages 

and disadvantages, they are all widely used in the 

development of theoretical research and in solving 

practical problems. 

The results of the analysis showed that there is a 

need for a large-scale study to determine the transfer 

functions of rods with elastic dissipative 

characteristics of the hysteresis type, protected from 

vibration. Therefore, solving such problem is one of 

the current problems. 

 

Materials and methods 

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
http://s-o-i.org/1.1/TAS-08-100-42
https://dx.doi.org/10.15863/TAS.2021.08.100.42
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In this paper, we consider the problem of 

determining the transfer function of the rod with an 

elastic dissipative characteristic of the hysteresis type, 

which is protected from vibrations under the influence 

of harmonic excitations, and the conditions for its 

minimum. 

 

Harmonic excitations consist of forces 𝐹𝐿(𝑡)  and 

𝐹𝑅(𝑡)  applied to both ends of the rod. 

The differential equations of motion of the 

system under consideration can be obtained using the 

bond graph method, and it is as follows: 

𝐴∗𝑄̈ + 𝐵𝑄̇ + 𝐶𝑄 = 𝐹,                                       (1) 

where 

𝑄̈ = [
𝑞̈𝑖

𝑞̈3

𝑞̈4

] ; 𝑄̇ = [
𝑞̇𝑖

𝑞̇3

𝑞̇4

] ; 𝑄 = [

𝑞𝑖

𝑞3

𝑞4

] ;  𝐹 = [
𝑢𝑚(0)𝐹𝐿 + 𝑢𝑚(𝐿)𝐹𝑅

0
0

] ; 

𝐴∗ = [

𝑚𝑖 0 0
(𝑚13 + 𝑚2∗)𝑢𝑚(𝑥1) 𝑚13 + 𝑚2∗ 𝑚2∗ + 𝑚𝑣

(𝑚2∗ − 𝑚𝑣)𝑢𝑚(𝑥1) 𝑚2∗ − 𝑚𝑣 𝑚2∗ + 𝑚4∗

] ;  

𝐵 = [
0 −𝑢𝑚(𝑥1)𝑏𝐹 0
0 𝑏𝐹 0
0 0 𝑏𝑆

] ;  𝐶 = [
𝑐𝑖 −𝑢𝑚(𝑥1)𝑐1∗ 0
0 𝑐1∗ 0
0 0 2𝑐2∗

] ; 

 

𝑚1∗ is the inert dimension (mass) of the outer 

body of the dynamic absorber, which surrounds the 

liquid; 𝑚2∗is the inert dimension (mass) of a solid of 

dynamic absorber; 𝑚3∗ is inert dimension of liquid 

(mass); 𝑚4∗ is inert dimension (mass) of the fluid 

adhering to the body 2 with mass 𝑚2∗; 𝑏𝐹  is 

coefficient of resistance of damper (coefficient of 

viscosity); 𝑐1∗
−1 and 𝑐2∗

−1 are compliances (coefficients 

of elasticity); 𝑞3 and 𝑞4 are displacements of masses 

𝑚1∗ and 𝑚2∗, respectively; 𝑚13 = 𝑚1 + 𝑚3; 𝑚𝑖 and 

с𝑖 = с1𝑖 + 𝑗с2𝑖  are modal mass and modal stiffness 

corresponding to i-sets of the rod, respectively; 𝑞𝑖 are 

displacement of i-sets of the rod; 𝑢𝑖(𝑥1), 𝑢𝑖(0) and 

𝑢𝑖(𝐿) are the values of mode shapes of the rod at the 

point 𝑥 = 𝑥1 where the dynamic absorber installed 

and at the points 𝑥 = 0 and 𝑥 = 𝐿 where the external 

forces exist, respectively; 𝑚𝑣 is the mass of liquid 

squeezed out by body of mass 𝑚2∗; 𝑏𝑆 is viscosity 

coefficient of the liquid;  

 

