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Introduction 

In [2] the foundations of a Riemannian geometry 

on W(𝑀) have been defined (cf. also [3]). This leads 

to an extension of the initial notion of tangent 

space.This work is an attempt to approximate 

systematically the geometrical objects on the path 

space by finite dimensional ones. This procedure 

justifies a posteriori and in some sense the choice of 

the Markovian connection. In particular, it allows to 

construct a process on the frame bundle of the path 

space which corresponds to the lift of the Ornstein–

Ulhenbeck–Driver–Röckner process. The lifted 

process plays a crucial role in the development of the 

stochastic calculus of variations on the path space [4]. 

For other finite dimensional approaches to analysis 

and geometry on path spaces we refer to [5,6,7,8]. 

We give the basic definitions of differential 

geometry on the path space. We construct the finite 

dimensional geometrical objects based on finite 

partitions of the time interval and in particular we 

construct a discretized version of Markovian 

connection. We prove the finite dimensional version 

of the intertwinning formula for the derivative 

(Theorem (6.1.8)) and the finite dimensional 

integration by parts formula (Theorem (6.1.11)). As 

the mesh of the partitions goes to zero, we derive in 

an independent way, correspondingly, statement 2.6 

of [2] and Bismut’s formula. We devoted to finite 

dimensional approximation of the Ornstein–

Uhlenbeck operator, associated process and 

corresponding semigroup. 

Let (𝑀, 〈⋅,⋅〉𝑚) be a compact Riemannian 

manifold of dimension 𝑑, where 〈⋅,⋅〉𝑚 is the 

Riemannian metric. On this Riemannian manifold we 

consider the Levi–Civita connection associated with 
〈⋅,⋅〉𝑚.  Let O(𝑀) denote the bundle of orthogonal 

frames over M, namely 

 

O(𝑀) ∶= {(𝑚, 𝑟): 𝑟 is a Euclidean isometry from ℝ𝑑 into 𝑇𝑚(𝑀),𝑚 ∈ 𝑀}. 
 

Then O(𝑀) is a parallelized manifold. 

Definition (1.1): (Tangent Space):  Let 𝜎 ∈

𝐻(𝑛)(𝑀),𝑏 = 𝐼𝑛
−1(𝜎), 𝑟 the horizontal lift of 𝜎. For 

𝑧 ∈ 𝐻, then 𝑍(𝑠) ∶= 𝑡𝑠←0
𝜎 (𝑧(𝑠)) ∈ 𝑇𝜎𝐻

(𝑛)(𝑀) if and 

only if 

�̈�(𝑠) = Ω𝑟(𝑠) (�̇�(𝑠), 𝑧(𝑠)) �̇�(𝑠)    𝑜𝑛   𝐼 ∖P. 

This tangent space is inherited from the tangent 

space of the Gaussian vector space 𝐻(𝑛) through the 
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Itô mapping 𝐼𝑛 (cf. [6, Proposition 4.4]). 

Let 𝑀(𝑛) ∶= 𝑀𝑛  and 𝜋𝑛
𝑊 ∶ 𝑊(𝑀) ⟼

𝑀(𝑛) (𝑟𝑒𝑠𝑝.  𝜋𝑛
𝑋 ∶ 𝑋 ⟼ 𝐻(𝑛)) denote the projection 

𝜋𝑛
𝑊(𝑝) ∶= (𝑝(𝑠1), … , 𝑝(𝑠𝑛));    

(𝑟𝑒𝑠𝑝.  𝜋𝑛
𝑋(𝑏) ∶= (𝑏(𝑠1),… , 𝑏(𝑠𝑛))). 

On this space there is a natural tangent space 

𝑇(𝑀(𝑛)) = 𝑇(𝑀)𝑛 which is different from the 

previous one on 𝐻(𝑛)(𝑀). We shall establish a 

relation between these two tangent spaces. 

We can endow 𝐻(𝑛)(𝑀), with a Gaussian 

measure 𝑣𝑛 such that 𝑣𝑛 ∘ 𝐼𝑛 = 𝜇𝑛 , where 𝜇𝑛 = 𝜇 ∘
(𝜋𝑛

𝑋)−1 is the finite dimensional Gaussian measure on 

𝐻(𝑛). 
For  휀 ∈ [0,1], let    

 

𝑀𝜀
(𝑛) ∶= {𝑣 ∈ 𝑀(𝑛) ∶ 𝑑(𝑣𝑖, 𝑣𝑖+1) < 휁𝜀 ,    𝑓𝑜𝑟    𝑖 = 0,1, … , 𝑛 − 1},         

𝐻𝜀
(𝑛)(𝑀) ∶= {𝜎 ∈ 𝐻(𝑛)(𝑀) ∶ ∫ |�̇�(𝑠)|𝑑𝑠

𝑠𝑖+1

𝑠𝑖

< 휁𝜀 ,    𝑓𝑜𝑟    𝑖 = 0,1,… , 𝑛 − 1}, 

𝐻𝜀
(𝑛) ∶= {𝑧 ∈ 𝐻(𝑛) ∶ ‖∆𝑖𝑧‖ < 휁𝜀 ,    𝑓𝑜𝑟    𝑖 = 0,1,… , 𝑛 − 1},               

 

where 

휁𝜀 ∶= 휀(𝜌 ∧ 4 𝐾Ω⁄ )                         (1.1) 
and 𝜌 is the injectivity radius of 𝑀, 𝐾Ω =
𝑠𝑢𝑝𝑟∈𝑂(𝑀)‖Ω𝑟‖ < ∞. 

