
Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 180

QR – Issue QR – Article

SOI: 1.1/TAS DOI: 10.15863/TAS

International Scientific Journal

Theoretical & Applied Science

p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)

Year: 2021 Issue: 01 Volume: 93

Published: 23.01.2021 http://T-Science.org

Vadim Andreevich Kozhevnikov

Peter the Great St. Petersburg Polytechnic University

Senior Lecturer

vadim.kozhevnikov@gmail.com

Donat Vitalievich Shergalis

Peter the Great St. Petersburg Polytechnic University

student

donutellko@gmail.com

MIGRATING FROM REST TO GRAPHQL HAVING LONG-TERM

SUPPORTED CLIENTS

Abstract: This article describes a concept of a new approach in API architecture. The article also contains an

analysis of some existing architectural styles and technologies and compares them to this new approach.

Key words: API architecture, GraphQL, REST.

Language: English

Citation: Kozhevnikov, V. A., & Shergalis, D. V. (2021). Migrating from rest to graphql having long-term

supported clients. ISJ Theoretical & Applied Science, 01 (93), 180-185.

Soi: http://s-o-i.org/1.1/TAS-01-93-31 Doi: https://dx.doi.org/10.15863/TAS.2021.01.93.31

Scopus ASCC: 1700.

Introduction

Such technologies as SOAP (Simple Object

Access Protocol) and REST (Representative State

Transfer) have been the main architectural approaches

for data exchange. The obvious difference is the way

data is encoded. In the case of SOAP, the only

supported format is XML. While REST does not

define the format, so developer can transmit JSON,

HTML, XML and binary data. Each approach has its

own advantages and disadvantages, but REST is the

priority choice for modern developers due to the

lightness and better readability of the JSON format,

flexibility and ease of use, especially in web

development [1].

However, when working with REST, developers

also face certain limitations and disadvantages. The

main ones are the so-called over fetching and under

fetching, when, in response to a request, the REST

client receives extra data, or vice versa, an insufficient

amount of it, so client needs to perform another

request. This often happens due to changes in

application design or functionality. In case of

insufficient data, the back-end developer has to

modify the code to add the required data, while cases

of redundancy are often ignored. The problem is

aggravated, when there are different types of clients –

for example, Android, iOS and web applications.

The need for small changes on the server side

slows down the development process. As one of the

approaches to solve the problem, Facebook created for

internal use the GraphQL query language, which

allows developers on the client side to select the data

they need using a special query language [2].

After the specification was published,

developers became interested in a new flexible

approach, but faced a number of obstacles when trying

to implement this technology in the systems they are

developing [3]. The main ones were:

− the inability to upgrade existing versions of

mobile and desktop applications to use GraphQL;

− the need to maintain both protocols during

the process of migration [4];

− developers of client applications are

unwilling to learn and implement new technology.

To solve these problems, the author suggests

creating a service that will become an intermediary

between the GraphQL server and the REST client. The

author expects this can solve the listed problems, and

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
mailto:vadim.kozhevnikov@gmail.com
mailto:donutellko@gmail.com
http://s-o-i.org/1.1/TAS-01-93-31
https://dx.doi.org/10.15863/TAS.2021.01.93.31

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 181

also have additional advantages, compared to using

each technology separately.

The aim of the article

The purpose of this work is to study the

possibility and reasonability of creating the service

described earlier. To do this, we need to compare

GraphQL to other architectures and protocols, then

make a conclusion about the feasibility of

development of such technology, based on a

comparison of approaches and the expected usability.

Benefits of GraphQL in compare to REST

Some of the benefits obtained by using GraphQL

have already been listed in the introduction, but we

will consider them in more detail [5, 6]:

The client can specifically indicate what data he

needs and in what form.

This allows us to save the number of network

calls, calls to the database, memory and file system,

save traffic and get rid of unnecessary transfor-

mations, conversions and sorts.

Let's say there is a service that displays the user's

top 25 photos in high quality, sorted by the number of

likes and with several top comments. Then, on the

profile page, we need to display a preview of the last

five photos, sorted by date, so we add a new endpoint.

Then we decided to create mobile versions for both

screens, where we display less photos, do not display

comments, and thumbnails are used instead of full-

size images. This would require at least two

modifications to backend code, which might be

considered impractical due to lack of time. As a result,

extra requests are made on the server side to get

comments for images, and the user wastes time and

traffic on downloading images in higher quality.

If we use GraphQL, in both cases developers of

client application would have just to change their

requests: the sorting method and the number of

requested photos, remove comments from list of

requested fields, and change link to the image to the

link to the preview.