𝑐1𝑖 = [∫ 𝜌𝐴(1 − 𝐶0𝜂1)𝑢𝑚
2 𝑑𝑥 −

𝐿

0

3𝐸𝐼

𝜔∗𝑚
2

𝜂1 ∑ 𝐶𝑖∗𝑞𝑚𝑎
𝑖∗

𝑛

𝑖∗=1

ℎ𝑖∗

2𝑖∗(𝑖∗ + 3)
∫ 𝑢𝑚

𝜕2

𝜕𝑥2
(

𝜕2𝑢𝑚

𝜕𝑥2
|
𝜕2𝑢𝑚

𝜕𝑥2
|

𝑖∗

) 𝑑𝑥

𝐿

0

]𝜔∗𝑚
2 ;  

𝑐2𝑖 = [∫ 𝜌𝐴𝐶0𝜂2𝑢𝑚
2 𝑑𝑥

𝐿

0

+
3𝐸𝐼

𝜔∗𝑚
2

𝜂2 ∑ 𝐶𝑖∗ 𝑞𝑚𝑎
𝑖∗

𝑛

𝑖∗=1

ℎ𝑖∗

2𝑖∗(𝑖∗ + 3)
∫ 𝑢𝑚

𝜕2

𝜕𝑥2
(

𝜕2𝑢𝑚

𝜕𝑥2
|
𝜕2𝑢𝑚

𝜕𝑥2
|

𝑖∗

) 𝑑𝑥

𝐿

0

]𝜔∗𝑚
2 ; 

 

𝐴 and 𝜌 are the cross-sectional area and density 

of the rod; 𝐶0, 𝐶1, … , 𝐶𝑛 are experimentally 

determined coefficients of the hysteresis loop, 

depending on the damping properties of the rod 

material [15]; 𝐸 is Yong’s module; 𝐼 is moment of 

inertia; 𝑞𝑚𝑎 are amplitude values of rod vibration 

forms; ℎ and 𝜔∗𝑚  are the thickness and natural 

frequency of the rod; 𝑢𝑚 are mode shapes; 𝜂1, 𝜂2 =
𝑠𝑖𝑔𝑛(𝜔)𝜂22 are constant coefficients depending on 

the dissipative properties of the rod material, 

determined from the hysteresis loop, 𝑠𝑖𝑔𝑛(𝜔) is the 

sign of 𝜔, 𝜂22 is constant coefficient; 𝐿 is length of the 

rod; 𝑗2 = −1. 

(1) Using a system of differential equations, we 

determine the transfer function and the condition of its 

minimum, which allows to analyze the dynamics of 

the system under consideration. 

 

Result and discussion 

Using the system of differential equations (1), the 

system under consideration can be reduced to a system 

of algebraic equations by the differential operator 𝑆 =
𝑑

𝑑𝑡
, and from this system of algebraic equations the 

variables 𝑞𝑖, 𝑞3, 𝑞4 are defined as follows [14]: 

𝑞𝑖(𝑆) =
𝑎3(𝑏2𝑑3 − 𝑏3𝑑2)

𝑎1(𝑏2𝑑3 − 𝑏3𝑑2) + 𝑎2(𝑏3𝑑1 − 𝑏1𝑑3)
; 

𝑞3(𝑆) =
𝑎3(𝑏3𝑑1 − 𝑏1𝑑3)

𝑎1(𝑏2𝑑3 − 𝑏3𝑑2) + 𝑎2(𝑏3𝑑1 − 𝑏1𝑑3)
;                           (2) 

𝑞4(𝑆) =
𝑎3(𝑏1𝑑2 − 𝑏2𝑑1)