𝑀𝜀
(𝑛)

 is an open subset of 𝑀(𝑛) and therefore is 

a differentiable manifold. We  associate to 𝑣 ∈ 𝑀𝜀
(𝑛)

 

the piecewise geodesic curve 𝜎𝑣 defined by linking 

the points 𝑣𝑖 , 𝑣𝑖+1 by the minimizing geodesic. For 

𝑣 ∈ 𝑀𝜀
(𝑛), we consider the map 

[Θ𝑣
(𝑛)]

−1
∶ 𝐻(𝑛)⟼ 𝑇𝑣(𝑀𝜀

(𝑛)) 

given by 𝑍(𝑠𝑖):= 𝑡𝑠𝑖←0
𝜎𝑣 (𝑧(𝑠𝑖)) ∈ 𝑇𝑣𝑖(𝑀),  

𝑖 = 1,… , 𝑛, where 𝑧 ∈ 𝐻(𝑛). Then Θ
(𝑛)

 defines a 

parallelism on 𝑀𝜀
(𝑛)

. 

Definition (1.2):  For any smooth vector fields 

𝑌, 𝑍 ∈ 𝑇(𝑀𝜀
(𝑛)), put 

𝑑

𝑑𝑠
(∇𝑌

(𝑛)𝑍)
𝛼
(𝑣, 𝑠−) ∶= D𝑌

(𝑛)�̇�𝛼(𝑠−)

+ ∫ Ω𝛾𝜆𝛽
𝛼 (𝜎𝑣(𝜏))𝑦

𝛾(𝜏)𝑑[𝐼𝑛
−1(𝜎𝑣)]

𝜆(𝜏) ⋅ �̇�𝛽(𝑠−)
𝑠−

0

. 

Here for 𝑓 ∈ 𝐶∞(𝑀𝜀
(𝑛)) 

(D𝑠,𝛼
(𝑛)𝑓)(𝑣) ∶=∑1𝑠<𝑠𝑘〈𝑡0←𝑠𝑘

𝜎𝑣 𝜕𝑘𝑓, 휀𝛼〉𝑚0

𝑛

𝑘=1

   

and 

D𝑌
(𝑛)𝑓 ∶= ∫ D𝑠,𝛼

(𝑛)𝑓 ⋅ �̇�𝛼(𝑠) 𝑑𝑠
1

0

= 

∑〈𝜕𝑘𝑓, 𝑌(𝑠𝑘)〉𝑣𝑘

𝑛

𝑘=1

= 𝑌𝑓. 

Heuristic path integrals such as those in Eq. 

(6.48)[12] have proven themselves useful and arise 

often in physics literature. Particularly, one can 

interpret this path integral as the path integral 

quantization of the Hamiltonian on 𝑀. Much of the 

current interest concerning path integrals in physics 

began with Feynman in [13] and has since grown 

deeply. The role of path integrals in quantum 

mechanics is surveyed by Gross in [14] and detailed 

more by Feynman and Hibbs in [15] as well as Glimm 

and Jaffe in [16]. 

 For the partition 𝒫 = {0 = 𝑠0 < 𝑠1 < ⋯ <
𝑠𝑛 = 1}, define the finite-dimensional subspace 

𝐻𝒫(𝑀) of  𝑊(𝑀) by 

 

𝐻𝒫(𝑀) = {𝜎 ∈ 𝑊(𝑀) ∶ 𝜎 is piecewise geodesic with respect to  𝒫}.                        (1.2) 
 

We make 𝐻𝒫(𝑀) into a Riemannian manifold 

by endowing it with the 𝐿2 metric 𝐺𝒫, defined by 

𝐺𝒫(𝑋, 𝑌) = ∫𝑔(𝑋(𝑠), 𝑌(𝑠))

1

0

𝑑𝑠 ,              (1.3) 

where we are making the natural identification of the 

tangent space 𝑇𝜎𝐻𝒫(𝑀) with the piecewise Jacobi 

fields along 𝜎 in 𝑀. From here we define the 

approximate Wiener measure 𝑣𝐺𝒫  on 𝐻𝒫(𝑀) by 

𝑑𝑣𝐺𝒫 =
1

𝑍𝐺𝒫
𝑒−

1
2∫ ‖𝜎′(𝑠)‖

2
𝑑𝑠

1
0 𝑑𝑉𝑜1𝐺𝒫 ,           (1.4) 

where 𝑉𝑜𝑙𝐺𝒫  is the Riemannian volume form given 

by 𝐺𝒫 and 𝑍𝐺𝒫 is a normalization constant which 

forces 𝑣𝐺𝒫  to be a probability measure in the case that 

𝑀 = ℝ𝑑. With the matrix ℒ𝒫 introduced below in Eq. 

(6.97)[12], 

𝑍𝐺𝒫 = √𝑑𝑒𝑡 ℒ𝒫∏(2𝜋∆𝑖𝑠)
𝑑 2⁄

𝑛

𝑖=1

.                (1.5) 

It is well known that the Wiener measure on 

𝑊(ℝ𝑑) is the law of an ℝ𝑑-valued Brownian motion, 

and conversely, the evaluation maps 𝑏𝑠(𝜔) = 𝜔(𝑠) 
on 𝑊(ℝ𝑑) are an ℝ𝑑-valued Brownian motion under 

the Wiener measure. 