It simplifies the aggregation of data from

multiple sources in a single query.

Let's say we have a service that provides

information about accounts and a service that provides

information about cards. To get information about the

accounts and the cards linked to them, you have to

either make two requests and compare their results on

the client side, or create another service that

aggregates the information and provides it in the form

we need. When using GraphQL, one service called

BFF (Backend For Frontend) is a generic aggregator.

The type system is used to describe the data.

A schema is a contract between a client and a

server; it allows you to specify field types for requests

and responses, lists of possible values (enum), and

their mandatory presence (nullability).

Disadvantages of GraphQL

However, GraphQL also has disadvantages in

comparison with REST [5, 7]:

Need to manage additional constraints.

Since consumers of the GraphQL API have

ability to choose the data that he wants to receive, a

security issue arises. For example, a malicious user

can send a request to the server to obtain complete

information about all users in order to use them for

purposes that are contrary to the interests of the

company. Or send a lot of resource-intensive requests

in order to cause a denial of service. To prevent both

attacks, developers need to set additional restrictions,

anticipating possible ways of abuse. Also, some

implementations have a Persistent Queries

mechanism that allows you to set all possible queries

and refer to them by a unique identifier.

The missing field is indistinguishable from null.

For example, there is a mutation request to

update user information, allowing the username,

address, and phone number to be changed. These

fields may or may not be present in the request so that

the customer does not have to send an address and

phone number if they want to change their name.

However, if the user wants to completely remove the

address value by passing null, then the server will

decide that the address field should not be changed.

The difference between the input and output

format.

To illustrate, let's use one of the principles of

REST – statelessness. For example, in one request, the

client receives a certain context, which he must

transfer in the next request. In the case of REST, the

server and client exchange an identical object. And in

the case of GraphQL, for this purpose, separate types

for input and output must be defined in the schema,

and the client must compose a request using the fields

from the response.

Polymorphism is unsupported for mutations.

We can inherit one object from another or use

union for several objects, but we cannot inherit input

objects used in mutation. For example, we need to

transfer information about the account holder. If the

owner is an individual, then his last name, first name

and patronymic are needed, and for a legal entity – the

name of the company. In the case of REST, the client

can pass an additional field containing the type of the

account holder, and the server can deserialize to the

desired type based on this field. And when using

GraphQL, you have to create a separate query for each

type.

Lack of namespaces.

Each GraphQL service has a single schema. In

the case of a large project, the scheme can reach

significant volumes, and orientation in it will require

additional documentation, and the likelihood of name

collisions increases. REST, in turn, does not use such

concept as type of transferred objects, so these types

are managed by clients and servers separately.

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 182

Limiting the use of the Backend Driven UI

approach.

With this approach, the server side is in charge

of controlling the user interface: the application is a

collection of widgets. The list and order of widgets

displayed on each screen, the contents of each widget,

as well as the way to navigate between screens, are

received by application from the server. When using

GraphQL, the developer will have to decide how to

transfer the changing query from the server to the

device, or in response to each change, edit the schema

by creating or modifying the existing query.

As you can see, both REST and GraphQL have

their advantages and disadvantages, but the decision

to use one or another approach should be made taking

into account the specifics of a particular project.

GraphQL migration issues

In case developers decide to start using GraphQL

in an existing product, they may face a number of

problems [9]. Let's take an example to illustrate

possible problems.

Let's say a company has mobile apps for Android

and iOS platforms, as well as web versions of apps for

computers and mobile devices. Some users are unable

to update the application due to the fact that their

version of the operating system is no longer supported

by the application, but the company does not want to

lose profit from these users.

The company periodically redesigns the

application, so the format of data presentation on a

large number of screens changes, in connection with

which the formats of requests to the server and

responses from it might also be changed. Due to the

large number of available platforms, the workload on

the server-side developers increases greatly, since it is

necessary to develop services taking into account the

differences in the presentation of the result on each

platform.

Using GraphQL would reduce the burden on the

backend developers, since in this case they just need

to create a number of generic sources and provide a

schema for which the developers of client applications

will write queries.

However, the introduction of new technology

means that it is necessary to teach every developer on

each platform to use it, and then maintain two versions

of the API simultaneously for a long time [8] –

GraphQL for new versions of the application, and

REST for old ones.