𝑎1(𝑏2𝑑3 − 𝑏3𝑑2) + 𝑎2(𝑏3𝑑1 − 𝑏1𝑑3)
; 

where               𝑎1 = 𝑚𝑖𝑆
2 + 𝑐𝑖;  𝑎2 = −𝑢𝑚(𝑥1)(𝑏𝐹𝑆 + 𝑐1∗); 𝑎3 = 𝑢𝑚(0)𝐹𝐿 + 𝑢𝑚(𝐿)𝐹𝑅; 
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𝑏1 = 𝑀1𝑢𝑚(𝑥1)𝑆2; 𝑏2 = 𝑀1𝑆2 + 𝑏𝐹𝑆 + 𝑐1∗; 𝑏3 = 𝑀2𝑆2;  
𝑑1 = 𝑀3𝑢𝑚(𝑥1)𝑆2; 𝑑2 = 𝑀3𝑆2;  𝑑3 = 𝑀4𝑆2 + 𝑏𝑆𝑆 + 2𝑐2∗;  

𝑀1 = 𝑚13 + 𝑚2∗; 𝑀2 = 𝑚2∗ + 𝑚𝑣; 𝑀3 = 𝑚2∗ − 𝑚𝑣;  𝑀4 = 𝑚2∗ + 𝑚4∗. 
 

Expressions (2) allow us to study the dynamics 

of transversal vibrations of liquid section dynamic 

absorber and hysteresis-type elastic dissipative 

characteristic rod. Absolute accelerations are also 

important in studying the dynamics of systems. For 

this purpose, we determine the absolute acceleration 

of the system under consideration. 

Suppose that the external forces 𝐹𝐿 and 𝐹𝑅 acting 

on the base by placing the left and right ends of the 

rod give the system acceleration 𝑊0. In that case 

𝐹𝐿 = 𝐹𝑅 = 𝑚𝑖𝑊0 .                            (3) 

Absolute acceleration of the rod 

𝑊̈𝑎 = 𝑤̈𝑖 + 𝑊0.                               (4) 

We put the expression for the forces (3) in the 

system of equations (1) and use them and the 

expression for the absolute acceleration (4) to obtain 

the ratio of the expression for the acceleration to the 

base acceleration as follows: 

𝑊𝑖(𝑆, 𝑥) = 1 +
𝑢𝑖(𝑥)𝑆2𝑞𝑖(𝑆)

𝑊0
.                 (5) 

(5) represents the transfer function of the system 

under consideration. 

We set the first equation of the system of 

equations (2) to the transfer function (5) and change 

from variable 𝑆 to variable 𝑗𝜔. 

𝑊𝑖(𝑗𝜔, 𝑞𝑚𝑎, 𝑥) =
𝐸0 + 𝑗𝐸1

𝑁0 + 𝑗𝑁1
,                      (6) 

where 

 

𝐸0 = 𝜇0 − 𝜇1𝜔 − 𝜇2𝜔2 + 𝜇3𝜔3 + 𝜇4𝜔4 − 𝜇5𝜔6;                                                 (7) 

𝐸1 = 𝜇6 + 𝜇7𝜔 − 𝜇8𝜔2 − 𝜇9𝜔3 + 𝜇10𝜔4 + 𝜇11𝜔5;                                              (8) 

𝑁0 = 𝛼0 − 𝛼1𝜔 − 𝛼2𝜔2 + 𝛼3𝜔3 + 𝛼4𝜔4 − 𝛼5𝜔6;                                                (9) 

𝑁1 = 𝛼6 + 𝛼7𝜔 − 𝛼8𝜔2 − 𝛼9𝜔3 + 𝛼10𝜔4 + 𝛼11𝜔5;                                          (10) 

𝜇0 = 𝛼0 = 2𝑐1∗𝑐2∗𝑐1𝑖;  𝜇1 = 𝛼1 = (2𝑏𝐹𝑐2∗ + 𝑏𝑆𝑐1∗)𝑐2𝑖; 𝜇2

= (𝑐1∗𝑀4 + 𝑏𝐹𝑏𝑆 + 2𝑐2∗𝑀1)𝑐1𝑖 + 2𝑐1∗𝑐2∗(𝑚𝑖 + 𝑢𝑖
2(𝑥1)𝑀1) − 𝑢𝑖(𝑥)𝑚𝑖(𝑢𝑖(0) + 𝑢𝑖(𝐿))); 