In what follows we use the symbols 𝜇 and ν to 

denote the Wiener measures on 𝑊(ℝ𝑑) and 𝑊(𝑀) 
respectively. Although we will consider several 

probability spaces, the symbol 𝔼 will be used solely 

for expectation on the probability space (𝑊(ℝ𝑑), 𝜇). 
The piecewise approximation of Brownian 

motion with respect to the partition 𝒫 are the maps 

𝑏𝑠
𝒫 ∶ 𝑊(ℝ𝑑) → 𝐻𝒫(ℝ

𝑑) with 𝑠 ∈ [0, 1] given by 
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𝑏𝑠
𝒫 ∶=∑1𝐽𝑖(𝑠)

𝑛

𝑖=1

[∆𝑖𝑏
∆𝑖𝑠
(𝑠 − 𝑠𝑖−1) + 𝑏𝑠𝑖−1] .       (1.6) 

Here and forevermore ∆𝑖𝑏 = 𝑏𝑠𝑖 − 𝑏𝑠𝑖−1, and 

𝐽𝑖 = (𝑠𝑖−1 , 𝑠𝑖] when 𝑖 > 1 and 𝐽1 = [0, 𝑠1).  It is 

important to note that 𝑏𝑠|𝐻𝒫(ℝ𝑑) = 𝑏𝑠
𝒫|𝐻𝒫(ℝ𝑑). 

This is a convenient place to introduce the 

Cameron–Martin subspace 𝐻(𝑀) of the Wiener 

space, which is the collection of absolutely 

continuous paths with finite energy, 

 

𝐻(𝑀) = {𝜎 ∈ 𝑊(𝑀): 𝜎  is absolutely continuous,∫ ‖𝜎′(𝑠)‖2𝑑𝑠
1

0

< ∞}.                      (1.7) 

 

The Cameron–Martin space is a Hilbert space 

and (𝑖, 𝐻(ℝ𝑑),𝑊(ℝ𝑑)) is the prototype for an 

abstract Wiener space, where 𝑖 ∶ 𝐻(ℝ𝑑) → 𝑊(ℝ𝑑) is 
the canonical injection. 

The tangent space 𝑇𝜎𝐻𝒫(𝑀) is identified with 

the continuous piecewise Jacobi fields along 𝜎. 

We introduce the measure 𝑣𝑆𝒫  in Eq. (6.60) and 

𝜇𝑆𝒫  , where 𝜇𝑆𝒫  is simply realization of  𝑣𝑆𝒫  in the flat 

case 𝑀 = ℝ𝑑  .  

    

II. Preliminaries 

 
We consider the orthogonal basis of 𝐻(𝑛) 

defined in Theorem (6.1.24)[1], and the 

corresponding parallelized vector fields 𝐻𝑖,𝛼(𝑣, 𝑠) =

𝑡𝑠←0
𝜎𝑣 ℎ𝑖,𝛼. 

We denote by 𝐵𝑖,𝛼 the horizontal lift of 𝐻𝑖,𝛼  

through the Markovian connection ∇(𝑛)(cf. [10, 11]). 

Let 

⊿
𝑂(𝑀𝜀

(𝑛)
)
∶= −∑𝐵𝑖,𝛼𝐵𝑖,𝛼

𝛼,𝑖

+∑𝛿(𝑛) (𝐻𝑖,𝛼) ⋅ 𝐵𝑖,𝛼
𝛼,𝑖

. 

Then ⊿
𝑂(𝑀𝜀

(𝑛)
)
 is the lift of 𝐿(𝑛) to the frame 

bundle. 

Theorem (2.1):   For any 𝑓 ∈ 𝐶∞(𝑀𝜀
(𝑛)), we 

have  

⊿
𝑂(𝑀𝜀

(𝑛)
)
(𝑓 ∘ 𝜋) = (𝐿(𝑛)𝑓) ∘ 𝜋. 

Here 𝜋 is the bundle projection. 

Proof. It is a direct consequence of the identity 

𝐵𝑖,𝛼(𝑓 ∘ 𝜋) = (𝐻𝑖,𝛼𝑓) ∘ 𝜋. 

 For any vector field Z on 𝑀𝜀
(𝑛), we use 𝐹𝑍 to 

denote its scalarization, i.e. 𝐹𝑍(𝑟) = 𝑟
−1(𝑍) ∈ 𝐻(𝑛). 

Theorem (2.2):  The following commutation 

relation holds: 

⊿
𝑂(𝑀𝜀

(𝑛)
)
𝐹𝑍 = 𝐹∆(𝑛)𝑍 , 

where 

∆(𝑛)𝑍 ∶=∑∇ℎ𝑖,𝛼
(𝑛) ∇ℎ𝑖,𝛼

(𝑛) 𝑍

𝛼,𝑖

+ 𝛿(𝑛) (ℎ𝑖,𝛼)∇ℎ𝑖,𝛼
(𝑛) 𝑍. 

Proof. It is deduced from 𝐵𝑖,𝛼𝐹𝑍 = 𝐹∇ℎ𝑖,𝛼
(𝑛)

𝑍
.  