Proposed technology

As a solution to the listed problems, the author

proposes creating an additional service as an adapter

between REST clients and GraphQL servers. This

service stores mappings (the correspondence between

requests of two types), and when receiving a REST

request, finds the corresponding GraphQL request

template in its database, fills it with data from the

REST request and sends it to the GraphQL server for

execution, then returns the response to the client.

In addition to the described basic functionality,

it is also possible to implement the following features:

If there is no match for the REST request, the

request is passed to the gateway service – thus, the

described service can become the gateway and the

only access point to the system.

If necessary, casting the response of the

GraphQL service to a different form can be

implemented in order to maintain backward

compatibility.

Advantages of the proposed technology

Let's consider the advantages of this approach in

comparison with using REST or GraphQL:

− Flexibility and power of the GraphQL

language – developers have the ability to write full-

fledged GraphQL queries and develop the back end in

accordance with all the principles of GraphQL.

− Backward compatibility on the client – the

old version of the application can continue to function

after the full transition to using GraphQL on the

server.

− Developers of client applications do not need

to learn new technology and implement it – interaction

with the server is still carried out through the usual

REST.

− Responsibilities for writing, debugging and

editing queries can also be assumed by analysts and

support staff, without requiring the participation of

developers.

− Possibility of gradual migration – requests

that were not implemented in GraphQL are passed to

the old services, and then can implicitly replaced by

the new implementation.

− Such service can access many different

GraphQL services, allowing you to delineate areas of

responsibility and solve the naming problem.

− It is possible to use existing caching

mechanisms on the client and intermediate nodes, not

suitable for use with GraphQL.

− A similar system can be implemented for any

protocol of communication with the client – for

example, instead of REST, the SOAP protocol can be

used.

− To add and change the mapping, it is not

necessary to reload the service, which allows you to

make and check changes much faster than when you

would have changed the code. Mappings can be

updated periodically, upon detection of changes or by

another event.

− The ability to edit a query on the server in real

time, which is impossible when using the Persistent

Queries mechanism, in which the client uses the hash

code of one of the predefined immutable queries.

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 183

− Settings can be taken from any type of source

– git or other version control system, database, config

servers, local yaml files, etc.

− Storing mappings in the version control

system will allow you to use an existing role model,

including streamlined processes for reviewing

changes, as well as protect mappings from

unauthorized changes and loss, and use versioning.

− The response format can be easily

manipulated using JSON formatting technologies

such as the JOLT library [10].

− If you migrate from this solution to using

GraphQL without intermediaries, developers will

have tested GraphQL queries ready to be used. And to

support old versions of the application after migration,

you will not have to support the old REST cluster, but

only this service.

− Reduces the amount of code responsible for

data representation in services. This introduces a new

level of abstraction that allows developers to write

cleaner code.

− This service as a separate layer can be tested

independently of the rest of the system using autotests:

for this, "stubs" can be used, called instead of real

services on the testing environment.

Disadvantages of the proposed technology

− An additional element in the call chain slows

down the execution of requests.

− Service and mapping sources are new

potential points of failure.

− If the source of mappings is unavailable, the

service cannot be restarted – an additional source must

be provided.

− With increasing number of mappings, the

complexity of system support can significantly

increase.

− We need a new mechanism for testing

changes. Those actions that were previously covered

by unit tests in services can now only be tested using

autotests and stub services.

As you can see, the number and significance of

expected advantages significantly exceeds the number

and significance of expected disadvantages, and

therefore the author consider it expedient to develop

such a system.

Description of proposed service

The implementation of the proposed system

should have the following functionality:

− Load mappings from the source, which is the

git repository, the link to which is specified in the

settings.

− Accept REST requests for GET, POST, PUT

and DELETE methods.

− Find the corresponding mapping for the

request by the request method and request URI. The

request URI specified in the mapping can have a path

variable, that is, for the request
GET /api/users/123/accounts?currency=RUR

the following mapping should be found:
GET /api/users/${userId}/accounts

− Use path variables, query params and request

headers as variables to form a request according to the

template specified in the mapping. So, in the previous

example, based on the request, the values of two

variables will be set: userId=123 and currency=RUR.

− Also use body to get variable values. For

example, when receiving a request with the following

body
{"name": "Aleksandrov", "address": {"street":
"Lubyanka", "house": "1"}
the values of the variables will be obtained
name=Alexandrov; address/street=Lubyanka;
address/house=1

− Substitute variable values into the query

template stored in the mapping, in place of

placeholders with the corresponding name. For

example, the following request from the mapping:
{users (id: "${userId}") {accounts (currency_eq:
"${currency}") {number}}

should be filled in like this:
{users (id: "123") {accounts (currency_eq: "RUR")
{number}}

− If the mapping was not found, the request

must be sent unmodified (with the URI, query params,

headers and request body preserved) to the API

Gateway address specified in the settings.