𝜇3 = 𝛼3 = (𝑏𝐹𝑀4 + 𝑏𝑆𝑀1)𝑐2𝑖; 𝜇4 = ∆𝑐1𝑖 + 𝑀1𝑢𝑖
2(𝑥1)𝑏𝐹𝑏𝑆 + 𝑢𝑖

2(𝑥1)∆𝑐1∗ + 

+(1 + 𝑢𝑖(𝑥)(𝑢𝑖(0) + 𝑢𝑖(𝐿)))𝑚𝑖(𝑀4𝑐1∗ + 𝑏𝐹𝑏𝑆 + 2𝑐2∗𝑀1); 𝜇5 = ∆𝑚𝑖(1 + 𝑢𝑖(𝑥)(𝑢𝑖(0) + 𝑢𝑖(𝐿)); 

𝜇6 = 𝛼6 = 2𝑐1∗𝑐2∗𝑐2𝑖; 𝜇7 = 𝛼7 = (2𝑏𝐹𝑐2∗ + 𝑏𝑆𝑐1∗)𝑐1𝑖; 𝜇8 = 𝛼8 = (𝑐1∗𝑀4 + 𝑏𝐹𝑏𝑆 + 2𝑐2∗𝑀1)𝑐2𝑖; 

𝜇9 = (𝑏𝐹𝑀4 + 𝑏𝑆𝑀1)𝑐1𝑖 + (𝑚𝑖 + 𝑢𝑖
2(𝑥1)𝑀1 + 𝑢𝑖(𝑥)𝑚𝑖(𝑢𝑖(0) + 𝑢𝑖(𝐿)))(𝑐1∗𝑏𝑆 + 2𝑐2∗𝑏𝐹); 𝜇10 = 𝛼10 = ∆𝑐2𝑖; 

𝜇11 = 𝑢𝑖
2(𝑥1)𝑏𝐹∆ + (1 + 𝑢𝑖(𝑥)(𝑢𝑖(0) + 𝑢𝑖(𝐿)))𝑚𝑖(𝑀4𝑏𝐹 + 𝑏𝑆𝑀1); 

𝛼2 = (𝑐1∗𝑀4 + 𝑏𝐹𝑏𝑆 + 2𝑐2∗𝑀1)𝑐1𝑖 + 2𝑐2∗𝑐1∗(𝑚𝑖 + 𝑢𝑖
2(𝑥1)𝑀1); 

𝛼4 = ∆𝑐1𝑖 + 𝑚𝑖(𝑀4𝑐1∗ + 𝑏𝐹𝑏𝑆 + 2𝑐2∗𝑀1) + 𝑢𝑖
2(𝑥1)𝑐1∗∆ + 𝑢𝑖

2(𝑥1)𝑏𝐹𝑏𝑆𝑀1. 
𝛼5 = 𝑚𝑖∆; 𝛼9 = (𝑏𝐹𝑀4 + 𝑏𝑆𝑀1)𝑐1𝑖 + (2𝑏𝐹𝑐2∗ + 𝑏𝑆𝑐1∗)(𝑚𝑖 + 𝑢𝑖

2(𝑥1)𝑀1); 
𝛼11 = 𝑚𝑖(𝑏𝐹𝑀4 + 𝑏𝑆𝑀1) + 𝑢𝑖

2(𝑥1)𝑏𝐹∆; ∆= 𝑀1𝑀4 − 𝑀2𝑀3. 
 

Since it is of practical importance that the 

absolute accelerations of the rod points, determined 

from the expression of the transfer function (6) in the 

dynamic reducing of vibrations, reach a minimum 

value, we will test this function to a minimum. 