Now we define a Dirichlet form as follows: 

ℰ𝐻
(𝑛)(𝑍1, 𝑍2) = 𝐸

𝑣𝑛,𝜀 (∑〈∇ℎ𝑖,𝛼
(𝑛) 𝑍1, ∇ℎ𝑖,𝛼

(𝑛) 𝑍2〉𝑀𝜀
(𝑛)

𝛼,𝑖

) ,

𝑍1, 𝑍2 ∈ 𝑇(𝑀𝜀
(𝑛)). 

As a consequence of the relation 

Dℎ𝑖,𝛼
(𝑛) 〈𝑍1, 𝑍2〉𝑀𝜀

(𝑛) = 〈∇ℎ𝑖,𝛼
(𝑛) 𝑍1, 𝑍2〉𝑀𝜀

(𝑛)

+ 〈𝑍1, ∇ℎ𝑖,𝛼
(𝑛) 𝑍2〉𝑀𝜀

(𝑛) 

and integration by parts. 

Proposition (2.3):  For  𝑠 ∈ [0, ∆ ], 
      

         ‖𝑉𝑖+1
𝒫 (𝑠)𝑡𝑟𝑉𝑖+1

𝒫 (𝑠) − (∆ − 𝑠)2𝐼‖ ≤ 3(∆ − 𝑠)2 (cosh (2√𝐾𝑖
𝒫∆) cosh (8√𝐾𝑖+1

𝒫 ∆) − 1),            (2.1) 

‖𝑆𝑖
𝒫(𝑠)𝑡𝑟𝑆𝑖

𝒫(𝑠) − 𝑠2𝐼‖ ≤ 3𝑠2 (cosh (2√𝐾𝑖
𝒫∆) − 1)                                          (2.2) 

and 

               ‖𝑉𝑖+1
𝒫 (𝑠)𝑡𝑟𝑆𝑖+1

𝒫 (𝑠) − (∆ − 𝑠)𝑠𝐼‖   ≤ 3𝑠(∆ − 𝑠) (cosh (√𝐾𝑖
𝒫∆) cosh (5√𝐾𝑖+1

𝒫 ∆) − 1).         (2.3) 

 

Proof. We apply Lemma (6.2.19)[12]. For 

operators 𝐴 and 𝐵 and real numbers 𝑎 and 𝑏, 

𝐴𝑡𝑟𝐵 − 𝑎𝑏𝐼 = (𝐴𝑡𝑟 − 𝑎𝐼)(𝐵 − 𝑏𝐼) + 𝑎(𝐵 − 𝑏𝐼)
+ 𝑏(𝐴𝑡𝑟 − 𝑎𝐼). 

The asserted inequalities now follow with 

judicious choices for 𝐴 and 𝐵 as well as Eqs. (3.6) and 

(3. 7) along with the fact that  𝑠/∆ ≤ 1.  

Applying Proposition (2.3) to Eqs (6.127)[12] 

and (6.128)[12] gives the estimates we need on ℛ𝒫 to 

continue forward. 

Proposition (2.4): Let 𝑌𝒫 be as in Eq. (6.177) 

[12], 𝜏𝒫 be as in Eq. (6.178) [12], and 𝜏𝐺 be as in Eq. 

(6.180)[12]. There is a constant C = C (d, curvature) 

< ∞ such that, 

∫ |𝑒𝑌𝒫(𝜔) − 𝑒−𝜏𝐺  ∫ 𝑆𝑐𝑎𝑙(𝜙(𝜔)(𝑠))
1
0 | 𝑑𝜇𝑆𝒫(𝜔)

 

𝐻𝒫
𝜀 (ℝ𝑑)

≤ 

𝐶 (√|𝜏𝒫 − 𝜏𝐺| + ∆
1 4⁄ ).     (2.4) 

 

Proof. Breaking the integrand into pieces we 

consider  
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𝑒𝑌𝒫(𝜔) − 𝑒−𝜏𝐺ℛ𝒫⏟          
𝐼

+ 𝑒−𝜏𝐺ℛ𝒫 − 𝑒−𝜏𝐺𝑆𝒫⏟          
𝐼𝐼

+ 𝑒−𝜏𝐺𝑆𝒫 − 𝑒−𝜏𝐺  ∫ 𝑆𝑐𝑎𝑙(𝜙(𝜔)(𝑠))
1
0⏟                  

𝐼𝐼𝐼

. 

Let Λ = Λ (curvature) < ∞ be given such that 

|𝑆𝑐𝑎𝑙| ≤ Λ. Then, 

|𝑒−𝜏𝐺ℛ𝒫 − 𝑒−𝜏𝐺𝑆𝒫| ≤ 𝑒𝜏𝐺Λ|𝑒−𝜏𝐺(ℛ𝒫−𝑆𝒫) − 1|. 

Now applying Lemma (6.2.48)[12] and Lemma 

(6.2.5)[12], 

 

∫ |𝐼𝐼|

 

𝐻𝒫
𝜀(ℝ𝑑)

≤ 𝑒𝜏𝐺Λ ∫ |𝑒−𝜏𝐺(ℛ𝒫−𝑆𝒫) − 1|

 

𝐻𝒫(ℝ
𝑑)

≤ 𝐶(𝑒𝐶∆ − 1)1 2⁄ . 