− Transformation of the received response is

carried out if there is a transformation rule in the

mapping. The transformation uses the technology

specified in the mapping. The transformation rules are

specified in the format corresponding to the specified

technology. Supported technologies are selected by

the developer.

A diagram illustrating the interaction between

the client and the described service is shown in Figure

1.

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 184

Figure 1 – sequence diagram

Conclusion

In this article we explored REST and GraphQL,

their advantages and disadvantages, compared them to

each other and modeled a process of migration from

REST to GraphQL. Based on this data we described a

service that would superpose both approaches, not

only combining most of their advantages, but also

having additional benefits.

The description can be treated as a specification

for implementation of such service.

References:

1. Fielding, R.T. (n.d.). Architectural Styles and the

Design of Network-based Software

Architectures. [Accessed at 26.01.2021].

Retrieved from

https://www.ics.uci.edu/~fielding/pubs/dissertat

ion/rest_arch_style.htm

2. (n.d.). Introduction to GraphQL. [Accessed at

26.01.2021]. Retrieved from

https://graphql.org/learn/

3. Sandoval, K. (n.d.). Federated Data With

HyperGraphQL. [Accessed at 26.01.2021].

Retrieved from https://nordicapis.com/how-to-

make-graphql-work-for-you/

4. Mayogra, J. (n.d.). Gradually migrating an app

from REST to GraphQL. [Accessed at:

26.01.2021]. Retrieved from

https://graphql.college/gradually-migrating-a-

node-and-react-app-from-rest-to-graphql

5. (n.d.). Honest Engineers. Why use GraphQL,

good and bad reasons. [Accessed at

26.01.2021]. Retrieved from

https://honest.engineering/posts/why-use-

graphql-good-and-bad-reasons

6. (n.d.). The Ultimate Guide to API Architecture:

REST, SOAP or GraphQL? [Accessed at

26.01.2021]. Retrieved from https://da-

14.com/blog/ultimate-guide-api-architecture-

rest-soap-or-graphql

7. Soharev, P. (n.d.). What's wrong with GraphQL

(Chto ne tak s GraphQL) [in Russian]. [Accessed

at 26.01.2021]. Retrieved from

https://habr.com/ru/post/425041/

8. Haldar, M. (n.d.). Migrating Existing REST APIs

to GraphQL. [Accessed at: 26.01.2021].

Retrieved from https://blog.bitsrc.io/migrating-

existing-rest-apis-to-graphql-2c5de3db647d

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://graphql.org/learn/
https://nordicapis.com/how-to-make-graphql-work-for-you/
https://nordicapis.com/how-to-make-graphql-work-for-you/
https://graphql.college/gradually-migrating-a-node-and-react-app-from-rest-to-graphql
https://graphql.college/gradually-migrating-a-node-and-react-app-from-rest-to-graphql
https://honest.engineering/posts/why-use-graphql-good-and-bad-reasons
https://honest.engineering/posts/why-use-graphql-good-and-bad-reasons
https://da-14.com/blog/ultimate-guide-api-architecture-rest-soap-or-graphql
https://da-14.com/blog/ultimate-guide-api-architecture-rest-soap-or-graphql
https://da-14.com/blog/ultimate-guide-api-architecture-rest-soap-or-graphql
https://habr.com/ru/post/425041/
https://blog.bitsrc.io/migrating-existing-rest-apis-to-graphql-2c5de3db647d
https://blog.bitsrc.io/migrating-existing-rest-apis-to-graphql-2c5de3db647d

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 185

9. Fletcher, C. (n.d.). A look at Trello: adopting

GraphQL and Apollo in a legacy application.

[Accessed at 26.01.2021]. Retrieved from

https://atlassian.com/engineering/a-look-at-

trello-adopting-graphql-and-apollo-in-a-legacy-

application

10. Simpson, M. (n.d.). JOLT. [Accessed at

26.01.2021]. Retrieved from

https://github.com/bazaarvoice/jolt

https://atlassian.com/engineering/a-look-at-trello-adopting-graphql-and-apollo-in-a-legacy-application
https://atlassian.com/engineering/a-look-at-trello-adopting-graphql-and-apollo-in-a-legacy-application
https://atlassian.com/engineering/a-look-at-trello-adopting-graphql-and-apollo-in-a-legacy-application
https://github.com/bazaarvoice/jolt