The absolute value of the transfer function (6) 

depends on the variables 𝜔 and 𝑞𝑚𝑎. 

|𝑊𝑖(𝑗𝜔, 𝑞𝑚𝑎 , 𝑥)| = Ф𝑖(𝜔, 𝑞𝑚𝑎 , 𝑥) = √
𝐸0

2 + 𝐸1
2

𝑁0
2 + 𝑁1

2 . (11) 

The following equations can be generated that 

allow the determination of stationary points: 

 

𝜕Ф𝑖

𝜕𝑞𝑚𝑎
= Ф𝑖[

𝐸0(𝐸0)𝑞𝑚𝑎
′ + 𝐸1(𝐸1)𝑞𝑚𝑎

′

𝐸0
2 + 𝐸1

2 −
𝑁0(𝑁0)𝑞𝑚𝑎

′ + 𝑁1(𝑁1)𝑞𝑚𝑎
′

𝑁0
2 + 𝑁1

2 ].                                   (12) 

𝜕Ф𝑖

𝜕𝜔
= Ф𝑖[

𝐸0(𝐸0)𝜔
′ + 𝐸1(𝐸1)𝜔

′

𝐸0
2 + 𝐸1

2 −
𝑁0(𝑁0)𝜔

′ + 𝑁1(𝑁1)𝜔
′

𝑁0
2 + 𝑁1

2 ].                                         (13) 

 

We define second-order partial derivatives from 

(12) and (13). 

 

 

𝜕2Ф𝑖

𝜕𝑞𝑚𝑎𝜕𝜔
=

𝜕2Ф𝑖

𝜕𝜔𝜕𝑞𝑚𝑎
= Ф𝑖[

((𝐸0)𝜔
′ (𝐸0)𝑞𝑚𝑎

′ + 𝐸0(𝐸0)𝑞𝑚𝑎𝜔
′′ + (𝐸1)𝜔

′ (𝐸1)𝑞𝑚𝑎
′ +

(𝐸0
2 + 𝐸1

2)2
 

+𝐸1(𝐸1)𝑞𝑚𝑎𝜔
′′ )(𝐸0

2 + 𝐸1
2) − 2(𝐸0(𝐸0)𝑞𝑚𝑎

′ + 𝐸1(𝐸1)𝑞𝑚𝑎
′ )(𝐸0(𝐸0)𝜔

′ + 𝐸1(𝐸1)𝜔
′ )

 



Impact Factor: 

ISRA (India)        = 6.317 

ISI (Dubai, UAE) = 1.582 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.126  

ESJI (KZ)          = 9.035 

SJIF (Morocco) = 7.184 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

Philadelphia, USA  229 

 

 

−
((𝑁0)𝜔

′ (𝑁0)𝑞𝑚𝑎
′ + 𝑁0(𝑁0)𝑞𝑚𝑎𝜔

′′ + (𝑁1)𝜔
′ (𝑁1)𝑞𝑚𝑎

′ + 𝑁1(𝑁1)𝑞𝑚𝑎𝜔
′′ )(𝑁0

2 + 𝑁1
2) −

(𝑁0
2 + 𝑁1

2)2
 

−2(𝑁0(𝑁0)𝑞𝑚𝑎
′ + 𝑁1(𝑁1)𝑞𝑚𝑎

′ )(𝑁0(𝑁0)𝜔
′ + 𝑁1(𝑁1)𝜔

′ )
] + 

+
𝜕Ф𝑖

𝜕𝜔
[
𝐸0(𝐸0)𝑞𝑚𝑎

′ + 𝐸1(𝐸1)𝑞𝑚𝑎
′

𝐸0
2 + 𝐸1

2 −
𝑁0(𝑁0)𝑞𝑚𝑎

′ + 𝑁1(𝑁1)𝑞𝑚𝑎
′

𝑁0
2 + 𝑁1

2 ];                                      (14) 