Similarly, with 

 

|𝑒−𝜏𝐺𝑆𝒫 − 𝑒−𝜏𝐺  ∫ 𝑆𝑐𝑎𝑙(𝜙(𝜔)(𝑠))
1
0 | ≤ 𝑒𝜏𝐺Λ (𝑒𝑥𝑝{𝜏𝐺 |𝑆𝒫 −∫𝑆𝑐𝑎𝑙(𝜙(𝜔)(𝑠))

1

0

𝑑𝑠|} − 1), 

 

another application of Lemma (6.2.48) [12] to the 

right-hand side along with Lemma (6.2.6) [12] gives 

∫|𝐼𝐼𝐼| ≤ 𝐶∆1 4⁄ . 
What remains then is to bound ∫|𝐼|. To start, we 

will assume that 𝛬 is also a bound on Ric so that 

 |〈𝑅𝑖𝑐𝑢(𝑠𝑖−1)∆𝑖𝑏, ∆𝑖𝑏〉| ≤ Λ‖∆𝑖𝑏‖
2 for each 𝑖 =

1, 2, . . . , 𝑛. From here, 

𝜏𝐺ℛ𝒫 + 𝑌𝒫 = (𝜏𝐺 − 𝜏𝒫)ℛ𝒫 + 𝜏𝒫𝜕ℛ𝒫 

where 

𝜕ℛ𝒫 ∶= 〈𝑅𝑖𝑐𝑢(𝑠0)∆1𝑏, ∆1𝑏〉

+ 〈𝑅𝑖𝑐𝑢(𝑠𝑛−2)∆𝑛−1𝑏, ∆𝑛−1𝑏〉

+ 〈𝑅𝑖𝑐𝑢(𝑠𝑛−1)∆𝑛𝑏, ∆𝑛𝑏〉. 

Using the bounds 

 

|ℛ𝒫| ≤ Λ∑‖∆𝑖𝑏‖
2

𝑛

𝑖=1

 𝑎𝑛𝑑  |𝜕ℛ𝒫| ≤ Λ(‖∆1𝑏‖
2 + ‖∆𝑛−1𝑏‖

2 + ‖∆𝑛𝑏‖
2) 

 

along with Eq. (3. 4), Eq. (6.200) in Lemma 

(6.2.46)[12], and Theorem (6.2.4)[12] we have 

 

∫ 𝑒2𝜏𝐺|ℛ𝒫|𝑑𝜇𝑆𝒫

 

𝐻𝒫
𝜀(ℝ𝑑)

≤ 2𝜏𝐺Λ∑𝔼[‖∆𝑖𝑏‖
2𝑒2𝜏𝐺Λ

∑ ‖∆𝑗𝑏‖
2𝑛

𝑗=1 ]

𝑛

𝑖=1

+ 1 ≤ 𝐶.                             (2.5) 

 

Along these same lines, from Eq. (6.200)[12], 

 

∫ |(𝜏𝐺 − 𝜏𝒫)ℛ𝒫|𝑒
|(𝜏𝐺−𝜏𝒫)ℛ𝒫+𝜏𝒫𝜕ℛ𝒫|𝑑𝜇𝑆𝒫

 

𝐻𝒫
𝜀 (ℝ𝑑)

≤ 𝔼[|(𝜏𝐺 − 𝜏𝒫)ℛ𝒫|𝑒
|(𝜏𝐺−𝜏𝒫)ℛ𝒫+𝜏𝒫𝜕ℛ𝒫|]

≤ |𝜏𝐺 − 𝜏𝒫|Λ∑𝔼[‖∆𝑖𝑏‖
2𝑒2Λ

∑ ‖∆𝑗𝑏‖
2𝑛

𝑗=1 ]

𝑛

𝑖=1

≤ 𝐶(|𝜏𝐺 − 𝜏𝒫|), 

 

and arguing similarly using Eq. (6.199)[12], 

 

∫ |𝜏𝒫𝜕ℛ𝒫|𝑒
|(𝜏𝐺−𝜏𝒫)ℛ𝒫+𝜏𝒫𝜕ℛ𝒫|𝑑𝜇𝑆𝒫

 

𝐻𝒫
𝜀 (ℝ𝑑)

≤ 𝔼[|𝜏𝒫𝜕ℛ𝒫|𝑒
|(𝜏𝐺−𝜏𝒫)ℛ𝒫+𝜏𝒫𝜕ℛ𝒫|] ≤ 𝐶𝛥. 

 

In particular, 

𝔼[|(𝜏𝐺 − 𝜏𝒫)ℛ𝒫 + 𝜏𝒫𝜕ℛ𝒫|𝑒
|(𝜏𝐺−𝜏𝒫)ℛ𝒫+𝜏𝒫𝜕ℛ𝒫|] ≤ 𝐶(|𝜏𝐺 − 𝜏𝒫| + ∆).                           (2.6) 

 

With Eqs. (6.182)[12] and (3. 4), Lemma 

(6.2.48)[12] implies ∫|𝐼| ≤ 𝐶(|𝜏𝐺 − 𝜏𝒫| + ∆)
1 2⁄ . 

Combining the bounds on ∫|𝐼| , ∫|𝐼𝐼|, and ∫|𝐼𝐼𝐼| 
concludes the proof. 

 

III. Claims 

Definition (3.1):  On 𝑀𝜀
(𝑛)

 a Riemannian metric 

is defined by the condition that Θ𝑣
(𝑛)

 is an isometry of  

𝑇𝑣(𝑀𝜀
(𝑛)) onto 𝐻(𝑛). 
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Hereafter, we shall use 〈⋅,⋅〉
𝑀𝜀
(𝑛)  or simply 〈⋅,⋅〉 to 

denote this metric.    