𝜕2Ф𝑖

𝜕𝑞𝑚𝑎
2

= Ф𝑖[
(((𝐸0)𝑞𝑚𝑎

′ )2 + 𝐸0(𝐸0)𝑞𝑚𝑎𝑞𝑚𝑎
′′ + ((𝐸1)𝑞𝑚𝑎

′ )2 + 𝐸1(𝐸1)𝑞𝑚𝑎𝑞𝑚𝑎
′′ ) ×

(𝐸0
2 + 𝐸1

2)2
 

× (𝐸0
2 + 𝐸1

2) − 2(𝐸0(𝐸0)𝑞𝑚𝑎
′ + 𝐸1(𝐸1)𝑞𝑚𝑎

′ )
2

−
(((𝑁0)𝑞𝑚𝑎

′ )2 + 𝑁0(𝑁0)𝑞𝑚𝑎𝑞𝑚𝑎
′′

(𝑁0
2 + 𝑁1

2)2
 

+((𝑁1)𝑞𝑚𝑎
′ )

2
+ 𝑁1(𝑁1)𝑞𝑚𝑎𝑞𝑚𝑎

′′ )(𝑁0
2 + 𝑁1

2) − 2(𝑁0(𝑁0)𝑞𝑚𝑎
′ + 𝑁1(𝑁1)𝑞𝑚𝑎

′ )
2

] + 

+
𝜕Ф𝑖

𝜕𝑞𝑚𝑎

[
𝐸0(𝐸0)𝑞𝑚𝑎

′ + 𝐸1(𝐸1)𝑞𝑚𝑎
′

𝐸0
2 + 𝐸1

2 −
𝑁0(𝑁0)𝑞𝑚𝑎

′ + 𝑁1(𝑁1)𝑞𝑚𝑎
′

𝑁0
2 + 𝑁1

2 ] ;                           (15) 

𝜕2Ф𝑖

𝜕𝜔2
= Ф𝑖[

(((𝐸0)𝜔
′ )2 + 𝐸0(𝐸0)𝜔𝜔

′′ + ((𝐸1)𝜔
′ )2 + 𝐸1(𝐸1)𝜔𝜔

′′ )(𝐸0
2 + 𝐸1

2) −

(𝐸0
2 + 𝐸1

2)2
 

−2(𝐸0(𝐸0)𝜔
′ + 𝐸1(𝐸1)𝜔

′ )2

−
(((𝑁0)𝜔

′ )2 + 𝑁0(𝑁0)𝜔𝜔
′′ + ((𝑁1)𝜔

′ )2 +

(𝑁0
2 + 𝑁1

2)2
 

+𝑁1(𝑁1)𝜔𝜔
′′ )(𝑁0

2 + 𝑁1
2) − 2(𝑁0(𝑁0)𝜔

′ + 𝑁1(𝑁1)𝜔
′ )2

] + 

+
𝜕Ф𝑖

𝜕𝜔
[
𝐸0(𝐸0)𝜔

′ + 𝐸1(𝐸1)𝜔
′

𝐸0
2 + 𝐸1

2 −
𝑁0(𝑁0)𝜔

′ + 𝑁1(𝑁1)𝜔
′

𝑁0
2 + 𝑁1

2 ].                                               (16) 

 

The stationary values of the variables 𝑞𝑚𝑎va 𝜔 

are determined from the following system of 

equations: 

𝜕Ф𝑖

𝜕𝑞𝑚𝑎
= 0;  

𝜕Ф𝑖

𝜕𝜔
= 0.                         (17) 

For Ф𝑖 ≠ 0,  
 

𝐸0(𝐸0)𝑞𝑚𝑎
′ + 𝐸1(𝐸1)𝑞𝑚𝑎

′

𝐸0
2 + 𝐸1

2 −
𝑁0(𝑁0)𝑞𝑚𝑎

′ + 𝑁1(𝑁1)𝑞𝑚𝑎
′

𝑁0
2 + 𝑁1

2 = 0.                                          (18) 

𝐸0(𝐸0)𝜔
′ + 𝐸1(𝐸1)𝜔

′

𝐸0
2 + 𝐸1

2 −
𝑁0(𝑁0)𝜔

′ + 𝑁1(𝑁1)𝜔
′

𝑁0
2 + 𝑁1

2 = 0.                                                  (19) 

 

Based on the above results and the theorem that 

a function of two known variables has a minimum can 

be defined for the absolute value of the transfer 

function as follows: 

If the variables 𝑞𝑚𝑎 and 𝜔 satisfy system of 

equations (17) and 

𝜕2Ф𝑖

𝜕𝑞𝑚𝑎
2

> 0,
𝜕2Ф𝑖

𝜕𝜔2
> 0,                       (20) 

along with satisfying inequalities 

𝜕2Ф𝑖

𝜕𝑞𝑚𝑎
2

𝜕2Ф𝑖

𝜕𝜔2
− (

𝜕2Ф𝑖

𝜕𝑞𝑚𝑎𝜕𝜔
)2 > 0,                     (21) 

satisfy the inequalities, then the absolute value of the 

transfer function reaches a minimum at these values 

of the variable. 

The dynamics of hysteresis type elastic 

dissipative characteristic rod and the liquid section 

dynamic absorber were studied on the basis of the 

following numerical values of the design parameters: 

the rod material is an alloy of aluminum AL 19, 

the mechanical characteristic of which is taken to be 

𝐸 = 6964119 ⋅ 104  
𝑁

𝑚2 , 𝜌 = 2780 
𝑘𝑔

𝑚3. Geometric 

dimensions of the rod: height is 𝑧 = ℎ = 5 ∙ 10−4 𝑚, 

length is 𝐿 = 120 ∙ 10−2𝑚, cross-sectional area is 

𝐴 = 12 ∙ 10−6𝑚2. In this case 𝐼 =
𝐴ℎ2

12
= 25 ∙

10−14𝑚4. 
Instructions for selecting the parameters of liquid 

section dynamic absorber are available in the work 

[13]. Based on this, the parameters accepted the 

following values when performing calculations:𝑏𝑆 =

102.9 ∙ 103 𝑁∙𝑠

𝑚
; 𝑚4∗ = 4.1 ∙ 10−3 𝑘𝑔; 𝑚𝑣 = 4.1 ∙

10−6 𝑘𝑔; 𝑚2∗ = 4.5 ∙ 10−6𝑘𝑔; 𝑚1 = 1.3 ∙
10−3 𝑘𝑔;  𝑚3 = 2.7 ∙ 10−3𝑘𝑔.  

In order to determine the coefficients related to 

the dissipative properties, taking into account the 

relationship between stress and strain in the AL19 

aluminum alloy rod material under consideration, 

based on the numerical values given in the handbooks 

and using the method given in [16].  

𝛿(𝜉∗ = 𝑞𝑚𝑎) = 𝜒1𝑞𝑚𝑎 + ⋯ + 𝜒𝑛𝑞𝑚𝑎
𝑛 ,            (22) 

We first determine the following three terms of 

the logarithmic decrement coefficients [17]: 

𝜒1 = 10.6662475; 𝜒2 = −55.22539871 ∙ 102; 
𝜒2 = 10.43466067 ∙ 105. 
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This defined logarithmic decrement expression 

(22) allows us to determine the variability in the 

absorption factor. Based on this, we write the 

absorption factor follows [17]: 

 

𝜓(𝜉∗ = 𝑞𝑚𝑎) = 𝐶0 + 𝐶1 |
𝜕2𝑢𝑚

𝜕𝑥2
| 𝑞𝑚𝑎𝑧 + ⋯ + 𝐶𝑛 (|

𝜕2𝑢𝑚

𝜕𝑥2
| 𝑞𝑚𝑎𝑧)

𝑛

.                              (23)  

 

We know that there is the following relationship 

between the absorption factor and the vibration 

decrement [17]: 𝜓(𝜉∗) = 2𝛿(𝜉∗).  
For the values of the second-order derivative 

obtained from the first mode shape at the point which 

liquid section dynamic absorber is set, these 

coefficients assume the following values: 𝐶0 =
0; 𝐶1 = 48.12119136 ∙ 102; 𝐶2 = −56.20284398 ∙
107; 
𝐶3 = 23.95479624 ∙ 1012. 