Note that under the map 𝜋𝑛
𝑊, 𝐼𝑛 , we can identify 

𝑀𝜀
(𝑛), 𝐻𝜀

(𝑛)(𝑀) and 𝐻𝜀
(𝑛). In particular, we have 

𝑑(𝑣𝑖, 𝑣𝑖+1) = ∫ |�̇�𝑣(𝑠)|𝑑𝑠
𝑠𝑖+1

𝑠𝑖

= ‖∆𝑖𝑏𝑣‖, 

where �̇�𝑣(𝑠) = 𝑡0←𝑠
𝜎𝑣 �̇�𝑣(𝑠). It is sometimes convenient 

not to distinguish 𝑀𝜀
(𝑛)

 and 𝐻𝜀
(𝑛)(𝑀). 

We define the following Markovian connection 

which is compatible with 〈⋅,⋅〉
𝑀𝜀
(𝑛)  on the finite 

manifold 𝑀𝜀
(𝑛)

 

Theorem (3.2):  For every vector field 

𝑧:𝑀𝜀
(𝑛)⟼𝐻(𝑛) such that 𝑧𝛼(𝑠𝑖) ∈ 𝐶𝑟

1(𝑀𝜀
(𝑛)) for 

𝛼 = 1,… , 𝑑, 𝑖 = 1,… , 𝑛, we have 

∫ 𝐷𝑧
(𝑛)𝑓 𝑑𝑣𝑛,𝜀

 

𝑀𝜀
(𝑛)

= ∫ 𝑓 ⋅ 𝛿(𝑛)𝑧 𝑑𝑣𝑛,𝜀 ,
 

𝑀𝜀
(𝑛)

 

where 

 

(𝛿(𝑛)𝑧)(𝜎) = ∑∫ �̇�𝛼(𝑡−)𝑑[𝐼𝑛
−1(𝜎)]𝛼(𝑡)

1

0𝛼

−∫ 𝐷𝑡,𝛼
𝑋 �̇̂�𝛼(𝑡−)𝑑𝑡

1

0

−
2𝐷𝑧

(𝑛)�̂�𝑛
�̂�𝑛

                         (3.1) 

 

and �̂� is given in (6.9)[1]. 

Proof. The idea of the proof is to push back all 

divergence computations to the flat finite dimensional 

Gaussian vector space 𝐻(𝑛). 

For any 𝑓 ∈ 𝐶𝑟
∞(𝑀𝜀

(𝑛)), we have 

 

∫ 𝐷𝑧
(𝑛)
𝑓 𝑑𝑣𝑛,𝜀

 

𝑀𝜀
(𝑛)

= ∫ 𝐷𝑧
(𝑛)
𝑓 ⋅ �̂�𝑛

2𝑑𝑣𝑛

 

𝐻𝜀
(𝑛)(𝑀)

   = ∫ 𝐷𝑧
(𝑛)(𝑓 ⋅ �̂�𝑛

2)𝑑𝑣𝑛

 

𝐻𝜀
(𝑛)(𝑀)

−∫ 𝑓𝐷𝑧
(𝑛)
�̂�𝑛
2𝑑𝑣𝑛

 

𝐻𝜀
(𝑛)(𝑀)

.  

 
 

The function (𝑓 ⋅ �̂�𝑛
2) ∘ 𝐼𝑛 belongs to 𝐶∞(𝐻(𝑛)). 

We define  

𝜙𝑛 ∈ 𝐶
∞(𝐻(𝑛)) satisfying 

{
𝜑𝑛(𝑏) = 1,   𝑏 ∈ 𝐻𝜀

(𝑛),

𝜑𝑛(𝑏) = 0,   𝑏 ∉ 𝐻𝜀′′
(𝑛),
                   (3.2) 

where 휀′ < 휀 < 휀′′, 𝐻
𝜀′
(𝑛) ⊂ 𝐻𝜀

(𝑛) ⊂ 𝐻
𝜀′′
(𝑛)

. Then 𝜙𝑛 ⋅

�̂� is a vector field on 𝐻(𝑛). By the intertwinning 

formula (6.7)[1], we have 

 

 

∫ 𝐷𝑧
(𝑛)(𝑓 ⋅ �̂�𝑛

2)𝑑𝑣𝑛

 

𝐻𝜀
(𝑛)(𝑀)

              

= ∫ 𝐷�̂�
𝑋((𝑓 ⋅ �̂�𝑛

2) ∘ 𝐼𝑛)𝑑𝜇𝑛

 

𝐻𝜀
(𝑛)

 

  = ∫ 𝐷𝜙𝑛 ⋅�̂�
𝑋 ((𝑓 ⋅ �̂�𝑛

2) ∘ 𝐼𝑛) 𝑑𝜇𝑛

 

𝐻(𝑛)
 

       = ∫ [𝐷𝜙𝑛 ⋅�̂�
𝑋 ((𝑓 ⋅ �̂�𝑛

2) ∘ 𝐼𝑛)] ∘ 𝜋𝑛
𝑋 𝑑𝜇

 

𝑋

 

          = ∫ [(𝑓 ⋅ �̂�𝑛
2) ∘ 𝐼𝑛 ∘ 𝜋𝑛

𝑋]𝛿(𝜙𝑛  ⋅ �̂�) 𝑑𝜇
 

𝑋

. 