We get the coefficients 𝜂1 and 𝜂22 as follows 

[18]: 𝜂1  =
3

4
; 𝜂22  =

1

𝜋
. 

As a result, the expressions 𝑐1𝑖 and 𝑐2𝑖  are as 

follows:𝑐11 = 𝜌𝐴𝜔∗1
2 ∫ 𝑢1

2𝑑𝑥
0.6

0
− 3𝐸𝐼𝜂1(𝐺1 + 𝐺2 +

𝐺3); 𝑐21 = 3𝐸𝐼𝜂22(𝐺1 + 𝐺2 + 𝐺3),            
where 

𝐺1 = 𝐶1

ℎ

8
𝑞1𝑎 ∫ 𝑢1

𝜕2

𝜕𝑥2
(

𝜕2𝑢1

𝜕𝑥2
|
𝜕2𝑢1

𝜕𝑥2
| ) 𝑑𝑥

0.6

0

; 

𝐺2 = 𝐶2

ℎ2

20
𝑞1𝑎

2 ∫ 𝑢1

𝜕2

𝜕𝑥2
(

𝜕2𝑢1

𝜕𝑥2
|
𝜕2𝑢1

𝜕𝑥2
|

2

) 𝑑𝑥

0.6

0

; 

𝐺3 = 𝐶3

ℎ3

48
𝑞1𝑎

3 ∫ 𝑢1

𝜕2

𝜕𝑥2
(

𝜕2𝑢1

𝜕𝑥2
|
𝜕2𝑢1

𝜕𝑥2
|

3

) 𝑑𝑥

0.6

0

. 

If we calculate the integrals 𝐺1, 𝐺2, 𝐺3, they are: 

𝐺1 = 230.3833425𝑞1𝑎; 𝐺2 = −69232.74335𝑞1𝑎
2 ; 

𝐺3 = 8019069.423𝑞1𝑎
3 . 𝑐11 = 1.031053156 −

9.024845694𝑞1𝑎 + 2712.06598𝑞1𝑎
2 −

314132.3646𝑞1𝑎
3 ; 𝑐21 = 3.830263476𝑞1𝑎 −

1151.036552𝑞1𝑎
2 + 133321.9163𝑞1𝑎

3 . 

Based on the determined values, we will plot a 

graph of the transfer function. 

 

 

 
Figure 1. Graph of the transfer function 

 

Analyzing these results, the graphs с1∗ stiffness 

and 𝑏𝐹  damping coefficient in the graph in Fig. 1 are 

infinitely large (red) and 𝑐1∗ = 105 𝑁

𝑚
; 𝑏𝐹 = 105 𝑁∙𝑠

𝑚
 

(green), changing of transfer function depending on 

amplitude and frequency is described. The results of 

the analysis show that when с1∗ stiffness and 𝑏𝐹  

damping coefficient are infinitely large, spring with 

с1∗ stiffness and damper can be considered as a solid. 

This means that in this case the spring and 

damper are removed from the physical model of liquid 

section dynamic absorber. The result obtained 

therefore represents a graph of the transfer function of 

a new physical model of liquid section dynamic 

absorber mounted directly on rod with body 

surrounding liquid. 

From this graph, when evaluating the efficiency 

of both liquid section dynamic absorbers above, it can 

be seen that the liquid section dynamic absorber with 

с1∗ stiffness and damper is effective. 

 

Conclusion  

1. The defined transfer function allows to 

analyze the dynamics of the vibration of  hysteresis 

type elastic dissipative characteristic rod in 

conjunction with liquid section dynamic absorber 

under the influence of harmonic excitations at 

different values of the system parameters. 

2. From the given theorem the variables and 

system parameters for which the absolute value of the 

transfer function is minimized are necessary. As a 

result, it allows the practical design of a system 
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consisting of hysteresis type elastic dissipative 

characteristic rod and liquid section dynamic 

absorber. 
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