Consider the following formula (cf. [9]): 

 

∫ 𝑓𝛼(𝑠) �̇�𝑛
𝛼(𝑠)

1

0

𝑑𝑠 = ∫ (
1

∆𝑠
∫ 𝑓𝛼(𝑡)
𝑠+

𝑠−
 𝑑𝑡)  𝑑𝑏𝛼(𝑠)

1

0

   +∑∫ (
1

∆𝑠
∫ 𝐷𝑠,𝛼

𝑋 𝑓𝛼(𝑡)
𝑠+

𝑠−
𝑑𝑡)  𝑑𝑠

1

0𝛼

            (3.3) 

 

where 𝑓(𝑠) is a non-adapted ℝ𝑑  valued process with 

some regularity assumptions and the stochastic 

integral is taken in the sense of Skorohod. 

Applying this formula to 𝑓𝛼(𝑠) = 𝜙𝑛 �̇̂�
𝛼(𝑠−), 

 

 

𝛿(𝜙𝑛 ⋅ �̂�)(𝑏) = ∑∫ 𝜙𝑛 ⋅ �̇̂�
𝛼(𝑡−)�̇�𝑛

𝛼(𝑡) 𝑑𝑡
1

0𝛼

−∫ 𝐷𝑡 ,𝛼
𝑋 [𝜙𝑛 �̇̂�

𝛼(𝑡−))  𝑑𝑡
1

0

 = ∑∫ 𝜙𝑛 ⋅ �̇�
𝛼(𝑡−)�̇�𝑛

𝛼(𝑡) 𝑑𝑡
1

0𝛼

        

               −∑∫ 𝜙𝑛 ⋅ (∫
𝑡+ − 𝑠

𝑡+ − 𝑡−
Ω𝛾𝜆𝛽
𝛼 (𝑟𝑛(𝑠))�̇�𝑛

𝛾(𝑠)𝑧̅𝜆(𝑠)�̇�𝑛
𝛽(𝑠) 𝑑𝑠

𝑡+

𝑡−
) �̇�𝑛

𝛼(𝑡) 𝑑𝑡
1

0𝛼

 

   −∑∫ 𝜙𝑛 ⋅ (∫ Ω𝛾𝜆𝛽
𝛼 (𝑟𝑛(𝑠))�̇�𝑛

𝛾(𝑠)�̅�𝜆(𝑠) 𝑑𝑠
𝑡−

0

) ⋅ �̇�𝑛
𝛽(𝑡)�̇�𝑛

𝛼(𝑡) 𝑑𝑡
1

0𝛼

     

      −∫ 𝜙𝑛𝐷𝑡 ,𝛼
𝑋 �̇̂�𝛼(𝑡−) 𝑑𝑡

1

0

−∫ �̇̂�𝛼(𝑡−)𝐷𝑡 ,𝛼
𝑋 𝜙𝑛 𝑑𝑡

1

0

,                       

 

where 𝑏𝑛 = 𝜋𝑛
𝑋(𝑏) and 𝑟𝑛 is the horizontal lift of 

𝐼𝑛(𝑏𝑛) satisfying 𝑑𝑟𝑛(𝑠) = ∑𝐴𝛼(𝑟𝑛)�̇�𝑛
𝛼(𝑠) 𝑑𝑠,

𝑑

𝛼=1

   𝑟𝑛(0) = 𝑟0. 
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In view of the antisymmetry of Ω𝛾𝜆𝛽
𝛼  the 

second and third terms of this expression vanish. By 

the construction of 𝜙𝑛, we know that 𝜑𝑛 ⋅ 𝐷𝑡 ,𝛼
𝑋 𝜙𝑛 =

0. Hence 

 

∫ 𝐷𝑧
(𝑛)(𝑓 ⋅ �̂�𝑛

2)𝑑𝑣𝑛

 

𝐻𝜀
(𝑛)(𝑀)

= ∫ (𝑓 ⋅ �̂�𝑛
2) ∘ 𝐼𝑛(𝑏) ⋅ [∑∫ �̇�𝛼(𝑡−)�̇�𝑛

𝛼(𝑡) 𝑑𝑡
1

0𝛼

−∫ 𝐷𝑡 ,𝛼
𝑋 �̇̂�𝛼(𝑡−) 𝑑𝑡

1

0

]  𝑑𝜇𝑛(𝑏)
 

𝐻𝜀
(𝑛)

          

 = ∫ (𝑓 ⋅ �̂�𝑛
2)(𝜎) ⋅ [∑∫ �̇�𝛼(𝑡−)𝑑[𝐼𝑛

−1(𝜎)]𝛼
1

0𝛼

(𝑡) − ∫ 𝐷𝑡 ,𝛼
𝑋 �̇̂�𝛼(𝑡−) 𝑑𝑡

1

0

]  𝑑𝑣𝑛(𝜎)
 

𝐻𝜀
(𝑛)(𝑀)

 

= ∫ 𝑓(𝜎) ⋅ [∑∫ �̇�𝛼(𝑡−)𝑑[𝐼𝑛
−1(𝜎)]𝛼

1

0𝛼

(𝑡) − ∫ 𝐷𝑡 ,𝛼
𝑋 �̇̂�𝛼(𝑡−) 𝑑𝑡

1

0

]  𝑑𝑣𝑛,𝜀(𝜎).
 

𝑀𝜀
(𝑛)

               

 

Finally, we obtain 

∫ 𝐷𝑧
(𝑛)𝑓 𝑑𝑣𝑛,𝜀

 

𝑀𝜀
(𝑛)

= ∫ 𝑓𝛿(𝑛)𝑧 𝑑𝑣𝑛,𝜀 ,
 

𝑀𝜀
(𝑛)

 

where 𝛿(𝑛)𝑧 is given by (6.12)[1]. 

Theorem (3.3):   For any 𝑔 ∈ 𝐶𝑏(𝑊(𝑀)), let 

𝑔𝑛 be the projection of 𝑔 (see Definition (6.1.17)). 

Then for any t > 0, we have 

�̃�𝑡
(𝑛)
𝑔𝑛

𝑤⋅
→𝑇𝑡𝑔    𝑖𝑛   𝐿

2(𝑊(𝑀), 𝑣), 
where 𝑇𝑡 ∶= 𝑒

−𝑡𝐿 . 
Proof.  Following the notation of the previous 

theorem’s proof, for any 𝑓 ∈E  1
 , we have 

 

𝐸𝑣(�̃�𝑡
(𝑛)𝑔𝑛 ⋅ 𝑓) − 𝐸

𝑣(𝑇𝑡𝑔 ⋅ 𝑓)  ≤ 𝐸
𝑣(�̃�𝑡

(𝑛)𝑔𝑛 ⋅ 𝑓𝑛) − 

𝐸𝑣(𝑇𝑡𝑔 ⋅ 𝑓) + 𝐸
𝑣 (�̃�𝑡

(𝑛)𝑔𝑛 ⋅ (𝑓 − 𝑓𝑛)), 

 

where 𝑓𝑛 is the projection of 𝑓. The second term 

clearly converges to zero. By Theorem (6.1.29) the 

first is equal to 

 

    𝐸𝑣𝑛,𝜀(𝑇𝑡
(𝑛)𝑔𝑛 ⋅ 𝑓𝑛) − 𝐸

𝑣(𝑇𝑡𝑔 ⋅ 𝑓) = 𝐸
𝑃(𝑔𝑛(𝑝𝑡

𝑛)𝑓𝑛(𝑝0
𝑛)) − 𝐸𝑃(𝑔(𝑝𝑡) ⋅ 𝑓(𝑝0))   

          = 𝐸𝑃([𝑔𝑛(𝑝𝑡
𝑛) − 𝑔(𝑝𝑡

𝑛)]𝑓𝑛(𝑝0
𝑛)) + 𝐸𝑃(𝑔(𝑝𝑡

𝑛)[𝑓𝑛(𝑝0
𝑛) − 𝑓(𝑝0

𝑛)]) 

      +𝐸𝑃(𝑔(𝑝𝑡
𝑛)[𝑓(𝑝0

𝑛) − 𝑓(𝑝0)]) + 𝐸
𝑃([𝑔(𝑝𝑡

𝑛) − 𝑔(𝑝𝑡)] ⋅ 𝑓(𝑝0)). 

 

The convergence of the last two terms follows 

from the a.s. convergence of 𝑝𝑡
𝑛 to 𝑝𝑡 and the 

dominated convergence theorem. As for the first, 

since 𝑣𝑛,𝜀 is the invariant measure of 𝑝𝑡
𝑛, it is 

estimated by 

𝐶𝐸𝑃|𝑔𝑛(𝑝𝑡
𝑛) − 𝑔(𝑝𝑡

𝑛)|  = 𝐶𝐸𝑣𝑛,𝜀|𝑔𝑛(𝜎𝑣) − 𝑔(𝜎𝑣)|   
= 𝐶𝐸𝜇(𝜑𝑛

2|𝑔𝑛 ∘ 𝐼𝑛 ∘ 𝜋𝑛
𝑋 − 𝑔 ∘ 𝐼𝑛 ∘ 𝜋𝑛

𝑋|) 
≤ 𝐶𝐸𝜇(𝜑𝑛

2|𝑔 ∘ 𝐼 − 𝑔 ∘ 𝐼𝑛 ∘ 𝜋𝑛
𝑋|) → 0. 

The second is similar. 

Proposition (3.4): Under the assumptions of 

Theorem (6.2.1), the limit in Eq. (6.56) is zero. 

 Proof. Combining Propositions (6.2.35), 

(6.2.39), (6.2.40), and Eqs. (6.179) and (6.180) shows 

that the limit in Eq. (6.55) vanishes when ∆→ 0. 

Here we collect several inequalities which are 

straight forward to show, but the frequency of use 

warrants their mention. For any 𝑎 ∈ ℝ and 𝑝 ∈ ℕ, 

|𝑒𝑎 − 1|𝑝 ≤ 𝑒𝑝|𝑎| − 1 ≤ 𝑝|𝑎|𝑒𝑝|𝑎|.          (3.4) 
If 𝑎, 𝑏 > 0 and 𝛼 ≥ 1, 

sinh(𝑎)

𝑎
≤ cosh(𝑎),                  (3.5) 

cosh(𝑎) cosh(𝑏) ≤ cosh(𝑎 + 𝑏),             (3.6) 
cosh(𝑎) (cosh(𝑏) − 1) ≤                             

cosh(𝑎) cosh(𝑏) − 1,      (3.7) 
𝛼(cosh(𝑎) cosh(𝑏) − 1) ≤                          

cosh(𝛼𝑎) cosh(𝛼𝑏) − 1.      (3.8) 
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